NOTE ON U-CLOSED SEMIGROUP RINGS

Ryûki Matsuda

Let D be an integral domain with quotient field K. If $\alpha^{2}-\alpha \in D$ and $\alpha^{3}-\alpha^{2} \in$ D imply $\alpha \in D$ for all elements α of K, then D is called a u-closed domain. A submonoid S of a torsion-free Abelian group is called a grading monoid. We consider the semigroup ring $D[S]$ of a grading monoid S over a domain D. The main aim of this note is to determine conditions for $D[S]$ to be u-closed. We shall show the following Theorem: $D[S]$ is u-closed if and only if D is u-closed.

Let D be a domain with quotient field K. (The quotient field is denoted by q() .) Let n be a natural number. If $\alpha^{n} \in D$ implies $\alpha \in D$ for all $\alpha \in K$, then D is called n-root closed. If D is n-root closed for every natural number n, then D is called root closed. If $\alpha^{2} \in D$ and $\alpha^{3} \in D$ imply $\alpha \in D$ for all $\alpha \in K$, then D is called seminormal. If $\alpha^{2}-\alpha \in D$ and $\alpha^{3}-\alpha^{2} \in D$ imply $\alpha \in D$ for all $\alpha \in K$, then D is called u-closed. If $\alpha^{2}-a \alpha \in D$ and $\alpha^{3}-a \alpha^{2} \in D$ imply $\alpha \in D$ for all $a \in D$ and $\alpha \in K$, then D is called t -closed.

A submonoid S of a torsion-free Abelian (additive) group is called a grading monoid (or a g-monoid). We consider the semigroup ring $D[S]$ of S over D. D.F. Anderson determined both conditions for $D[S]$ to be n-root closed and conditions for $D[S]$ to be root closed [1]. D.D. Anderson and D.F. Anderson determined conditions for $D[S]$ to be seminormal [2]. Throughout the paper, S denotes a g-monoid. The main aim of this note is to determine conditions for $D[S]$ to be u-closed.

Let G be the quotient group of S, that is, $G=\left\{s_{1}-s_{2} \mid s_{1}, s_{2} \in S\right\}$. (The quotient group is denoted by q() .) Let n be a natural number. If $n \alpha \in S$ implies $\alpha \in S$ for all $\alpha \in G$, then S is called n-root closed. If S is n-root closed for every n, then S is called integrally closed. Let T be a g-monoid with submonoid S. For $\alpha \in T$, if $n \alpha \in S$ for some natural number n, then α is called integral over S. The set of integral elements of T over S is called the integral closure of S in T. The integral closure \bar{S} of S in $\mathrm{q}(S)$ is called the integral closure of $S . S$ is integrally closed if and only if $\bar{S}=S$.

Theorem 1. [1]
(1) $D[S]$ is n-root closed if and only if D is n-root closed and S is n-root closed.

[^0]Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/99 \$A2.00+0.00.
(2) $D[S]$ is root closed if and only if D is root closed and S is integrally closed. If $2 \alpha \in S$ and $3 \alpha \in S$ imply $\alpha \in S$ for all $\alpha \in \mathrm{q}(S)$, then S is called seminormal.
Theorem 2. [2] $D[S]$ is seminormal if and only if D is seminormal and S is seminormal.

Lemma 1.
(1) If $D[S]$ is t-closed, then D is t-closed.
(2) If $D[S]$ is u-closed, then D is u-closed.

The proof of Lemma 1 is straightforward.
Proposition 1. (See [5]).
(1) If D is t-closed, then $D\left[X_{1}, X_{1}^{-1}, \ldots, X_{n}, X_{n}^{-1}\right]$ is t-closed, where X_{1}, \ldots, X_{n} are indeterminates.
(2) If D is u-closed, then $D\left[X_{1}, X_{1}^{-1}, \ldots, X_{n}, X_{n}^{-1}\right]$ is u-closed.

Proposition 2. Let G be a torsion-free Abelian group. Then $D[G]$ is t-closed if and only if D is t-closed.

Proof: The necessity follows from Lemma 1.
The sufficiency: Assume that $F^{2}-f F \in D[G]$ and $F^{3}-f F^{2} \in D[G]$ for elements $f \in D[G]$ and $F \in \mathrm{q}(D[G])$. There exists a finitely generated subgroup H of G such that $f \in D[H], F \in \mathrm{q}(D[H]), F^{2}-f F \in D[H]$ and $F^{3}-f F^{2} \in D[H] . D[H]$ is isomorphic to $D\left[X_{1}, X_{1}^{-1}, \ldots, X_{n}, X_{n}^{-1}\right]$ for some n. By Proposition 1, we have $F \in D[H]$.

Proposition 3. Let G be a torsion-free Abelian group. Then $D[G]$ is u-closed if and only if D is u-closed.

The proof of Proposition 3 is similar to that of Proposition 2.
The torsion-free rank of $\mathrm{q}(S)$ is denoted by $\mathrm{tfr}(S)$.
Lemma 2. If $\mathrm{tfr}(S)<\infty$, then S is isomorphic to a submonoid of the g-monoid \mathbf{R} of real numbers.

Proof: Let $G=\mathrm{q}(S)$, and let $\alpha_{1}, \ldots, \alpha_{n}$ be a maximal independent subset of G. Let $\beta_{1}, \ldots, \beta_{n}$ be a set of real numbers which is linearly independent over \mathbf{Z}. Let $\alpha \in G$. Then we have $n \alpha=\sum n_{i} \alpha_{i}$ for integers n and n_{i} with $n \neq 0$. We set $\sigma(\alpha)=(1 / n) \sum n_{i} \beta_{i}$. Then σ is an isomorphism of G into \mathbf{R}.

Example 1. [4, Proposition 3.4] Let k be a field and S a submonoid of the rational numbers \mathbf{Q}. If $k[S]$ is seminormal, then $k[S]$ is integrally closed.

Lemma 3. For a domain D and a g-monoid S, the following conditions are equivalent:
(1) $D[S]$ is t-closed.
(2) For every finitely generated submonoid S_{0} of S and the integral closure T of S_{0} in $S, D[T]$ is t-closed.

Proof: (1) \Longrightarrow (2): For elements $F \in \mathrm{q}(D[T])$ and $f \in D[T]$, assume that $F^{2}-$ $f F \in D[T]$ and $F^{3}-f F^{2} \in D[T]$. By the assumption, we have $F \in D[S]$. The integral closure of $D[T]$ is $\bar{D}[\bar{T}]$, where \bar{D} is the integral closure of D and \bar{T} is the integral closure of T [3, Corollary 12.11]. It follows that $F \in D[T]$.
$(2) \Longrightarrow$ (1): Assume that $F^{2}-f F \in D[S]$ and $F^{3}-f F^{2} \in D[S]$ for elements $f \in D[S]$ and $F \in \mathrm{q}(D[S])$. There exists a finitely generated submonoid S_{0} of S such that $f \in D\left[S_{0}\right], F \in \mathrm{q}\left(D\left[S_{0}\right]\right), F^{2}-f F \in D\left[S_{0}\right]$ and $F^{3}-f F^{2} \in D\left[S_{0}\right]$. By the assumption, we have $F \in D[T]$ for the integral closure T of S_{0} in S.

Lemmas 2, 3 and Proposition 2 imply that conditions for $D[S]$ to be t-closed reduce to the case where D is a field, S is a submonoid of \mathbf{R} with $S \varsubsetneqq \mathrm{q}(S)$ and $\operatorname{tfr}(S)<\infty$.

Lemma 4. For a domain D and a g-monoid S, the following conditions are equivalent:
(1) $D[S]$ is u-closed.
(2) For every finitely generated submonoid S_{0} of S and the integral closure T of S_{0} in $S, D[T]$ is u-closed.

The proof of Lemma 4 is similar to that of Lemma 3.
Lemma 4 and Proposition 3 reduce conditions for $D[S]$ to be u-closed to the case where S is a submonoid of \mathbf{R} with $S \varsubsetneqq \mathrm{q}(S)$ and $\operatorname{tfr}(S)<\infty$.
Example 2. Assume that $\operatorname{tfr}(S)=1$. Then $D[S]$ is t-closed if and only if D is t-closed and S is isomorphic to an integrally closed submonoid of \mathbf{Q}.

Proof: By Lemma 2, we may assume that S is a submonoid of \mathbf{Q}.
The necessity: We see that $K[S]$ is t-closed, and hence seminormal, where $K=\mathrm{q}(D)$. By Example 1, $K[S]$ is integrally closed. Hence S is integrally closed.

The sufficiency: Then $K[S]$ is integrally closed. Assume that $F^{2}-f F \in D[S]$ and $F^{3}-f F^{2} \in D[S]$ for elements $f \in D[S]$ and $F \in \mathrm{q}(D[S])$. Then we have $F \in K[S]$. On the other hand, by Proposition 2, we have $F \in D[G]$ for $G=\mathrm{q}(S)$. Hence $F \in D[S]$.

An element of $D[S]$ is denoted by $\sum_{f i n i t e} a_{s} X^{s}$ for elements $a_{s} \in D$ and $s \in S$ with X a symbol.

Lemma 5. Assume that D is u-closed with characteristic $p>0$, and S a submonoid of \mathbf{R}. Then $D[S]$ is u-closed.

Proof: Assume that $F^{2}-F \in D[S]$ and $F^{3}-F^{2} \in D[S]$ for some element $F \in$ $\mathrm{q}(D[S])$. We must show that $F \in D[S]$. We may assume that $F \neq 0$. By Proposition 3, we have $F \in D[G]$, where $G=\mathrm{q}(S)$. Put $F=a_{1} X^{\alpha_{1}}+\cdots+a_{l} X^{\alpha_{l}}$, where each a_{i} is non-zero and $\alpha_{1}<\cdots<\alpha_{l}$. Suppose that $\alpha_{k} \notin S$ for some k. For every natural number n larger than 1, we have $F^{n}-F \in D[S]$. Specifically, we have $F^{p^{i}}-F \in D[S]$ for every natural number i. Since $\alpha_{k} \notin S$, the coefficient of $X^{\alpha_{k}}$ in $F^{p^{i}}-F$ is zero. It follows that $\alpha_{k}=p^{i} \alpha_{l(i)}$ for some number $l(i)$. There exist natural numbers $i<j$ such that
$\alpha_{l(i)}=\alpha_{l(j)}$. Then we have $\left(p^{j}-p^{i}\right) \alpha_{l(i)}=0$, and hence $\alpha_{l(i)}=0$. It follows that $\alpha_{k}=0$, and hence $\alpha_{k} \in S$, a contradiction.

Lemma 6. Assume that D is of characteristic $0, p$ a prime number and X_{1}, \ldots, X_{l} indeterminates. Let M be a monomial appearing in $\left(X_{1}+\cdots+X_{l}\right)^{p}$. Then M is either of the form X_{i}^{p} for some i or $c X_{l(1)}^{e_{1}} \ldots X_{l(n)}^{e_{n}}$, where $n>1$, each e_{i} is a natural number, c is a multiple of p and $l(i) \neq l(j)$ for $i \neq j$.

The proof of Lemma 6 is elementary. The case of $l=2$: we have $\left(X_{1}+X_{2}\right)^{p}=\sum_{i}$ ${ }_{p} C_{i} X_{1}^{p-i} X_{2}^{i}$. And, if $1<i<p$, then ${ }_{p} C_{i}$ is a multiple of p.

Lemma 7. Assume that D is u-closed with characteristic 0 . Then $D[S]$ is u-closed.
Proof: Assume that $F^{2}-F \in D[S]$ and $F^{3}-F^{2} \in D[S]$ for some element $F \in$ $\mathrm{q}(D[S])$. We must show that $F \in D[S]$. We may assume that $F \neq 0$. By Proposition 3, we have $F \in D[G]$, where $G=\mathrm{q}(S)$. Put $F=a_{1} X^{\alpha_{1}}+\cdots+a_{l} X^{\alpha_{l}}$, where each a_{i} is non-zero and $\alpha_{i} \neq \alpha_{j}$ for $i \neq j$. Suppose that $\alpha_{k} \notin S$ for some k. Suppose that there exists an infinite number of prime numbers p such that $\alpha_{k}=p \alpha_{l(p)}$ for some number $l(p)$. Then there are prime numbers $p<q$ such that $l(p)=l(q)$. It follows that $\alpha_{k}=0$, and hence $\alpha_{k} \in S$, a contradiction.

We may assume that $D \supset \mathbf{Z}$. We may assume that a_{1}, \ldots, a_{m} is a transcendence basis of the field $\mathbf{Q}\left(a_{1}, \ldots, a_{l}\right)$ over \mathbf{Q}. There exists an element $\theta \in \mathbf{Q}\left(a_{1}, \ldots, a_{l}\right)$ which is integral over $\mathbf{Z}\left[a_{1}, \ldots, a_{m}\right]$ such that $\mathbf{Q}\left(a_{1}, \ldots, a_{l}\right)=\left(\mathbf{Q}\left(a_{1}, \ldots, a_{m}\right)\right)(\theta)$. Let n be the degree of θ over $\mathbf{Q}\left(a_{1}, \ldots, a_{m}\right)$. Then, there exists a non-zero element f of $\mathbf{Z}\left[a_{1}, \ldots, a_{m}\right]$ so that each a_{i} is of the form

$$
\frac{f_{i 0}}{f}+\frac{f_{i 1}}{f} \theta+\cdots+\frac{f_{i, n-1}}{f} \theta^{n-1}
$$

where every $f_{i j}$ is an element of $\mathbf{Z}\left[a_{1}, \ldots, a_{m}\right]$. Therefore each element of $\mathbf{Z}\left[a_{1}, \ldots, a_{\ell}\right]$ is of the form

$$
\frac{f_{0}}{f^{d}}+\frac{f_{1}}{f^{d}} \theta+\cdots+\frac{f_{n-1}}{f^{d}} \theta^{n-1}
$$

with $f_{i} \in \mathbf{Z}\left[a_{1}, \ldots, a_{m}\right]$ and a natural number d. There exists a number M so that if p is a prime number larger than M, then $\alpha_{k} \neq p \alpha_{i}$ for each i and $f \notin p \mathbf{Z}\left[a_{1}, \ldots, a_{m}\right]$. Let p be a prime number larger than M. By Lemma 6, the coefficient of $X^{\alpha_{k}}$ in F^{p} is of the form $p a$ for some element $a \in Z\left[a_{1}, \ldots, a_{l}\right]$. Since $F^{p}-F \in D[S]$, we have $p a=a_{k}$.

Let $p_{1}<p_{2}<\cdots$ be the prime numbers larger than M. We show that there exists an element $b(n) \in Z\left[a_{1}, \ldots, a_{l}\right]$ such that $p_{1} p_{2} \ldots p_{n} b(n)=a_{k}$ for every n. For the proof, we rely on induction on n. Thus suppose that there exists an element $b(n)$ of $Z\left[a_{1}, \ldots, a_{l}\right]$ such that $p_{1} p_{2} \ldots p_{n} b(n)=a_{k}$. There exist integers l_{1} and l_{2} such that $l_{1} p_{1} p_{2} \ldots p_{n}+$ $l_{2} p_{n+1}=1$. Then we have $l_{1} a_{k}+l_{2} p_{n+1} b(n)=l_{1} p_{1} p_{2} \ldots p_{n} b(n)+l_{2} p_{n+1} b(n)=b(n)$. Since $p_{n+1} a^{\prime}=a_{k}$ for some element a^{\prime} of $\mathbf{Z}\left[a_{1}, \ldots, a_{l}\right]$, it follows that $p_{n+1}\left(l_{1} a^{\prime}+l_{2} b(n)\right)=$ $l_{1} p_{n+1} a^{\prime}+l_{2} p_{n+1} b(n)=b(n)$.

Therefore $p_{1} p_{2} \ldots p_{n+1}\left(l_{1} a^{\prime}+l_{2} b(n)\right)=a_{k}$.
We have an increasing chain of principal ideals of $\mathrm{Z}\left[a_{1}, \ldots, a_{1}\right]:(b(1)) \subset(b(2)) \subset$ \cdots. Since $\mathbf{Z}\left[a_{1}, \ldots, a_{l}\right]$ is a Noetherian ring, we have $(b(h))=(b(h+1))$ for some h. Then it follows that

$$
\frac{1}{p_{h+1}} \in \mathbf{Z}\left[a_{1}, \ldots, a_{1}\right] .
$$

Hence we have

$$
\frac{1}{p_{h+1}}=\frac{f_{0}}{f^{d}}+\frac{f_{1}}{f^{d}} \theta+\cdots+\frac{f_{n-1}}{f^{d}} \theta^{n-1}
$$

with $f_{i} \in \mathbf{Z}\left[a_{1}, \ldots, a_{m}\right]$ and a natural number d. It follows that $f \in p_{h+1} \mathbf{Z}\left[a_{1}, \ldots, a_{m}\right]$, a contradiction.

Theorem 3. $D[S]$ is u-closed if and only if D is u-closed.
Proof: The necessity follows from Lemma 1.
The sufficiency: We may assume that S is a submonoid of \mathbf{R}. If D is of charatcteristic $p>0$, Lemma 5 implies that $D[S]$ is u -closed. If D is of characteristic 0 , Lemma 7 implies that $D[S]$ is u-closed.
Question [4] What are conditions for $D[S]$ to be t -closed?

References

[1] D.F. Anderson, 'Root closure in integral domains', J. Algebra 79 (1982), 51-59.
[2] D.D. Anderson and D.F. Anderson, 'Divisorial ideals and invertible ideals', J. Algebra 76 (1982), 549-569.
[3] R. Gilmer, Commutative semigroup rings, Chicago Lectures in Mathematics (The University of Chicago Press, Chicago, Ill., 1984).
[4] M. Kanemitsu and R. Matsuda, 'Note on seminormal overrings', Houston J. Math. 22 (1996), 217-224.
[5] N. Onoda, T. Sugatani and K. Yoshida, 'Local quasinormality and closedness type criteria', Houston J. Math. 11 (1985), 247-256.

Department of Mathematics

Ibaraki University
Mito, Ibaraki 310
Japan

[^0]: Received 11th November, 1999

