ON MULTIPLE TRANSITIVITY OF
PERMUTATION GROUPS

TOSIRO TSUZUKU

It is well known that a doubly transitive group & has an irreducible
character Z; such that 7i(R) =a«(R)—1 for any element R of & and a quad-
ruply transitive group has irreducible characters X, and ”; such that 7%(R) =

Sa(R)(@(R)=3)+B8(R) and 7%(R) = +(«(R) = D(a(R)~2) = A(R) where

«(R) and B(R) are respectively the numbers of one cycles and two cycles con-
tained in R. G. Frobenius was led to this fact in the connection with characters
of the symmetric groups and he proved the following interesting theorem" : if
a permutation group & of degree n is t-ply transitive, then any.irreducible

character of the symmetric group of degree n with dimension at most equal to

—% is an irreducible character of @.

In this paper, we shall prove some theorems of a similar type to the above
theorem by G. Frobenius which assert multiple transitivity of permutation groups
in connection with characters of the symmetric groups. In § 1 we shall sketch
some results on the characters of the symmetric groups by G. Frobenius and
I. Schur needed in this paper, and in § 2 we prove our theorems. Further, we
treat some special cases in § 3.

The auther expresses his gratitudes to Professor T. Nakayama and Pro-
fessor N. Ito for encouragement and valuable comments.

We use following terminologies and notations. &” designates the symmet-

n

ric groups of degree n (on » letters 1, 2, ..., n). & is the subgroup of &
fixing suitable one letter, say 1, and frequently we identify this group with &"".
a1, a@s, - .., an are rational integer valued class functions of &" such that, for
an element R of &", «;(R) is the number of cycles of length i contained in R,
and we say that the type of the element R is (1)#®(2)%%F ... (n)*®,
Characters are always ordinary characters and irreducible characters are abso-

L See [4], §3.
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lutely irreducible characters. For a group & and its subgroup 9, oX is the rest-
riction to  of a character X of & and ®y is a character of & induced by a

character ¥ of . |@®] is the order of a.group @.

§ 1. Frobenius’ formula and Schur’s recurrence formula?

If
n=li+hk+ - +in

is an equation in non negative integers iy, A, . . ., 4» such that 0S4 =h= - - -
=Aia, then the ordered set of non negative integers (;, 4, . . . , 4n) (frequently
we shall simply write (1)) is called a partition of n. We may define the order
of partitions of # such that (A, ..., As) <(uy . .., #n) When Ap=un, An-1=
Un=gp + « . » Ai+1=pi+; and 4; > u; for some 1<:<n. Since two elements of &"
are conjugate if and only if they contain the same numbers of cycles of the
same lengths, the number of congugate classes of the symmetric group €" is
equal to the number of partitions of #n; a partition (p) = (p1, . . . , pn) of 2z cor-
responds to a conjugate class €, consisting of elements of type (p)(pz) - - *
(pn). So also the number of irreducible characters of &”" is equal to the number
of partitions of #. All irreducible representations, particularly their characters,
are obtained in the rational field. G. Frobenius gave a one to one correspon-
dence between irreducible characters of €" and partitions of #n. If we denote
by X' the character of " corresponding to the partition (4) of =, then, for

any element R of a class €, =€, ..., 5, in &7,
IM(R)( = X{3)) = the coefficient of %™ - - - x,™ in F,,

where k; = A;+i—1 and where

Foy=(x"+ =+« +2)@0+ -0 +a8) - Gt -0 +a4)
X 4%, . .., %n) where 4(xy, . .., %) =TI (2:— %5),
i<j
with » variables %3, . . . , ¥». This formula is called Frobenius' formula for the

characters of &". Evidently F,, is rewritten

(1) O R ) e € A -
(T + -0 DA, L, w),

for any element R in €,,. We may define the order of irreducible characters

2 See [2], [5] or [6].
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of &" such that ¥ >¥* when (1) > (2). The number #~2Ax=2:4 * * * + An-1
is called the dimension of 2'*. For instance, there exists exactly one irreducible
character of dimension 0, i.e. the character X', (n) meaning (0, ..., 0, n);
provided n =2 there exists exactly one irreducible character of dimension 1,
X"V provided #=4 there are two irreducible characters of dimension 2,
X®"? and ¥ 5", and provided n=6 there are three irreducible characters
of dimension 3, X*7*%, y*>7™® and ¥»*%"®  Here X' is the unit character

1’ x(l' n—-1) =ay— 1’ 1(2, n=2) _ gl_(%_:__g_)_ + as, X(l’ 1, n—2) — (_‘tl___]_-)_z(_‘_x_l_:_z_l - a2 and

AR P 1 ai(ai=1) (a1 —5) + (a1 = Daz + as

o

YL 'édl(al —-2)(ar—4) —as

LAy %(m“ D(ai—=2)(a1—3) = (a1 — Dazs + as,

as we readily compute by Frobenius formula.

For the actual calculations of the characters of the symmetric groups we
use frequently Schur’s well known reccurence formula on the decomposition of
an irreducible character of &” into those of &}( =&"™')®. Namely any irreduci-
ble character ¥*' of &” is decomposed in €] as follows; if, for a partition (1)
=y ..., dn) of n, (uP), ..., (") are all the partitions of #n — 1 appearing
in the ordered sets (44— 1, 4oy . o ., An), (A, 2=1, gy v e oy An)y e ooy (Ao v o,
An-1, An— 1), then we have

(2) @;’X(M =x(ll-“’) NI +x(u.("))-

§ 2. Main theorems

By Frobenius’ formula it is easy to see that X'* is a polynomial of a3y, . . .,
an with rational coefficients. From now on we consider ay, . . . , a» as variables

of weights 1, ..., » and we define the weight of a monomial af* - - - ay* as

Slir; and the weight of a polynomial X of ay, ..., as as the maximum of

1=1

weights of monomials of a1, . . ., as appearing in ¥ with non zero coefficients.

Firstly we have

3) See [5] or [6].
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LemMa 1. If the dimension of a character [V is 7, then the weight of 1™

is at most equal to 7.

Proof. 7 is the coefficient of #* - - - x5 in (1) where x;< - - + <kn, & =
Ai+i—1and Ai+ ¢ -+ +adp-y=7= the dimension of 7'*. The monomial XV x%
« - - x%" in (1) is obtained as the sum of products of monomials A,,.. .%" - - -
Zrin (X1 00 +x) (x4 - +xR)* - (af'+ ¢ -+ +x7)° and monomials

e kW in A(%y ¢ ¢ - %») such that gi+vi=« for é=1,..., n. Since «,
n—1

=2n—r—1and p,<n—1, we have us2n—7, or, >2,,;<7. Namely V= a
=1

n—1
sum of = Ay, ..., where 2)u; <7 But it is easy to see that
2=2

n () (#) ()
ai \f(ai— Bi ai— B’ — = Baly
Au,...u,.= 2 r.ll( )( B(i) cc (f)
n { ? n
> 1'5,(-“=u1 for j=1,2, -, n-1
i=1
n .
o B;‘)=ai for i=1,2, ---, n
=1

<.

n=1

where (5) = 0if 8 <0 or 8> a. Therefore A,, .. ., with > # < 7 is a polynomial
i=1

of weight <7 in a4, . .., as, with rational coefficients. This proves lemma 1.

4 Professor N. It6 kindly pointed out the following meaning of this lemma; Let ®
be the subgroup ’é_;,}, . r(=0""T) of " fixing the s letters 1, 2,..., 7 and let ;=G

n
X ... X &% x @"" be a subgroup of the normalisor N(®) of & in €* where I si=r and
i=1

0<si<s2< ... <s.. Then, by Littlcwood-Richardson’s formula, (which is a generalized
formula of Schur’s one; See D. E. Littlewood [5]) we have
6"(011)_—_x(31, 82, .ou, sy, n-r) > aixXe,
(p)<(s1, ...8r, n—p)
where a:'s are non negative integers. Hence, by inductive consideration it is easy to see
that lemma 1 is equivalent to that the weight of ®"(g, 1) is at most equal to . In the
set D of elements (141)... (7, ir) of & we define an equivalence relation = such that

(1) oo (rir) = (1) ... (740,

when {il, ey _isl} = (l'l, e .jsl}, {53111, cee !_i\‘?l"'sz) = {“j"l'*'l’ ‘e ,isl+sz}, .... Then it is easy

to see that the number of equivalence ciasses of I is nin :ll)s T I :T_’"]) (and this is
182 .4 90

equal to (&"; ©1)) and a full representative system ai, as, ..., @en g, of equivalent

classes of D is always a full representative system of the ©" by &;. For any element R
of ", we have easily
{®"(#,1)}(R) =the number of a: such that a:Rai"1 € &
- s 11/ «(R) ai(R)—ul¥ ai( Ry =) —ui) — ... —ulP
s RN RZ) . )

13
n ; i=1 u u(‘)
iflmy):’j ! "

where (5)=0 if «<0, B<0 or «<B. This shows that the weight of ®u(y,1)is equal to
Si+s24+ ... FSr=2.
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Lemma 2. Let & be a permutation group of degree m and let 7, ..., 7a

be an ordered set of non negative integers.

i) We have always

(a;(R)) L. (ar,.(R)) _ 5|8l ,
REQ 71 n 1”7’1 ! 2’21’2 e n”‘rn !
with a non nzgative integer s.

ii) ® is t-ply transitive if and only if

a(R) . [an(R)Y _ | &
R§®( 71 > ( n ) - 1)‘;7,1!27‘2'2! o o o nr“rn!’
n
Jor any ordered set of non negative integers ry, . . . , ¥» Such that >\ iri < t, and,
) i=1

if this is the case, for any ordered set of non negative integers vy, . . . , n Such

that Diri=t+ 1 we have
1=i

QI(R)) L. (a'n(R))

( - Sryyeeoral @
RE® 71 n

(3) = o T
1’17’1 ! 2r21'2 T, ﬂr"fn !

with a non negative integer Sy,..r, not exceeding the number s, of transitive

constituents of {t 4+ 1, t 4:} ..., nt by the subgroup ®y, ..,: of © fixing t letters

1, ...,t. More precisely

iii) & #s t-ply transitive if and only if
ai(R)) _ 1G]
)=
Ir ® is exactly t-ply transitive, then

lxl(R)) _ Sol@l_

@) ](E@(t+1 Tl

Proofs of i) and the “only if” parts of ii), iii) were given in [2],§ 1. We

assume 33 (VRN =181 e S (R @(R) =D - (@R 1+ D) = (61,
reg' ¢ t! FE®

Let @ be a permutation group on = letters {1, 2, ..., n}. It is easy to see
thatﬂ%al(R)(al(R) =1) -+ - (ai(R) = t+1) is equal to the number of all pairs
&

(R, Cy) such that C: is an ordered set with t letters consisting of letters fixed
by an element R of 8. On the other hand, let C be an ordered subset with ¢
letters of {1, ..., n}, say C=(1, ..., 1), and let C* be the ordered set (1%,
..., t") and let © be the subgroup of ® fixing ¢ letters 1,..., t. Then, for
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a left coset decomposition ® = 9a; + Ha:+ - - - + Has of G by 9, the set
{(a7'Rai, C*)|R€ D, i=1,..., s} contains s|| =|®| pairs, and evidently
they are distinct each other, and so any pair exists in this set. Particularly,
for any ordered set (&, ..., %), we have (1, (4, . .., #%)) = (a;'Ra;. C*) for

some a; and R, namely,
%, ..., ") = (1, « - oy ).

Hence @ is #-ply transitive. In this case, the number of conjugate classes of all
ordered subsets with #+ 1 letters of {1,..., n} by the group @ is evidently
equal to so. Let Cy, ..., Cs, be a representative system of these conjugate
classes and let 9; be the subgroup of @ fixing ¢ + 1 letters in C;. Then, for a
left coset decomposition § = Diai” + Dial”’ + - -+ + Diay’ of G by 9, the set
D = {(af""'Raf”, C¥")|Re€ ©i,j=1,2, ..., u) contains u|9H;| = | @] pairs,
and evidently they are distinct each other. It is easy to see that D" N Dp? =¢
for i % j and any pair (R, C) such that C is an ordered set with ¢+ 1 letters
consisting of letters fixed by an element R of & is contained in some D'”. This
proves (4). In similar manner we may prove (3); we omit details.

Now, if & is the symmetric group &”, then, for any integer ¢ such that

0 <t<n, we have always the relationRS_,; a1(R)(a(R)—1) -+ - (ay(R) =t + 1)
E n
= n!, because &” is n-ply transitive. For t =1, we have > a;(R) = n! and,
REg?
for t=2, > al(R) = > ar(R)(ay(R) — 1) + >} ai(R) =2+n!. In similar
REg™ REGH REg™"

manner we can define inductively an arithmetic function ¢(#) such that 3 af(R)
REa"

=t(t)n! for any positive integer t. However, for a permutation group ®, if
REZ@m(R)(m(R) —-1) -+ (a(R)— t+1) = |G| for all integers ¢ such that 0 <
t < m then we have also similar relations Pg@«'{(l@) = r(¢)|@| for all integers ¢
such that 0 <t < m. and, conversely, if relations Ig@«{(R) =7(1) || hold for all
integers ¢ such that 0 < ¢< m, then we have easily the relationRgga (R (a:(R)— 1)
« -« (ai(R)—t+1) =|®|. Hence, by lemma 2, we have

LemMA 3. 1) ® s t-ply transitive if and only if

g@a{(m =t(r)| 8|

for every integer r such that 0 <r=<t.

ii) ® is exactly t-ply transitive if and only if
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S ai(R) =c(r) @]
=)

for every integers r such that 0<r <t and

S R) = (t(t+ D +s5—-1) S,

REY
where s, is the integer in lemma 2, ii).
Similarly, we can define the arithmetic function (¢, . . . , #») on all ordered

sets of # non negative integers ¢, . . ., ¢, such that

ST @M(R) (R =1ty . .., ta)n],

Re3"
and we have
Lemma 3. § is t-ply transitive if and only if
S (R -l (R =1t ..., 1) ]G]
REQ

for every ordered set (ti, ..., tn) such that > it; <1, and further if ® is exactly
i=1
t-ply transitive, then we have

Sl at(R) ... a(R)Fc(tn ..., )G,
REQ

for every ordered set (ty, . .., tn) such that iiti =t+1. ands,..1, (of lemma
2, 4)) = 0.

a1(R) is a character of €", since a;(R)— 1 is a character, and so, for any
non negative integer 7, ai(R) is a character of &™. Class functions f[ aii(R),

t=1

for 7,=0, are not always characters, but we have

LemMa 4. A class function T &% of " of a weight r < ’21 (e. D=7,
i=1 1=1
#i=0) is @ linear combination of irreducible characters of dimensions <r with

rational coefficients.

Proof. For r=1, this is obious. We assume that for any integer s<7—1
our assertion is correct. Let X., ..., Zr be all irreducible characters of
dimension 7. By the difinition of the dimension, p(7) is equal to the number
of partitions of . On the other hand, the number of monomials of ay, . - . , an
of aweight 7 is also equal to the number of partitions of » and we denote these

o(7) monomials by M, M, . . . » M,». By Lemma 1,
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Li=ay, M+ - +ay orniMury+ /1
L=, Mi+ **° +a, oy Mpry+ /2

.........................

Loy = @piryy Mi+ * *  + @oiryy gy Miypiry + Sy,
where fi, f2, - .., fo» are polynomials of ai, ..., an of weights <7 with
rational integral coefficients and, by the inductive assumption, they are linear
combinations of irreducible characters of dimension =7—1 with rational coe-
ficients. Since 7, . .., L.~ are of dimension 7, Zi—fi, i=1, ..., o(r), are

independent class functions of €”. Hence simultaneous equations
Li—fi=ai, ML+ - +ai, pqriMpry, i=1,..., p(r)

have unique solutions M;, i=1, . .., p(#), and they are linear combinations of
irreducible characters of dimensions =< » with rational coefficients.

LEMMA 5. Let & be a permutation group of degree n and let r be a positive

integer such that r< % If for at least one character 1 with dimension r of

©" the character gl of & is irreducible, then ® is transitive.

Proof. 1f we assume that @ is intransitive, then & is contained in a sub-
group &™ x €™ of &" for some positive integers m;, 7. such that #=n;+ n,

where ™ is the symmetric subgroup of &” on n; letters 1, 2, . . ., » fixing

the other n—n; letters m;+1,..., n and & is the symmetric subgroup of

&" on m+1,..., n fixing 1,..., n,. Hence, to prove our lemma, it is

sufficient to show that gm.gmZ™ is reducible. If gmyxgm/" is irreducible, then
this is a Kronecker product of irreducible characters of &™ and &™, and so
each of gm/™ and gmn/™ is a multiple of one irreducible character, of G™ and
3™ respectively. But this is impossible by our assumption 0 < r<% and Schur’s
recurrence formula. In fact if #;= n, then ». is greater than the dimension of
7 and so we have gm/™ =™ + 7™M 4 ... by Schur’s recurrence formula.

LEmMMA 6. Let & be a subgroup of S” and let r be a positive integer such
that r<%- If every character g/ of & such that the dimension of 1™ is r

is irreducible, then every character 7" of &1 =8 NS} such that the dimension
of 7% is r—1 (we regard ®; as a subgroup of "' identified with S} and 7
is an irreducible character of " ') is irreducible.

Proof. By lemma 5, ® is a transitive group. Hence a full representative
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system of the left coset decomposition of & by @, is also a full representative
system of that of &" by 7. So, by the definition of induced characters,

(@D =%w.2),

for any character 7 of &7. By Schur’s recurrence formula, for an irreducible
character 7' of @" gn7'” is the sum of distinct irreducible characters 7™ of
@& and if the dimension of ™ is 7, then the dimension of 7™ is either 7 or
_ : : (k) : : -7(%)
r—1 for any irreducible character 7*' appearing in g/
Now we assume that, for some irreducible character ¥, of &7 of dimension

7 —1, @,% is reducible, namely
@x?ﬁ = ZO,I+ZO,2+ cee XO,Sr

where s=2 and %, i=1, ..., s, are irreducible characters of &;. Let /X; be

any irreducible character of ©” of dimension » appearing in €%, Then
@,((S)Zl) = @x(@i‘zl) = (51(%0 + ,‘?) =Loa+ Lo,z + * ** F+Zos+ @Z

where 7 is a character of &7, and by the reciprocity theorem on group

characters and by the irreduciblity of g¥; we have
(5) O(wdo) =0, 1+ X020+ =+ +708) =sxelat - -,

where s=2.
~n

On the other hand, for any irreducible character 7 of S of dimension

r—1 we have
6n70=11+ IR Ly Sy £ TN

where /i, . . ., /: are irreducible characters of S" of dimension 7 and Z:+; is

an irreducible character of &" of dimension r~ 1, and so we have
@5(@70) =glit+ 0+ @l + @lie

where @7/; is an irreducible character of ® for ¢=1,...,f @/t~ may be a
reducible character, but at least one character g/; does not appear as an irredu-
cible component of gX:+1. To see this, it is sufficient to show that the degree
of ¢(©"%,) is larger than twice of the degree of g/:+i. Let % =7" where (1)
= (A4 ..., An-1) is a partition of #—1 and so Z:1= 1" where (x) = (0, A1, A,

v+, An-g, An-1+1) is a partition of #n. By Frobenius's formula.
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(n—1)!4Q2, xz+1 A1 tn—2)
\‘9 = n 4
the degree of ( 70) n X Gt D (,l,, A=)
. 'A(Al 12+1 Xn-o-i'?’l 3 Xn 1+7l 1)
d f 7 i ’ 22 DETE

the degree of Zeei= Y @ D1 - - (mest #—~3) ! Gns b =D
and so we have

the degree of (%) _ 4k, Ao+ 1, ..., An1tn—2)

2 x the degree of Zr+y  4(A1, o+ 1, . /1,, o+ n=3, Ans+n—1)

An—l:}lnw 1
2
An-1+ n—173" 1
=fpaT A2 1-
2 1I=]1( xn—l'—lx‘*‘n—’l)
=2n—r—_1”'2(1 1 777)
2 i=1 Zn 1_11“*‘”—2
and, since r<% and An-;=4;, this is
3.,
2 s 1 392 2
I;I ( —1+1) IR R

Namely, we have proved that, for any irreducible character %, of dimension

7—1 of &7, there is always an irreducible character %, of dimension » of &"

such that ¥ appears exactly once in g(®'7%) =®(g%). If we assume that

@, %o is reducible for some irreducible character %, of dimension » — 1 of &, this

fact contradicts with (5).

Now we can prove our theorems:

TueoreMm 1. (G. Frobenius [2]) Let & be a permutation group. If ® is

2 r-ply transitive, then for any irreducible character /. of dimension <7 of ",

the character g/ of & is irreducible.

Proof. By lemma 1, we can write / = 2:1,-M;~ where M;'s are monomials of

@i . .., an with weights <7. Hence we have 3) gZ*(R) = > aia; >)(M:M;)(R)
RE® i, 7 RE®

and, since weights of M;M; =27, by lemma %'

R%(MM)(R) =t(MiM;) | 8|,

where t(MiM;) =t(t;, . .., t,) when MiMj=a' - - - a'. So we have
2@/2(R)—(2a,a,r(MM))|(SI Il
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Hence g/ is irreducible.

THEOREM 2. Let & be a permutation group of degree n and let r<—’2’~- I

for every character 7 of dimension r of " the character g¥ of & is irreducible,
then & is 27r-ply transitive.

Proof. For r =1, there is only one character X, of dimension 1; %y=a;—1.
If @, is irreducible, then > («;(R) —1) =0 and > (a;(R) — 1)?=|® |, hence we
REQ RE§

have

S ai(R) =8| and X al(R) =2[G|.
REQ RE@

On the other hand, since, by the definition of the function r, (1) =1, and 7(2)
=2, @ is doubly transitive by lemma 3. We shall proceed by induction on 7.
Let ®; be the subgroup of @ fixing one letter. Then, by lemma 6 and inductive
assumption, ©; is (2r—2‘)-ply transitive and so & is (27— 1)-ply transitive.
Hence, by Theorem 1 and our assumption, every character of dimension <7 is
irreducible when restricted to ®. On the other hand, since af = > aili

dimension of x; =r

by lemma 4, we have

2 ai’(R) = 2 aia; 2, Li(R)1;(R) = (X al) | G
RE@ i, 7 RE i
From the relationREE@naf’(R) =t(27)n! we have 2l a}=1(27) and so

S a¥(R) =1(27)| B|.
RE®
Hence @ is 27-ply transitive by lemma 3.

§8. Special cases

By Theorem 1 and 2 we know that the irreducibility of the restriction of
the (unique) character of the dimension 1 is equivalent to the double transitivity
of the group and the irreducibility of the restrictions of two (i.e. all) characters
of dimension 2 is equivalent to the quadruple transitivity of the group. In this
section we study what we can say by the irreducibility of the restriction of one

of the characters of dimensions 2 and 3.

TueoreMm 3. Let & be a permutation group of degree n=5. If either

ol or gtV is irreducible, then ® is triply tramsitive.

Proof. Case 1. Let g/*"™® be irreducible. If e’ "? s irreducible, it
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1,1, n-2)

is correct by Theorem 2 and so we can assume that /' is reducible. &

is transitive by lemma 5.

i) @ is doubly transitive. Let us assume the contrary ie. that @ is not

n—2)

doubly transitive. Since g/ is irreducible, we have

( ‘Z‘,z(_R)_(_fféﬁ(R). =3 L R)) =0
REG

and so, by lemma 3, i)
(6) Lsa®+ Sam=21sl
2 RE® R 2

Since ® is not doubly transitive, RZ@«?(R) >2|®| by lemma 3, ii). Therefore,
(=}
by (6), we have 3 ai(R) =3/8]| and > a:(R) =0 ie. ga»=0 and so |G| and
REG RE®

n are odd numbers and since | ] is divisible by n§912:-3) (the degree of 7*"™V),

n=1 mod 4. Hence

@Ziz,n—Z) - ’%‘“1(“1 —_ 3)

(Sz(l,l,n—Z) = "%(al — 1)((11 _ 2) = @Z(Q, n—2) + 1

On the other hand, for &"'(=G;C&") and its subgroup &; =& NS, we
have similarly

@12(1, 1, n-3) = @lZ(Z, n-3) + 1.

By the reciprocity law, we have

S BnD) = b AD L y®PY a3 sum of irreducible characters of
&" whose dimensions >2.

a-1(8" (g * ")) =2 x 7*"* 4 a sum of irreducible characters of

®

&"! whose dimensions =2.

Therefore g, 7" is a sum of exactly two irreducible characters, by the reci-
procity law, and, since &, is not transitive, g /'""™® contains the unit character
by lemma 3, ii). Hence there is an irredacible character 7 of &; such that the
degree of ¥ is n~3 and so |®;| must be divisible by » —3. This is impossible,
because 7|®,| is odd.

ii) & is triply transitive. Assume that @ is not triply transitive. Since
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® is doubly transitive, g,7'"" " is irreducible. If ,7'"" * is irreducible then ®;
is doubly transitive and so ® is triply transitive. Therefore 2" * is reducible
and, consequently, @n-1(®"(gZ®”™)) contains 7" at least twice, by recipro-

city law. On the other hand, since gZ>"™® is irreducible, ©"(g7'>” ) contains

7" exactly once. Therefore ©'(g/™" ™) contains """ and so we have

®Z<1,1,1z~2) - @52(2’ UL (1-2a0),

(2, n-2)

and, since the degree of /""”7® =the degree of 7 +1, the degree of the

character (1 —2as) is 1 and so the character (1 —2a«;) is irreducible. Hence,

(2, =2)

"~ js irreducible and is not equal to (1 —2a3) nor to g7 , we

since 7"

have

> ("Q(R—”%@Alg) + az(R))(m(R) -1)=0

RE®

a(R) = 1) (ax(R) —2)

Re@( 2 _(Xz(R))(afl(R) —-1)=0

and so we have th]sjocf(l?) =5/06|=1(3)|G|. Hence & is triply transitive by
=
lemma 3, i).

Case II. Let /""" be irreducible. In this case, by Theorem 2, it is

1, n-2)

sufficient to show that .7 is irreducible. We assume that 7" is

reducible.  Since gn- /P =Y L MR and @/ PP s irreducible,

1,1,7-2;

at least twice. On the other hand, since the
7(1,11—2))

only once. By lemma 5, @ is a transitive group and so we

® (g 27" contains '

degree of 7*""® is greater than the degrees of 7" and 7*"™%, (&
contains /"""

have ®(g "7 ?) = g(S"7""*™®). This is a contradiction.

Tureorem 4. Let ® be a permutation group of degree n=6. If the character
""" s drreducibie, then & is 5-ply transitive. If the characters gf"""?
and /""" are irreducible, then © is quadruply transitive, and moreover, if
n=8 and & contains an element R such that a(R) =2 and as(R) =1, then ®
is 5-ply transitive.

'/\’ 1,2, n-3

Proof. Case 1. We assume that g
Frobenius’ formula, the degree of Z**""® > the degrees of Zh17=3 7@&n=3
Z(z,n—Z), Z(l,l,n—z; and Z\I, n—:x,, we have g::(@-{(l,z, n~3)) :Z\'L'-’-"‘?l'_f_a sum of irredu-

cible characters whose dimensions are at least 4, and so

is irreducible. Since, by G.
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=n, . ~ - o - - -
n—l(@ (®1(1,2,n 3))) =Z(2’" 3)+[1,1,n 3)+Z(1,2,n 4)

+a sum of irreducible characters whose

=
@

dimensions are at least 3.
On the other hand, since & is transitive by Lemma 5, this is equal to
g"‘l(@lz(l,z, n—a)) = @"‘1(@12(2, 71—3)) + @"—1(@,1%(1, 1,71-3)) + @"—1(@1(1,2, n~4))

where ®; is the subgroup @ N €7 of S} =&*™") and 7", y&L29 | are

n-1 n=3)

irreducible characters of & Hence g,/ and @ (""" are irreducible.

From theorem 2 @, is quadruply transitive, and so & is 5-ply transitive.

Case II. We assume that "™ and gX“>"”® are irreducible. If
el"®" ¥ is irreducible, our assertion is contained in Theorem 2, and so we may

assume that g/™">”~® is reducible.

i) Proof of quadruple tramsitivity of @. Since the degree of ¥*“»"™¥ >

the degree of ("*”™® by Frobenius formula we have either

(7) 6”(@X(1, 1,1,”—*3)) = 7(!,!,1,71—3)
(8) or = 7(1, 1,1, n-3) + 7(1,2,71—3) }

e

+a sum of irreducible cBaracters whose
dimensions are at least 4.

and so either

9) @n'-l(@n((gx(l’ LLAm9)) oy Lns L L an
(10) or = Z(z,n—a) + 2%(1,1,"—3) + Z(l, 1,1,n—-4) + Z(I,Z, 7n-4) }
+a sum of irreducible characters whose

dimensions are at least 3.
On the other hand, from the transitivity of & we have
(11) @n-x("@’(@l LLLAZY) - Sn_l(@,l“’l’ Lamary
- @““‘(® 711 n=3)) + g"-‘(® PSR
1/~ 1/ .

If (7) is the case, it is easy to see, from (9), (11) and Theorem 3, that @; is
triply transitive, and so & is quadruply transitive. Hence we assume that (8)
is the case and in the similar way we may assume
(12) @71(@7(3,”_3)) = 7\'3,71—3) + -/(1,2,71—3)

+a sum of irreducible characters whose

dimensions are at least 4.
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From (8) and (12) we have
(13) C\32(1,2, 7n=3) = @Z(l,l,l,n-'s) + @Z(B,n-& + ZO’

where 7y =1 — 3 a3 by Frobenius’ formula. By the comparison of the degrees of
yLBn=d yLLLAY and 1*"® we see that Z, is a linear character, and so 7,

is the identity character and as;(R) =0 for all elements R of & and particularly
(14) 3+ (B

From (10) and (11) g/™""™® is either irreducible or a sum of exactly two
irreducible characters /; and 7 of &. From the transitivity of & we have
@5(@1;{1,1,7:-3)) =®(@n7(1,1,n—3)) and by (10), (13) 65(@1;‘/1)4_@(@]2) pw CLla N

gl Bt P L gx® "™ 1+ 1. Hence an irreducible component of gZ"""™”, say 7,

is the identity character, and so degree 7 = degree /%" —1 = (n = 2-)2(-71 =3
2 __ 2 __
-1="0 52n +4, Therefore |&| must be divisible by B ——52?1:,14- This con-

tradicts with (14).

‘/\'1,1, 7n=2)

ii) Proof of 5-ple transitivity of ®. Since @ is quadruply transitive, o
and g{®"™* are irreducible by Theorem 2 and so, from n=8, /> "™, g7 """,

(%" and g/""b"® are distinct irreducible characters. Thus we have

0= EEE@ (@Y (R) + gl P (R (@™ " (R) + @/ """ (R))
= —:];~ D ai(R)+2 2 al(Ras(R) + > Fla, as)(R),
REY REQ Re©

where F(ai, as) is a class function whose weight is 4. Since }:,@(”“5"’ ) and
RE

ST ) (*4®) are non zero, we haveRg(}&ai(R) =(v(5) + %) | S| andl%af(R)as(R)

REQ
=(7(2,0,1) + 2:) | 8| where uo and #; are non negative rational numbers from
Lemma 3,1i) and 3’. Hence we have 1(_5_?3—_*1}_49 +27(2,0,1) +2u;+ No=0 where

Ny is the rational number determined by F(a;, as). On the other hand from
the similar retationl}ﬂ (Z(I,l,l, n-:z)(R) + Z(s, 11—3,\(R))(Z(1, l,n—Z)(R) + 2(2, n-zs(R)) — 0
REGM

we have 7(5?-) +27(2,0,1) + Ao=0. Hencesy=1 i.e.R%cf(R) =7(5). This proves
=

the 5-ple transitivity of & by Lemma 3, i).

§4. Remarks

Theorem 3 in the last section is best possible in the sense that the irredu-
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(1,1, 2=2)

cibility of one (and not two) of characters g and > of & does not

entail the quadruple transitivity of . We can see this as follows:

i) The case of 7*""®: The alternating group A° of degree 5 is exactly

triply transitive, and it is well known that the character ¢s7*® is irreducible.”

ii) The case of 7**" ¥ : The Mathieu group M, of degree 22 whose order
g is 22+21+20+ 48 = 443520 is an example such that the irreducibility of g™ " %
does not imply the quadruple transitivity of &. M. is defined as follows®: Let
LF(3,4) be the special projective group consisting of all special projective trans-
formations on 2-dimensional projective space .# over GF(4). Then we can
easily see that LF(3,4) is a doubly transitive group on all (i.e. 21) points (x,
z) of ¥ and the order of LF(3,4) is 21-20+48. Then My, is the permutation
group on 22 letters, {(x, y, 2) € %} and a new symbol I, generated by LF(3, 4)
and a permutation S= (%, ¥, 2- x° + ¥z, 3%, 2) * (1,0, 0|I). Evidently M, is exactly

10 a |
triply transitive. The subgroup 9 = {( 0r A )‘ a, B, r€ GF(4) and rﬂeO} of My,
007"

10a'
consists of permutations which fix (0,1,0), (1,0,0) and I, and N = {(Olﬂ)‘l
001

10 0\]
a, e GF(4) } and 1 = %(0 T 01>3re GF(4) and 7'#0} are respectively 2- and
00717,

3- Sylow subgroups of 9, and they fix respectively 6 and 4 letters {(0, 1, 0),
(1,0,0), I, (1,1,0), (2,1,0), (3,1,0)} and {(0,1,0), (1,0,0), I, (0,0,1)} and
types of elements in % and U are (2)® and (3)°. Let K; be the subset of elements
of My, fixing exactly 7 letters and My =Ko+ K1+ - +Kpe and KiNKj=9
for =7, and let g be the number of elements in K;. Then from the structure
of My, it is easy to see that, except Ko, Ki, Kz, K4, Ks and K, Ki's are empty,
and there exist elements of types (11)% (6)% (3)% (2)% or (8)% (4), (2) in K,,
type (7)® in K, types (5)* or (4)'(2)* in K, Type (3)° in K, type (2)° in K;
and type (1)® in K. Further the order of the normalizer M(%P:) of-a >7-Sy10w
group % of My, (e.g. the cyclic subgroup generated by an element of type (7)°

in K;) is equal to the order of normalizer of a 7-Sylow group of LF(3,4), i..

5 See [2], [5] or [6].
5) See [7].
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equal to 7+3,” and so, by the Sylow theorem, g = 4—‘,17§32—0 X 6 =126720. Since M:.

is triply transitive, we have (by Lemma 3, i))

g=&+g&+&+ &+ &+ &

g= S+28+48i+6g+22 g
2g=  £1+42+168:+37gs+484 g
5g= g1+ 882+ 64 g4+ 216 g + 10648 g»»

Here g = 443520, g, =126720 and g: =1, and so we have g, = 173040, g: = 130284,

g:=12320 and gs=1155 from the above equations. @Now we can culculate
RE Lo " (R)} using 7(“"’2"’=~(--"‘-f ‘:--1)2(—5‘:»2 -)~—az and the above results,
S M2z

thus
2 (sm“z“’l'zo)(R))z - 2 2 (mz](z,zm(R) }z
i REK;

REM22

= {1(1,1,20)(1)}2_}_ 1155{‘/(!,1,20)(R6))2
1282001 (R)Y -+ AL MR Y 4+ B (R .

where R; = K; and A <130284 and B <173040, and so
<210% + 1155 x 2% + 12320 x 3° 4 130284 x 2° 4+ 173040 x 1> = 853776 <2 g.

ThereforeRE w7 P(R) =g This means that the character is irreducible.
EMoz
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