Bull. Austral. Math. Soc. Vol. 59 (1999) [467-471]

NOTE ON U-CLOSED SEMIGROUP RINGS

Ryûki Matsuda

Let D be an integral domain with quotient field K. If $\alpha^2 - \alpha \in D$ and $\alpha^3 - \alpha^2 \in D$ imply $\alpha \in D$ for all elements α of K, then D is called a u-closed domain. A submonoid S of a torsion-free Abelian group is called a grading monoid. We consider the semigroup ring D[S] of a grading monoid S over a domain D. The main aim of this note is to determine conditions for D[S] to be u-closed. We shall show the following Theorem: D[S] is u-closed if and only if D is u-closed.

Let D be a domain with quotient field K. (The quotient field is denoted by q().) Let n be a natural number. If $\alpha^n \in D$ implies $\alpha \in D$ for all $\alpha \in K$, then D is called *n*-root closed. If D is *n*-root closed for every natural number n, then D is called root closed. If $\alpha^2 \in D$ and $\alpha^3 \in D$ imply $\alpha \in D$ for all $\alpha \in K$, then D is called seminormal. If $\alpha^2 - \alpha \in D$ and $\alpha^3 - \alpha^2 \in D$ imply $\alpha \in D$ for all $\alpha \in K$, then D is called u-closed. If $\alpha^2 - a\alpha \in D$ and $\alpha^3 - a\alpha^2 \in D$ imply $\alpha \in D$ for all $\alpha \in D$ and $\alpha \in K$, then D is called t-closed.

A submonoid S of a torsion-free Abelian (additive) group is called a grading monoid (or a g-monoid). We consider the semigroup ring D[S] of S over D. D.F. Anderson determined both conditions for D[S] to be *n*-root closed and conditions for D[S] to be root closed [1]. D.D. Anderson and D.F. Anderson determined conditions for D[S] to be seminormal [2]. Throughout the paper, S denotes a g-monoid. The main aim of this note is to determine conditions for D[S] to be u-closed.

Let G be the quotient group of S, that is, $G = \{s_1 - s_2 \mid s_1, s_2 \in S\}$. (The quotient group is denoted by q().) Let n be a natural number. If $n\alpha \in S$ implies $\alpha \in S$ for all $\alpha \in G$, then S is called n-root closed. If S is n-root closed for every n, then S is called integrally closed. Let T be a g-monoid with submonoid S. For $\alpha \in T$, if $n\alpha \in S$ for some natural number n, then α is called integral over S. The set of integral elements of T over S is called the integral closure of S in T. The integral closure \overline{S} of S in q(S) is called the integral closure of S. S is integrally closed if and only if $\overline{S} = S$.

THEOREM 1. [1]

(1) D[S] is n-root closed if and only if D is n-root closed and S is n-root closed.

Received 11th November, 1999

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/99 \$A2.00+0.00.

(2) D[S] is root closed if and only if D is root closed and S is integrally closed.

If $2\alpha \in S$ and $3\alpha \in S$ imply $\alpha \in S$ for all $\alpha \in q(S)$, then S is called seminormal.

THEOREM 2. [2] D[S] is seminormal if and only if D is seminormal and S is seminormal.

LEMMA 1.

- (1) If D[S] is t-closed, then D is t-closed.
- (2) If D[S] is u-closed, then D is u-closed.

The proof of Lemma 1 is straightforward.

PROPOSITION 1. (See [5]).

- (1) If D is t-closed, then $D[X_1, X_1^{-1}, \ldots, X_n, X_n^{-1}]$ is t-closed, where X_1, \ldots, X_n are indeterminates.
- (2) If D is u-closed, then $D[X_1, X_1^{-1}, \ldots, X_n, X_n^{-1}]$ is u-closed.

PROPOSITION 2. Let G be a torsion-free Abelian group. Then D[G] is t-closed if and only if D is t-closed.

PROOF: The necessity follows from Lemma 1.

The sufficiency: Assume that $F^2 - fF \in D[G]$ and $F^3 - fF^2 \in D[G]$ for elements $f \in D[G]$ and $F \in q(D[G])$. There exists a finitely generated subgroup H of G such that $f \in D[H], F \in q(D[H]), F^2 - fF \in D[H]$ and $F^3 - fF^2 \in D[H]$. D[H] is isomorphic to $D[X_1, X_1^{-1}, \ldots, X_n, X_n^{-1}]$ for some n. By Proposition 1, we have $F \in D[H]$.

PROPOSITION 3. Let G be a torsion-free Abelian group. Then D[G] is u-closed if and only if D is u-closed.

The proof of Proposition 3 is similar to that of Proposition 2.

The torsion-free rank of q(S) is denoted by tfr (S).

LEMMA 2. If tfr $(S) < \infty$, then S is isomorphic to a submonoid of the g-monoid **R** of real numbers.

PROOF: Let G = q(S), and let $\alpha_1, \ldots, \alpha_n$ be a maximal independent subset of G. Let β_1, \ldots, β_n be a set of real numbers which is linearly independent over \mathbb{Z} . Let $\alpha \in G$. Then we have $n\alpha = \sum n_i \alpha_i$ for integers n and n_i with $n \neq 0$. We set $\sigma(\alpha) = (1/n) \sum n_i \beta_i$. Then σ is an isomorphism of G into \mathbb{R} .

EXAMPLE 1. [4, Proposition 3.4] Let k be a field and S a submonoid of the rational numbers Q. If k[S] is seminormal, then k[S] is integrally closed.

LEMMA 3. For a domain D and a g-monoid S, the following conditions are equivalent:

- (1) D[S] is t-closed.
- (2) For every finitely generated submonoid S_0 of S and the integral closure T of S_0 in S, D[T] is t-closed.

469

PROOF: (1) \implies (2): For elements $F \in q(D[T])$ and $f \in D[T]$, assume that $F^2 - fF \in D[T]$ and $F^3 - fF^2 \in D[T]$. By the assumption, we have $F \in D[S]$. The integral closure of D[T] is $\overline{D}[\overline{T}]$, where \overline{D} is the integral closure of D and \overline{T} is the integral closure of T [3, Corollary 12.11]. It follows that $F \in D[T]$.

(2) \implies (1): Assume that $F^2 - fF \in D[S]$ and $F^3 - fF^2 \in D[S]$ for elements $f \in D[S]$ and $F \in q(D[S])$. There exists a finitely generated submonoid S_0 of S such that $f \in D[S_0]$, $F \in q(D[S_0])$, $F^2 - fF \in D[S_0]$ and $F^3 - fF^2 \in D[S_0]$. By the assumption, we have $F \in D[T]$ for the integral closure T of S_0 in S.

Lemmas 2, 3 and Proposition 2 imply that conditions for D[S] to be t-closed reduce to the case where D is a field, S is a submonoid of **R** with $S \subsetneq q(S)$ and tfr $(S) < \infty$.

LEMMA 4. For a domain D and a g-monoid S, the following conditions are equivalent:

- (1) D[S] is u-closed.
- (2) For every finitely generated submonoid S_0 of S and the integral closure T of S_0 in S, D[T] is u-closed.

The proof of Lemma 4 is similar to that of Lemma 3.

Lemma 4 and Proposition 3 reduce conditions for D[S] to be u-closed to the case where S is a submonoid of **R** with $S \subsetneq q(S)$ and tfr $(S) < \infty$.

EXAMPLE 2. Assume that tfr (S) = 1. Then D[S] is t-closed if and only if D is t-closed and S is isomorphic to an integrally closed submonoid of Q.

PROOF: By Lemma 2, we may assume that S is a submonoid of \mathbf{Q} .

The necessity: We see that K[S] is t-closed, and hence seminormal, where K = q(D). By Example 1, K[S] is integrally closed. Hence S is integrally closed.

The sufficiency: Then K[S] is integrally closed. Assume that $F^2 - fF \in D[S]$ and $F^3 - fF^2 \in D[S]$ for elements $f \in D[S]$ and $F \in q(D[S])$. Then we have $F \in K[S]$. On the other hand, by Proposition 2, we have $F \in D[G]$ for G = q(S). Hence $F \in D[S]$.

An element of D[S] is denoted by $\sum_{finite} a_s X^s$ for elements $a_s \in D$ and $s \in S$ with X a symbol.

LEMMA 5. Assume that D is u-closed with characteristic p > 0, and S a submonoid of **R**. Then D[S] is u-closed.

PROOF: Assume that $F^2 - F \in D[S]$ and $F^3 - F^2 \in D[S]$ for some element $F \in q(D[S])$. We must show that $F \in D[S]$. We may assume that $F \neq 0$. By Proposition 3, we have $F \in D[G]$, where G = q(S). Put $F = a_1 X^{\alpha_1} + \cdots + a_l X^{\alpha_l}$, where each a_i is non-zero and $\alpha_1 < \cdots < \alpha_l$. Suppose that $\alpha_k \notin S$ for some k. For every natural number n larger than 1, we have $F^n - F \in D[S]$. Specifically, we have $F^{p^i} - F \in D[S]$ for every natural number i. Since $\alpha_k \notin S$, the coefficient of X^{α_k} in $F^{p^i} - F$ is zero. It follows that $\alpha_k = p^i \alpha_{l(i)}$ for some number l(i). There exist natural numbers i < j such that

R. Matsuda

[4]

 $\alpha_{l(i)} = \alpha_{l(j)}$. Then we have $(p^j - p^i)\alpha_{l(i)} = 0$, and hence $\alpha_{l(i)} = 0$. It follows that $\alpha_k = 0$, and hence $\alpha_k \in S$, a contradiction.

LEMMA 6. Assume that D is of characteristic 0, p a prime number and X_1, \ldots, X_l indeterminates. Let M be a monomial appearing in $(X_1 + \cdots + X_l)^p$. Then M is either of the form X_i^p for some i or $cX_{l(1)}^{e_1} \ldots X_{l(n)}^{e_n}$, where n > 1, each e_i is a natural number, c is a multiple of p and $l(i) \neq l(j)$ for $i \neq j$.

The proof of Lemma 6 is elementary. The case of l = 2: we have $(X_1 + X_2)^p = \sum_i {}_p C_i X_1^{p-i} X_2^i$. And, if 1 < i < p, then ${}_p C_i$ is a multiple of p.

LEMMA 7. Assume that D is u-closed with characteristic 0. Then D[S] is u-closed.

PROOF: Assume that $F^2 - F \in D[S]$ and $F^3 - F^2 \in D[S]$ for some element $F \in q(D[S])$. We must show that $F \in D[S]$. We may assume that $F \neq 0$. By Proposition 3, we have $F \in D[G]$, where G = q(S). Put $F = a_1 X^{\alpha_1} + \cdots + a_l X^{\alpha_l}$, where each a_i is non-zero and $\alpha_i \neq \alpha_j$ for $i \neq j$. Suppose that $\alpha_k \notin S$ for some k. Suppose that there exists an infinite number of prime numbers p such that $\alpha_k = p\alpha_{l(p)}$ for some number l(p). Then there are prime numbers p < q such that l(p) = l(q). It follows that $\alpha_k = 0$, and hence $\alpha_k \in S$, a contradiction.

We may assume that $D \supset \mathbb{Z}$. We may assume that a_1, \ldots, a_m is a transcendence basis of the field $\mathbb{Q}(a_1, \ldots, a_l)$ over \mathbb{Q} . There exists an element $\theta \in \mathbb{Q}(a_1, \ldots, a_l)$ which is integral over $\mathbb{Z}[a_1, \ldots, a_m]$ such that $\mathbb{Q}(a_1, \ldots, a_l) = (\mathbb{Q}(a_1, \ldots, a_m))(\theta)$. Let *n* be the degree of θ over $\mathbb{Q}(a_1, \ldots, a_m)$. Then, there exists a non-zero element *f* of $\mathbb{Z}[a_1, \ldots, a_m]$ so that each a_i is of the form

$$\frac{f_{i0}}{f}+\frac{f_{i1}}{f}\theta+\cdots+\frac{f_{i,n-1}}{f}\theta^{n-1},$$

where every f_{ij} is an element of $\mathbb{Z}[a_1, \ldots, a_m]$. Therefore each element of $\mathbb{Z}[a_1, \ldots, a_l]$ is of the form

$$\frac{f_0}{f^d} + \frac{f_1}{f^d}\theta + \dots + \frac{f_{n-1}}{f^d}\theta^{n-1}$$

with $f_i \in \mathbb{Z}[a_1, \ldots, a_m]$ and a natural number d. There exists a number M so that if p is a prime number larger than M, then $\alpha_k \neq p\alpha_i$ for each i and $f \notin p\mathbb{Z}[a_1, \ldots, a_m]$. Let p be a prime number larger than M. By Lemma 6, the coefficient of X^{α_k} in F^p is of the form pa for some element $a \in \mathbb{Z}[a_1, \ldots, a_l]$. Since $F^p - F \in D[S]$, we have $pa = a_k$.

Let $p_1 < p_2 < \cdots$ be the prime numbers larger than M. We show that there exists an element $b(n) \in \mathbb{Z}[a_1, \ldots, a_l]$ such that $p_1 p_2 \ldots p_n b(n) = a_k$ for every n. For the proof, we rely on induction on n. Thus suppose that there exists an element b(n) of $\mathbb{Z}[a_1, \ldots, a_l]$ such that $p_1 p_2 \ldots p_n b(n) = a_k$. There exist integers l_1 and l_2 such that $l_1 p_1 p_2 \ldots p_n + l_2 p_{n+1} = 1$. Then we have $l_1 a_k + l_2 p_{n+1} b(n) = l_1 p_1 p_2 \ldots p_n b(n) + l_2 p_{n+1} b(n) = b(n)$. Since $p_{n+1}a' = a_k$ for some element a' of $\mathbb{Z}[a_1, \ldots, a_l]$, it follows that $p_{n+1}(l_1a' + l_2b(n)) = l_1 p_{n+1}a' + l_2 p_{n+1}b(n) = b(n)$.

Therefore $p_1 p_2 ... p_{n+1} (l_1 a' + l_2 b(n)) = a_k$.

We have an increasing chain of principal ideals of $Z[a_1, \ldots, a_l]$: $(b(1)) \subset (b(2)) \subset \cdots$. Since $Z[a_1, \ldots, a_l]$ is a Noetherian ring, we have (b(h)) = (b(h+1)) for some h. Then it follows that

$$\frac{1}{p_{h+1}} \in \mathbf{Z}[a_1,\ldots,a_l].$$

Hence we have

$$\frac{1}{p_{h+1}} = \frac{f_0}{f^d} + \frac{f_1}{f^d}\theta + \dots + \frac{f_{n-1}}{f^d}\theta^{n-1}$$

with $f_i \in \mathbb{Z}[a_1, \ldots, a_m]$ and a natural number d. It follows that $f \in p_{h+1}\mathbb{Z}[a_1, \ldots, a_m]$, a contradiction.

THEOREM 3. D[S] is u-closed if and only if D is u-closed.

PROOF: The necessity follows from Lemma 1.

The sufficiency: We may assume that S is a submonoid of **R**. If D is of characteristic p > 0, Lemma 5 implies that D[S] is u-closed. If D is of characteristic 0, Lemma 7 implies that D[S] is u-closed.

QUESTION [4] What are conditions for D[S] to be t-closed?

References

- [1] D.F. Anderson, 'Root closure in integral domains', J. Algebra 79 (1982), 51-59.
- [2] D.D. Anderson and D.F. Anderson, 'Divisorial ideals and invertible ideals', J. Algebra 76 (1982), 549-569.
- [3] R. Gilmer, Commutative semigroup rings, Chicago Lectures in Mathematics (The University of Chicago Press, Chicago, Ill., 1984).
- [4] M. Kanemitsu and R. Matsuda, 'Note on seminormal overrings', Houston J. Math. 22 (1996), 217-224.
- [5] N. Onoda, T. Sugatani and K. Yoshida, 'Local quasinormality and closedness type criteria', Houston J. Math. 11 (1985), 247-256.

Department of Mathematics Ibaraki University Mito, Ibaraki 310 Japan

[5]