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NOTE ON CONTINUOUS AND PURELY FINITELY 
ADDITIVE SET FUNCTIONS 

BY 

WILFRIED SIEBE 

ABSTRACT. The Sobczyk-Hammer respectively Yosida-Hewitt decom
position ([17], [19]) generates the class of continuous respectively purely 
finitely additive charges. In this paper, attention is limited to hereditable 
properties for these classes. It is proved that the property of continuity is 
preserved with respect to extensions and that if all extensions of a charge 
to a charge on a given field are continuous, then the original charge is 
continuous. An analogous heredity theorem for purely finite additivity 
holds true in the monogenic case. 

1. Preliminaries. Let us now establish the setting for the work which follows. A 
charge on a field °U of subsets of a set is a real-valued nonnegative finitely additive 
function defined on °lt. A measure is a countably additive charge whose domain is a 
a-field of subsets of a set. A charge (JL on a field °U (in a set H) will be called continuous 
if, and only if, given e > 0, there exists a partition {Bx,... ,Bn} of fl into a finite 
number of pairwise disjoint members of °1X such that \x(Bj) < e for every /. A charge 
|x is said to have the Darboux property if, and only if, for any B E °U and any a with 
0 ^ a ^ |x(£) there exists a set C G °lt such that C C B and JJL(C) = a. A set 
A E °U is an atom for JUL if, and only if, /x(A) > 0 and for any E E °U, E C A, either 
\L(E) = 0 or |x(F) = (JL(A). A charge \x is nonatomic if, and only if, there are no atoms 
for |x. If % is a subfield of °U, then im^ will denote the restriction of |JI on QD . A 
charge v on °U is called purely finitely additive if, and only if, v has no countably 
additive minorant (that is to say v ^ K implies K = 0 for any countably additive charge 
K on °\i where ^ denotes the natural partial ordering on the set ba (ft, °\l) of all bounded 
additive set functions on °U). Finally, we denote by ba+ (°U, v, °U') respectively 
ca+ (2, X, S ') the set of all extensions of a charge v on a field °U to a charge on a field 
°ll ' where °lt is a subfield of °\i ' respectively of a measure X on a a-field 2 to a measure 
on a a-field 2 ' where 2 is a sub-a-field of 2 '. 

2. Extensions and restrictions. A. Sobczyk and P. C. Hammer have proved that 
any charge on a field °U can be decomposed uniquely into a continuous part and a part 
which can be written as a sum of at most two-valued charges on °IX ([17], [16]). We 
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show that the property of continuity is preserved with respect to extensions and that if 
all extensions of a charge to a charge on a given field are continuous, then the original 
charge is continuous. In the presence of extreme extensions the same holds true for 
measures — this may fail in the absence of extreme points. 

THEOREM 1. Let °\l, °U' be fields of subsets of a set fî with °U C °IT and let v be a 
charge on°\l. It holds that v is continuous if, and only if every [x E b+a (°U, v, °U') 
is continuous. 

PROOF. It suffices to prove that v is continuous if every |x E ba+ (%, v, °U') is 
continuous. By theorem 1 in [14] the extreme points of ba+ (°U, v, °M/) can be 
characterized by the following approximation property (*): A charge \x on °U' has the 
property (*) if, and only if, given e > 0 and A' E °K/, there exists a set A in °U with 
|JL(A'M) < e for the symmetric difference A 'M. Let |JL be an extreme extension of v, 
whose existence is guaranteed by a corollary to theorem 1 in [14], and which by 
assumption on ba+ (°U, v, °!i/) is continuous. The technique in the proof for lemma 3.1 
of [3] shows that already JJL|U is continuous. 

For nonatomic measures, a parallel theorem to Theorem 1 can be obtained. Note that 
for measures being continuous is the same as being nonatomic. 

THEOREM 2. Let °U, °IT be a-fields of subsets of a set ft with °U C °U ' and v a measure 
on °\l. Let cal (°U, v, °U') denote the subset of extreme points ofca+ (°U, v, °K/). Then, 
if cal (°̂ > v> °to') is nonempty, it holds that v is nonatomic if and only if, every 
[x E ca+ (°\l, v °W,') is nonatomic. 

Notice that JJL E cal (°IX, v, °U') if, and only if, for every A' E °U' there is a set 
A E °U with |x(A'AA) = 0 (see [14]) and apply the same technique as in the proof for 
Theorem 1. 

There are cases in which a nonatomic charge on a field can be extended to a charge 
which fails to be nonatomic. Thus, for nonatomic charges only a partial analogue of 
Theorem 1 holds true: 

THEOREM 3. Let °U, °\i' be fields of subsets of a set fl with °\i E °U' and let v be a 
charge on °\l. Then v is nonatomic, if every |JL E ba+ (°il, v, °U/) is nonatomic. 

A theorem of D. Maharam ([10], Theorem 2) states that a charge |x on a a-field is 
continuous if, and only if, \x has the Darboux property. Thus, the following partial 
analogue of Theorem 1 with respect to the Darboux property is true: 

THEOREM 4. Let °\i, °\if be v-fields of subsets of a set (1 with °U E °\L' and let v be 
a charge on G\l. It holds that v has the Darboux property if, and only if, every |x E 
ba+ (°U, v, °lt') has the Darboux property. 

It should be mentioned that in the theorem of D. Maharam just cited in general, the 
predicate continuous cannot be replaced by the predicate nonatomic: In [12] the 
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existence of a charge on a cr-field has been shown which is nonatomic and without the 
Darboux property. 

It has been proven by K. Yosida and E. Hewitt ([19]) that any charge |JL on a field 
of subsets of a set can be written uniquely as a sum |JL = X + JJL' of a countably additive 
part X and a purely finitely additive part |x'. Translated to the case of purely finitely 
additive charges Theorem 1 fails as the following example shows: Let X be a set of 
cardinality N,, let °U respectively °U' denote the system {A C X\A countable or X\A 
countable} respectively the power set of X. Then, by a theorem of S. Ulam ([18]) the 
measure JUL on °\i defined by (x(A) = 0 respectively 1 if A respectively X\A is countable 
(A E °IQ only admits of purely finitely additive extensions to a charge on °U '. The 
monogenic case yields a positive result: 

THEOREM 5. Let °\l, °\l ' be fields of subsets of a set fl with °U C °U '. Letv be a charge 
on °U and |x' a purely finitely additive charge on °M/ such that ba+ (°U, v, °U') = {|j/}. 
Then v also is purely finitely additive. 

PROOF. Let V| be a countably additive charge on °U with v ^ vx whose extension to 
a measure on the a-field A'7 (°U) generated by °U will be denoted by V\. To prove V\ = 
0 notice that °U' C (Aa (6\i))h holds for the completion (A" (°U))Pl of AiT (°U) with respect 
to V| because for any A' £z°\L' and e > 0 there exist sets A\, A2 E °U such that A, C 
A' C A2 and |x' (A2\A,) < e, implied by the chain v*|U — M-' = v*\w which holds true 
for the interior respectively exterior charge v* respectively v* with respect to v as the 
following argument will show (the interior respectively exterior charge v* respectively 
v* with respect to v is defined by v*{T) = sup v(M) respectively v* (T) = inf v(M) 

MCT TCM 
M E '\l M E "li 

for any T C O): First, v* (E) ^ |a/ (E) ^ v* (£) for all E E °U\ Suppose now, there 
is a set E0 E G\lf with v* (E0) < v* (E0). Then v respectively v defined by v (E) = 
v* (£ H E0) + v* (£ D fft\E0)) respectively v (E) = v* (£ H £0) + v* (E n(ft\E0)) 
for all sets E in the field A(°U U {£0}) generated by °\l U {£0} are two extensions of 
v to a charge on A(°\l U {£0}) ([9], p. 269) with v(£0) < v (£0) in contradiction to the 
monogenicity of jx' with respect to °IL Thus, the charge V| admits of an extension to 
a countably additive charge v\ on °lL/ with v[ ^ |x' and therefore V| = 0. The minorant 
property v\ ^ \L' can be shown by a more canonical indirect argument. 

3. Limits of sequences. (1) A characterization of the predicate purely finitely 
additive by K. Yosida and E. Hewitt shows that this property is preserved with respect 
to limits of sequences of charges whose common domain is a a-field: Let (jJL/7)„e.N be 
a sequence of purely finitely additive charges on a a-field °\l in a set fl and |x0 a charge 
on °U with |x„ (A) —> |x0 (A) for all A E °U. Then JX0 is also purely finitely additive. 

PROOF. Let X be a measure on °U and e > 0. It suffices to show the existence of a 
set A0 e°lL such that |x0 (ft\A0) = 0 and \(A0) < e ([19], Theorem 1.18): Choose 
positive real numbers qn (n E N) with S^=1 gk < e. By Theorem 1.19 in [19] there 
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are sets An E °U with |x„(fl\A„) = 0 and \(A„) < qn for all n E X. The set 
U* = , Ak E °U fulfills the requirements. 

(2) Whereas nonatomicity is preserved with respect to limits of sequences of measures 
under the topology of setwise convergence (notice that for nonatomic measures |JL„ and 
a measure |x0 on a cr-field <§ such that [x„(A) —» JJL0(A ) for any A E <S the measure |x 
= 2^= , 1/2" |xn is also nonatomic and |x0 is absolutely continuous with respect to |x 
— then apply Theorem 2.4 of [7], thus |x0 also is nonatomic) no analogous heredity 
results hold true in the case of charges concerning the predicates nonatomic and 
continuous as can be seen by direct arguments (for the nonatomic case, e.g., choose 
the field °U and the charge \x ' on °U as in the second part of the example in [16], p. 450. 
Let \xn be defined by \xn(B) = \(B 0 A„) for any B E °U where X denotes the Lebesgue 
measure and A, = [0, 1/4 + 1 /(9 + n)] U (3/4 - 1/(9 + AT), 1] for all nEX. Then 
|x„ is a nonatomic charge on °\i(n E >f) such that \xn(B) —» | J / ( £ ) for any Z? E °U). 

4. Remarks. (1) Theorem 4 is no longer valid if it is translated to the case of fields: 
Define S = [0,1), let °U be the field which is generated by {[a, b)\a,b E Q with 
0 ^ a < b ta 1}, °U' the a-field of Borel sets in S, and v the restriction of the Lebesgue 
measure X on °\l. Then every |x E ba+ (°U, v, °\L') is continuous and thus has the 
Darboux property by the above theorem of D. Maharam in contrast to v. 

(2) The following example shows that Theorem 2 does not hold in the absence of 
extreme points in ca+(°\l, v, °U'): Let °U' be the a-field of Borel sets in the reals 91, 
define °U — {A C 9k \ A or 2ft\A is countable}, and let v be the measure on °ll defined 
by v(A ) = 0 resp. 1 if A resp. 2ft\A is countable. Then ca+ (°ll, v. °U/) coincides with 
the family of all nonatomic probability measures on °\L'. cal (°̂ > v> °^') ls empty — 
this can be seen from the characterization of extreme extensions of a measure following 
Theorem 2. 

There are structures under which cal (% v> °^') l s nonempty: For example, let S be 
a compact Polish space (i.e. a compact space with a countable base), M a separable 
metric space, °IT respectively % the a-field of Borel sets in S respectively M, f a 
continuous mapping of S into M, and v a measure on °U with °U = / _ 1 ( £> ). Then, 
(because of the regularity of Borel measures on Polish spaces, see [1]) ca+ (°U, v, °U') 
C rca* (S), where rca+ (S) denotes the positive cone of the space rca(S) of all 
real-valued countably additive regular set functions on the Borel sets in S. Let rca(S) 
be provided with the weak* topology of the conjugate space of the Banach space C(S) 
of all real-valued bounded continuous functions on S (under the supremum norm). Then 
ca+ (°ll, v °U') is a compact subset of rca(S): Choose a sequence (yu'n)nEJ{ in ca+ (°ll, 

v,°U') converging to |JL' E rca+(S) with respect to the relative weak* topology. Then, 
J(g of) d\L'n -> J{g of) d\x' for any g E dM). Consequently, Jg df(v) = J g df([i') 
because of Jig 0f)d\x.'n — Jig °f) dv, where /Z(|JL) denotes the image of a measure |x under 
a measurable mapping h. Thus, |x'|% = v by the coincidence of the measures/(v) and 
fill') on ([4], Theorem 1.3 or [13], Theorem 5.9). It follows that ca+ (°U, v, °U') 
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is closed in rca(S) (notice the metrizability of the relative weak* topology on rca+(S) 
([5], p. 1214) and the fact that rca+(S) is a closed subset of rca(S)). A corollary to the 
theorem of Alaoglu ([6], V.4.3) implies the compactness of ca+ (°U, v, °\L'). Because 
°\l is separable, the theorem of D. Landers and L. Rogge in [8] shows that 
ca+ (%, v, °U') is nonempty. Thus ca+ (% v, °U') has extreme points ([6], V.8.2). 

(3) The preservation result 3.(1) fails if the common domain °U is a field but not a 
CT-field: Define il = [0, 1), tm = \/2m (m G JV), let °\l (tm: m G M) denote the field in 
H generated by {[a, 0 ) | a , p e S f t : 0 ^ a < p ^ l } U {{tm} : m E X}, and vs the 
restriction of the Dirac measure at s (s G 2ft) on °U (tm : m G >f). Then (|x,w)„e>f defined 

by \xt/i (A) = lim v, (A) for any A G °U (tm : m G Jsf) is a sequence of purely finitely 
/->/„ 
/ > ? „ 

additive charges on °U (/„, : m G >f) such that fi,/; (A) —» v0 (A) for all A G °U (fw : m 
G N). The convergence property of (\xt>) n^j{ follows from canonical, though longish 
calculations. 

The preservation result 3.(1) cannot be translated to the case of nets (|xa)aeD : e.g., 
the restriction of the Lebesgue measure on the Borel cr-field in [0, 1] admits of a 
representation as the limit of a net of purely finitely additive charges under the topology 
of setwise convergence ([11], 5.10). 

I wish to thank Professor D. Plachky and the referee for valuable remarks. 
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