ON A CONGRUENCE RELATED TO CHARACTER SUMS

BY
J. H. H. CHALK
In memory of my late colleague R. A. Smith

Abstract

If χ is a Dirichlet character to a prime-power modulus p^{α}, then the problem of estimating an incomplete character sum of the form $\sum_{1 \leq x \leq h} \chi(x)$ by the method of D. A. Burgess leads to a consideration of congruences of the type

$$
f(x) g^{\prime}(x)-f^{\prime}(x) g(x) \equiv 0\left(p^{\alpha}\right)
$$

where $f g(x) \equiv \equiv 0(p)$ and f, g are monic polynomials of equal degree with coefficients in \boldsymbol{Z}. Here, a characterization of the solution-set for cubics is given in terms of explicit arithmetic progressions.

1. Introduction and notation. Let $p^{n}(p>3$ prime, $n \geq 2)$ be a fixed prime-power, congruences to the modulus m will be denoted by (m) and $\operatorname{ord}_{p} m$ will signify the integer v for which $p^{v} \mid m, p^{v+1} \nmid m$. The symbol $[[x]]$ for $x \in \boldsymbol{R}$ will denote the least integer \geq x, i.e., $[[x]]=-[-x]$. Let f, g denote monic polynomials in $\boldsymbol{Z}[X]$ of equal degree r say, and suppose that they satisfy the mild restriction, modulo p^{n} :

$$
\begin{equation*}
l f(X)+m g(X) \not \equiv 0, \quad\left(p^{n}\right) \tag{1}
\end{equation*}
$$

for all pairs $(l, m) \in Z^{2}$ with $(l, m) \not \equiv(0,0),(p)$. Let

$$
\begin{equation*}
J(f, g, X)=f(X) g^{\prime}(X)-f^{\prime}(X) g(X) . \tag{2}
\end{equation*}
$$

Then J is a combinative invariant of the pencil $f+\lambda g$ with the properties

$$
\begin{gather*}
J(f+\lambda g, g, X)=J(f, g, X) \tag{3}\\
J^{\prime}(f, g, X)=f(X) g^{\prime \prime}(X)-f^{\prime \prime}(X) g(X) .
\end{gather*}
$$

Let

$$
\begin{equation*}
S_{n}(f, g)=\left\{x \in Z: f g(x) \not \equiv 0(p), \quad J(f, g, x) \equiv 0\left(p^{n}\right)\right\} \tag{5}
\end{equation*}
$$

Our purpose is to identify and classify the elements of $S_{n}(f, g)$ and, after some preparatory material on certain invariants of the pencil $f+\lambda g$, this is presented in the theorem for the case $r=3$ (cf. §3). Apart from elements derivable by reduction (p^{n}) from such roots of $J(f, g, x)=0$ as lie in Z_{p}, the remaining elements of $S_{n}(f, g)$ form a set which is a union of at most 4 arithmetic progressions. Congruences of the type

[^0]in (5) have acquired significance in the problem of estimating incomplete character sums of the type $\sum_{1 \leq x \leq h} \chi(x)$, where χ is a (primitive) character to a prime-power modulus p^{α}. The methods of Davenport-Erdös [2] and of Burgess [1] lead directly to a consideration of sums of the form (cf. [1], Lemma 2):
$$
\sigma\left(p^{\alpha}\right)=p^{\alpha-\gamma} \sum_{\substack{1 \leq x \leq p^{\gamma} \\ J(f, g, x)=0\left(p^{\alpha-\gamma)} \\ f g(x) \neq 0(p)\right.}} \chi[f / g(x)], \quad\left(\gamma \geq \frac{1}{2} \alpha\right)
$$
and, by the theorem $(r=3)$, it is now possible, for example, to give precise estimates for the number of terms in such sums. It may be remarked that while previous work on general polynomial congruences (cf. [3], for references) is effective for the case $r=$ 2 (cf. [2]) it is difficult to apply for $r \geq 3$.

2. Invariants of the pencil $f+\boldsymbol{\lambda g}$.

Definition. Let

$$
\begin{equation*}
\mu=\mu(f, g)=\operatorname{ord}_{p}[f(X)-g(X)] \tag{6}
\end{equation*}
$$

Then, by (1),

$$
\begin{equation*}
0 \leq \mu<n \tag{7}
\end{equation*}
$$

and, from the definition of $J(f, g, X)$,

$$
\begin{equation*}
J(f, g, X) \equiv J^{\prime}(f, g, X) \equiv 0 \quad\left(p^{\mu}\right) \tag{8}
\end{equation*}
$$

We assume henceforth that

$$
\begin{equation*}
S_{n}(f, g) \neq \varnothing . \tag{9}
\end{equation*}
$$

Then it follows that there is a $t \in \boldsymbol{Z}$ with $f g(t) \not \equiv 0(p)$ for which

$$
\begin{equation*}
f(t)+\lambda g(t) \equiv f^{\prime}(t)+\lambda g^{\prime}(t) \equiv 0\left(p^{n}\right) \tag{10}
\end{equation*}
$$

where $(\lambda, p)=1$ and

$$
\begin{equation*}
-\lambda \equiv f / g(t), \quad\left(p^{n}\right) \tag{11}
\end{equation*}
$$

By Taylor's theorem, applied to $f(X)+\lambda g(X)$, we have

$$
\begin{equation*}
f(X)+\lambda g(X) \equiv u(X-t)^{2}[w(X-t)+v], \quad\left(p^{n}\right) \tag{12}
\end{equation*}
$$

where $u=u(t), w=w(t), v=v(t)$ are constants depending on the choice of t which we can suppose, without loss of generality, to satisfy
(13) $\operatorname{gcd}(v, w, p)=1, \quad w=1$ if $\operatorname{ord}_{p} w=0$ and $v=1$ if $\operatorname{ord}_{p} w>0$.

We show firstly that $\operatorname{ord}_{p} u=\mu$. For, if $\operatorname{ord}_{p} w=0$ so that $w=1$, then $1+\lambda \equiv u\left(p^{n}\right)$, by comparing the coefficients of X^{3} in (12). But by (10) and (6), $f(t)+\lambda g(t) \equiv$ $(1+\lambda) f(t),\left(p^{\mu}\right)$ and so $1+\lambda \equiv 0\left(p^{\mu}\right), u \equiv 0\left(p^{\mu}\right)$. However, if $u \equiv 0\left(p^{\mu+1}\right)$, then
$1+\lambda \equiv 0\left(p^{\mu+1}\right)$ and $f(X)+\lambda g(X) \equiv 0\left(p^{\mu+1}\right)$, contrary to the definition of μ in (6). Now, if $\operatorname{ord}_{p} w>0$ so that $v=1$, then again on comparing coefficients of X^{3} in (12), we have $1+\lambda \equiv u w\left(p^{n}\right)$. But then

$$
\begin{equation*}
f(X)-g(X) \equiv u\left[-w g(X)+w(X-t)^{3}+(X-t)^{2}\right], \quad\left(p^{n}\right) \tag{14}
\end{equation*}
$$

and now it is clear that $\operatorname{ord}_{p}(f(X)-g(X))=\operatorname{ord}_{p} u$, since the polynomial on the right of (14) is primitive (p). Next, by means of a transformation $t \rightarrow T$ of the form

$$
T=t+z p^{\prime} \quad(z \in \mathbb{Z})
$$

where $l=\left[\left[\frac{1}{2} m\right]\right], m=n-\mu \geq 1$ and λ, u and w are kept fixed, we can ensure that, if

$$
v=v(t)=\operatorname{ord}_{p} v \geq\left[\left[\frac{1}{2} m\right]\right],
$$

then $v(T)=\operatorname{ord}_{p} v(T)=\left[\left[\frac{1}{2} m\right]\right]$, for a suitable choice of z.
Thus, we may suppose that t is chosen initially to satisfy

$$
\begin{equation*}
v=v(t)=\operatorname{ord}_{p} v \leq\left[\left[\frac{1}{2} m\right]\right] . \tag{15}
\end{equation*}
$$

Let

$$
\begin{equation*}
F_{\lambda}(X)=f(X)+\lambda g(X) \tag{16}
\end{equation*}
$$

then it suffices to check $F_{\lambda}(T)$ and $F_{\lambda}^{\prime}(T)$ and note that since $\nu \geq 1$, we have $w=1$ and so $u \equiv 1+\lambda\left(p^{n}\right)$, from (12). But

$$
\begin{aligned}
& F_{\lambda}(T)=F_{\lambda}(t)+z p^{\prime} F_{\lambda}^{\prime}(t)+\frac{z^{2}}{2} p^{2 l} F_{\lambda}^{\prime \prime}(t)+\frac{z^{3}}{6} p^{3 l} F_{\lambda}^{\prime \prime \prime}(t) \\
& F_{\lambda}^{\prime}(t)=F_{\lambda}^{\prime}(t)+z p^{\prime} F_{\lambda}^{\prime \prime}(t)+\frac{z^{2}}{2} p^{2 l} F_{\lambda}^{\prime \prime \prime}(t)
\end{aligned}
$$

since $F^{(i v)}(X)=0$ and $F^{\prime \prime \prime}(X)=6(1+\lambda)$. Now,

$$
F_{\lambda}^{\prime \prime}(t) \equiv 2 u v\left(p^{n}\right), \text { by }(12)
$$

and so, by (13), either

$$
\operatorname{ord}_{p} F_{\lambda}^{\prime \prime}(t)=\mu+v(t)
$$

or $\mu+v(t) \geq n, \operatorname{ord}_{p} F_{\lambda}^{\prime \prime}(t) \geq n$. Then

$$
\begin{equation*}
F_{\lambda}(T) \equiv F_{\lambda}^{\prime}(T) \equiv 0\left(p^{n}\right) \tag{17}
\end{equation*}
$$

if both the inequalities

$$
\begin{gathered}
l+\mu+\nu(t) \geq n \\
2 l+\operatorname{ord}_{p}(1+\lambda) \geq n
\end{gathered}
$$

hold. But

$$
l+\mu+v(t) \geq\left[\left[\frac{1}{2} m\right]\right]+\mu+\left[\frac{1}{2} m\right]=m+\mu=n
$$

$$
2 l+\operatorname{ord}_{p}(1+\lambda) \geq 2 l+\mu \geq 2 \frac{m}{2}+\mu=n,
$$

and so (17) holds. Now

$$
\begin{aligned}
F_{\lambda}^{\prime \prime}(T) & =F_{\lambda}^{\prime \prime}(t)+z p^{\prime} \cdot F_{\lambda}^{\prime \prime \prime}(t) \\
& \equiv 2 u v(t)+6 z p^{\prime} u \quad\left(p^{n}\right) \\
& =2 u\left[v(t)+3 z p^{\prime}\right] \quad\left(p^{n}\right) \\
& =2 u p^{\prime}\left[p^{-l} v(t)+3 z\right] \quad\left(p^{n}\right)
\end{aligned}
$$

Thus, with $z=1$ if $v>l$ and $z=p$ if $v=l$

$$
\operatorname{ord}_{p} F_{\lambda}^{\prime \prime}(T)=\mu+l=\mu+\left[\left[\frac{1}{2} m\right]\right]
$$

and so $v(T)=l=\left[\left[\frac{1}{2} m\right]\right]$.
We note, in passing, that we could equally well choose z so that $F_{\lambda}^{\prime \prime}(T) \equiv 0\left(p^{n}\right)$, in which case the pencil $f(X)+\lambda g(X)$ contains a perfect cube (p^{n}), for (12) becomes

$$
\begin{equation*}
f(X)+\lambda g(X) \equiv(1+\lambda)(X-T)^{3} \quad\left(p^{n}\right) \tag{18}
\end{equation*}
$$

whenever $v=\boldsymbol{v}(t) \geq\left[\left[\frac{1}{2} m\right]\right]$.
Henceforth, we shall assume that (12) holds with v chosen so that $v=\operatorname{ord}_{p} v$ is maximal, subject to the condition $v \leq\left[\left[\frac{1}{2} m\right]\right]$.
3. The reduction formulae. By (2) and (5), and writing

$$
\begin{gather*}
f_{1}(X)=(X-t)^{2}[w(X-t)+v], \tag{19}\\
S_{n}(f, g)=S_{m}^{*}\left(f_{1}, g\right) \cup E_{m}^{*}\left(f_{1}, g\right), \tag{20}
\end{gather*}
$$

where

$$
\begin{equation*}
S_{m}^{*}\left(f_{1}, g\right)=\left\{x \in Z: f_{1} f g(x) \not \equiv 0(p), \quad J\left(f_{1}, g, x\right) \equiv 0\left(p^{m}\right)\right\} \tag{21}
\end{equation*}
$$

and
(22) $\quad E_{m}^{*}\left(f_{1}, g\right)=\left\{x \in Z: f_{1}(x) \equiv 0(p), \quad f g(x) \not \equiv\left(0(p), \quad J\left(f_{1}, g, x\right) \equiv 0\left(p^{m}\right)\right\}\right.$.

Here $S_{m}^{*}\left(f_{1}, g\right)$ is a modification of $S_{m}\left(f_{1}, g\right)$ for the special case $\mu=0$, since

$$
\begin{equation*}
S_{m}^{*}\left(f_{1}, g\right)=S_{m}\left(f_{1}, g\right) \text { when } \mu>0 \tag{23}
\end{equation*}
$$

for $(\lambda, p)=1, g(x) \equiv 0(p) \Rightarrow f(x)=-\lambda g(x)+u f_{1}(x) \equiv 0(p)$, if $\mu>0$. The theorem may now be stated in terms of a 2 -stage reduction formula:

Theorem. Let $r=3$
(i) There is $a v$ with $0 \leq \nu \leq\left[\left[\frac{1}{2} m\right]\right]$, where $m=n-\mu$, for which

$$
S_{n}(f, g)=S_{m}^{*}\left(f_{1}, g\right) \cup A_{m}(v)
$$

where $f_{1}(X)$ is as defined in (19) and $S_{m}^{*}\left(f_{1}, g\right)$ in (21). Further

$$
A_{m}(0)=\left\{x \in \mathbf{Z}: x \equiv t\left(p^{m}\right)\right\}, \quad A_{m}\left(\left[\left[\frac{m}{2}\right]\right]\right)=\left\{x \in Z: x \equiv t\left(p^{[m / 2]]}\right)\right\}
$$

and for $0 \leq v \leq\left[\left[\frac{1}{2} m\right]\right]$,

$$
A_{m}(v)=A_{m}^{\prime}(v) \cup A_{m}^{\prime \prime}(\nu)
$$

where

$$
\begin{aligned}
& A_{m}^{\prime}(\nu)=\left\{x \in Z: x \equiv t\left(p^{m-v}\right)\right\} \\
& A_{m}^{\prime \prime}(v)=\left\{x \in Z: x=t+v z, z \equiv z_{0}\left(p^{m-2 v}\right)\right\}
\end{aligned}
$$

and z_{0} is uniquely defined $\left(p^{m-2 v}\right)$ and satisfies $3 z_{0}+2 \equiv 0(p)$.
(ii) If $S_{m}^{*}\left(f_{1}, g\right) \neq \theta$ then either, (a) all solutions of $J\left(f_{1}, g, x\right) \equiv 0\left(p^{m}\right)$ are non-singular, or (b) there is a pair $\left(t_{1}, v_{1}\right)$ with $1 \leq v_{1} \leq v$ such that

$$
S_{m}^{*}\left(f_{1}, g\right)=A_{m}\left(\nu_{1}\right)
$$

Proof of part (i) of the Theorem. Observe firstly that, from (22)

$$
E_{m}^{*}\left(f_{1}, g\right)=E_{m}\left(f_{1}, g\right)
$$

where

$$
\begin{equation*}
E_{m}\left(f_{1}, g\right)=\left\{x \in Z: x \equiv t(p), \quad J\left(f_{1}, g, x\right) \equiv 0\left(p^{m}\right)\right\} \tag{24}
\end{equation*}
$$

since

$$
J\left(f_{1}, g, x\right) \equiv f_{1}(x) \equiv 0(p) \Rightarrow f_{1}^{\prime}(x) \equiv 0(p), \quad \text { as } g(x) \not \equiv 0(p)
$$

Thus $x \equiv t(p)$ and the condition $f g(x) \not \equiv 0(p)$ is redundant as $f g(t) \equiv \equiv 0(p)$. Next, we express $J\left(f_{1}, g, X\right)$ is alternative forms, using the notation:

$$
\begin{align*}
f_{1}(X)= & (X-t)^{2} L(X), \text { where } L(X)=w(X-t)+v, \tag{25}\\
J\left(f_{1}, g, X\right)= & (X-t)^{2} L(X) g^{\prime}(X)-g(X)\left[(X-t)^{2} L^{\prime}(x)\right. \\
& +2(X-t) L(X)] \\
= & (X-t)[(X-t) J(L, g, X)-2 L(X) g(X)], \tag{26}\\
= & (X-t)\{(X-t)[J(L, g, X)-2 w g(X)]-2 v g(X)\} . \tag{27}
\end{align*}
$$

From (25), we see that in the case $v=0$ the conditions $x \equiv t(p)$ and $J\left(f_{1}, g, x\right) \equiv 0\left(p^{m}\right)$ imply, by (26), that $x \equiv t\left(p^{m}\right)$, since $L(t) g(t) \not \equiv 0(p)$. It remains to consider the cases where $v>0$, when $w=1$.

For brevity, we write

$$
\begin{equation*}
Y=X-t \tag{28}
\end{equation*}
$$

and then, by (27),

$$
\begin{equation*}
J\left(f_{1}, g, Y+t\right)=Y\{Y l(Y)-2 v g(Y+t)\} \tag{29}
\end{equation*}
$$

where

$$
\begin{equation*}
L(Y)=(Y+v) g^{\prime}(Y+t)-3 g(Y+t) \tag{30}
\end{equation*}
$$

Note that

$$
\begin{equation*}
y=x-t \equiv 0(p) \Rightarrow l(y) \equiv-3 g(t) \not \equiv 0(p), \quad g(y+t) \not \equiv 0(p) . \tag{31}
\end{equation*}
$$

Suppose firstly that $v=\left[\left[\frac{1}{2} m\right]\right]$. Then, by (30) and (31),

$$
\begin{aligned}
y \equiv 0(p), J\left(f_{1}, g, y+t\right) \equiv 0\left(p^{m}\right) & \Leftrightarrow[l(\boldsymbol{y})-v g(y+t)]^{2} \equiv 0\left(p^{m}\right) \\
& \Leftrightarrow \operatorname{ord}_{p} y \geq \frac{1}{2} m, \\
& \Leftrightarrow x \equiv t\left(p^{[[m / 2]]}\right)
\end{aligned}
$$

as required. It now remains to consider the case

$$
0<v<\frac{1}{2} m
$$

Here the conditions on y are

$$
\begin{equation*}
y \equiv 0(p), \quad y[y l(\boldsymbol{y})-2 v g(y+t)] \equiv 0\left(p^{m}\right) \tag{32}
\end{equation*}
$$

and clearly imply that

$$
\operatorname{ord}_{p} y \geq v
$$

Now, for the set of such y 's with $\operatorname{ord}_{p} y>v$, it is necessary and sufficient that $\operatorname{ord}_{p} y \geq m-v, x \equiv t\left(p^{m-\nu}\right)$. For the remaining set of y 's, we have

$$
\operatorname{ord}_{p} y=v
$$

and this requires more detailed consideration. On putting

$$
\begin{equation*}
Y=v Z \tag{33}
\end{equation*}
$$

our conditions become

$$
\begin{equation*}
z \not \equiv 0(p), \quad J\left(f_{1}, g, t+v z\right) \equiv 0\left(p^{m}\right) \tag{34}
\end{equation*}
$$

But, with $X=t+v Z$,

$$
f_{1}(X)=v^{3}\left(Z^{3}+Z^{2}\right)=v^{3} f_{2}(Z), \text { say }
$$

and

$$
\begin{aligned}
f_{1}^{\prime}(X) & =v^{3} f_{2}^{\prime}(Z) v^{-1}=v^{2} f_{2}^{\prime}(Z) \\
g(X) & =g(t)+g^{\prime}(t) v Z+\frac{1}{2} g^{\prime \prime}(t) v^{2} Z^{2}+\frac{1}{6} g^{\prime \prime \prime}(t) v^{3} Z^{3} \\
& =g_{2}(Z) \text { say }, \\
g^{\prime}(X) & =g_{2}^{\prime}(Z) v^{-1} .
\end{aligned}
$$

Thus

$$
\begin{aligned}
J\left(f_{1}, g, X\right) & =v^{3} f_{2}(Z) v^{-1} g_{2}^{\prime}(Z)-v^{2} f_{2}^{\prime}(Z) g_{2}(Z) \\
& =v^{2} J\left(f_{2}, g_{2}, Z\right) .
\end{aligned}
$$

and our conditions (34) take the form

$$
\begin{equation*}
z \not \equiv 0(p), \quad J\left(f_{2}, g_{2}, z\right) \equiv 0\left(p^{m-2 v}\right) . \tag{35}
\end{equation*}
$$

Now

$$
J\left(f_{2}, g_{2}, Z\right)=Z\left[Z(Z+1) g_{2}^{\prime}(Z)-(3 Z+2) g_{2}(Z)\right]
$$

where $g_{2}^{\prime}(Z) \equiv 0\left(p^{\nu}\right)$ and $g_{2}(Z) \equiv g(t) \equiv \equiv 0(p)$ identically in Z.
Thus (35) becomes the single condition

$$
\begin{equation*}
F(z) \equiv 0\left(p^{m-2 \nu}\right), \tag{36}
\end{equation*}
$$

where

$$
F(Z)=Z(Z+1) g_{2}^{\prime}(Z)-(3 Z+2) g_{2}(Z) .
$$

But

$$
F(Z) \equiv-(3 Z+2) g(t), \quad F^{\prime}(Z) \equiv-3 g(t) \not \equiv 0 \quad(p)
$$

and so (36) has just one solution $z \equiv z_{0}\left(p^{m-2 v}\right)$, where $3 z_{0}+2 \equiv 0(p)$.
This completes the proof of part (i) of the theorem. For part (ii), we shall need the following lemma to obtain the inequality $\nu_{1} \leq \nu$ in a second application of the reduction formula of part (i).

Lemma. Suppose that

$$
\begin{equation*}
f(X)+\lambda g(X) \equiv u f_{1}(X), \quad\left(p^{n}\right) \tag{37}
\end{equation*}
$$

with $(\lambda, p)=1$ and $f_{1}(X)$ of the form in (19). If

$$
S_{m}^{*}\left(f_{1}, g\right) \neq \varnothing
$$

there is a $t_{1} \not \equiv t(p)$ such that

$$
\begin{equation*}
g(X)+\lambda_{1} f_{1}(X) \equiv u_{1} g_{1}(X),\left(p^{m}\right), m=n-\mu, \tag{38}
\end{equation*}
$$

where

$$
\begin{equation*}
\left(\lambda_{1}, p\right)=1, \quad f_{1} f g\left(t_{1}\right) \not \equiv 0(p) \tag{39}
\end{equation*}
$$

and

$$
\begin{equation*}
g_{1}(X)=\left(X-t_{1}\right)^{2}\left[w_{1}\left(X-t_{1}\right)+v_{1}\right] \tag{40}
\end{equation*}
$$

with

$$
\begin{equation*}
\operatorname{gcd}\left(v_{1}, w_{1}, p\right), w_{1}=1 \text { if }, \operatorname{ord}_{p} w_{1}=0 \text { and } v_{1}=1 \text { if } \operatorname{ord}_{p} w_{1}>0 . \tag{41}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
f(X)+\left(\lambda+\lambda_{1}^{-1} u\right) g(X) \equiv \lambda_{1}^{-1} u u_{1} g_{1}(X), \quad\left(p^{n}\right) \tag{42}
\end{equation*}
$$

where

$$
\begin{equation*}
\mu_{1}=\operatorname{ord}_{p} u_{1}=0, \quad \lambda+\lambda_{1}^{-1} u \not \equiv 0(p), \quad \nu_{1}=\operatorname{ord}_{p} v_{1} \leq v . \tag{43}
\end{equation*}
$$

Proof. From the definition of $S_{m}^{*}\left(f_{1}, g\right)$ in (21), it is clear that there is a $t_{1} \not \equiv t(p)$ which satisfies (38), (39), (40) and (41). Now (42) is obtained from (37) and (38) by multiplying (38) by $u \lambda_{1}^{-1}$ and substituting $u \lambda_{1}^{-1}\left(u_{1} g_{1}(x)-g(x)\right)$ for $u f_{1}(x)$ in (37). Note that, if $\lambda+\lambda_{1}^{-1} u \equiv 0(p)$, then

$$
f(X) \equiv \lambda_{1}^{-1} u u_{1} g_{1}(X)(p), \text { by }(42)
$$

which is impossible since $g_{1}\left(t_{1}\right) \equiv 0(p), f\left(t_{1}\right) \not \equiv 0(p)$. Hence $\lambda+\lambda_{1}^{-1} u \not \equiv 0(p)$. Now, if $\operatorname{ord}_{p} u_{1}>0$, then, by (42)

$$
f(X)+\left(\lambda+\lambda_{1}^{-1} u\right) g(X) \equiv 0\left(p^{\mu+1}\right)
$$

and (by comparing coefficients of $\left.X^{3}\right) \lambda+\lambda_{1}^{-1} u \equiv-1\left(p^{\mu+1}\right)$, which implies that $f(X) \equiv g(X)\left(p^{\mu+1}\right)$, contrary to the definition of μ. Hence $\operatorname{ord}_{p} u_{1}=0$. Since the choice of t was taken so that $v=\operatorname{ord}_{p} v \leq\left[\left[\frac{1}{2} m\right]\right]$ was maximal, it follows from (42) that $\nu_{1}=\operatorname{ord}_{p} v_{1} \leq \nu$. This completes the proof of the lemma.

Proof of part (ii) of the Theorem. Suppose that $S_{m}^{*}\left(f_{1}, g\right) \neq \ominus$; then there is a $t_{1} \not \equiv t(p)$ such that $f_{1} f g\left(t_{1}\right) \not \equiv 0(p)$ and

$$
g\left(t_{1}\right)+\lambda_{1} f_{1}\left(t_{1}\right) \equiv g^{\prime}\left(t_{1}\right)+\lambda_{1} f_{1}\left(t_{1}\right) \equiv 0\left(p^{m}\right)
$$

where $\left(\lambda_{1}, p\right)=1$. Then, by Taylor's theorem applied to $g(X)+\lambda_{1} f_{1}(X)$, we have

$$
g(X)+\lambda_{1} f_{1}(X) \equiv u_{1} g_{1}(X) \quad\left(p^{m}\right)
$$

where $g_{1}(X)$ satisfies (40) and (41) of the lemma. Suppose first that, for all such choices of $t_{1}, J^{\prime}\left(f_{1}, g, t_{1}\right) \not \equiv 0(p)$. Then all solutions of $J\left(f_{1}, g, x\right) \equiv 0\left(p^{m}\right)$ are non-singular and $S_{m}^{*}\left(f_{1}, g\right) \leq \operatorname{deg} J\left(f_{1}, g, X\right) \leq 4$, as required. If this is not the case, we may choose t_{1} as above and satisfy the further condition

$$
\begin{equation*}
g^{\prime \prime}\left(t_{1}\right)+\lambda_{1} f_{1}^{\prime \prime}\left(t_{1}\right) \equiv 0(p) \tag{44}
\end{equation*}
$$

since

$$
J^{\prime}\left(f_{1}, g, t_{1}\right)=J^{\prime}\left(f_{1}, g+\lambda_{1} f_{1}, t_{1}\right) \equiv 0(p)
$$

implies (44), as $f_{1}\left(t_{1}\right) \not \equiv 0(p)$ and $g\left(t_{1}\right)+\lambda_{1} f_{1}\left(t_{1}\right) \equiv 0\left(p^{m}\right)$, (cf. (4)). But by (38) and (40) of the lemma,

$$
g^{\prime \prime}\left(t_{1}\right)+\lambda_{1} f_{1}^{\prime \prime}\left(t_{1}\right) \equiv 2 u_{1} v_{1}(p)
$$

whence

$$
\begin{equation*}
v \geq v_{1}=\operatorname{ord}_{p} v_{1} \geqslant 1 . \tag{45}
\end{equation*}
$$

We can now prove that $S_{m}\left(f_{1}, g_{1}\right)=\theta$. For

$$
\begin{aligned}
J\left(f_{1}, g_{1}, X\right) & \equiv 3\left\{(X-t)^{3}\left(X-t_{1}\right)^{2}-\left(X-t_{1}\right)^{3}(X-t)^{2}\right\}(p) \\
& \equiv 3\left(t_{1}-t\right)(X-t)^{2}\left(X-t_{1}\right)^{2}(p)
\end{aligned}
$$

where

$$
f_{1}(x) \equiv(x-t)^{3} \not \equiv 0(p), \quad g_{1}(x) \equiv\left(x-t_{1}\right)^{3} \not \equiv 0(p)
$$

by (45). Now, if $\mu \neq 0, S_{m}^{*}\left(f_{1}, g\right)=S_{m}\left(f_{1}, g\right)$ and the reduction formula of part (i) can be applied again to give

$$
S_{m}^{*}\left(f_{1}, g\right)=S_{m}^{*}\left(f_{1}, g_{1}\right) \cup A_{m}\left(\nu_{1}\right)
$$

and since $S_{m}^{*}\left(f_{1}, g_{1}\right) \subset S_{m}\left(f_{1}, g_{1}\right)=\varnothing$, the proof is complete. For the case $\mu=0$, we give a direct verification, using the formula

$$
S_{m}^{*}\left(f_{1}, g\right)=S_{m}^{\prime}\left(f_{1}, g_{1}\right) \cup E_{m}^{\prime}\left(f_{1}, \mathrm{~g}_{1}\right)
$$

where

$$
\begin{aligned}
& S_{m}^{\prime}\left(f_{1}, g_{1}\right)=\left\{x \in Z: f g f_{1} g_{1}(x) \not \equiv 0(p), \quad J\left(f_{1}, g_{1}, x\right) \equiv 0\left(p^{m}\right)\right\} \\
& E_{m}^{\prime}\left(f_{1}, g_{1}\right)=\left\{x \in Z: g_{1}(x) \equiv 0(p), \quad f g f_{1}(x) \not \equiv 0(p), \quad J\left(f_{1}, g_{1}, x\right) \equiv 0\left(p^{m}\right)\right\}
\end{aligned}
$$

Clearly, $S_{m}^{\prime}\left(f_{1}, g_{1}\right) \subset S_{m}\left(f_{1}, g_{1}\right)=\varnothing$, and

$$
E_{m}^{\prime}\left(f_{1}, g_{1}\right)=\left\{x \in Z: x \equiv t(p), \quad J\left(f_{1}, g_{1}, x\right) \equiv 0\left(p^{m}\right)\right\}
$$

since

$$
J\left(f_{1}, g_{1}, x\right) \equiv g_{1}(x) \equiv 0(p), \quad f_{1}(x) \not \equiv 0(p) \Rightarrow g_{1}^{\prime}(x) \equiv 0(p) \Rightarrow x \equiv t_{1}(p)
$$

Thus the condition $f g f_{1}(x) \not \equiv 0(p)$ in $E_{m}^{\prime}\left(f_{1}, g_{1}\right)$ is redundant and we obtain

$$
E_{m}^{\prime}\left(f_{1}, g_{1}\right)=E_{m}\left(f_{1}, g_{1}\right)=A_{m}\left(v_{1}\right)
$$

as required.

References

1. D. A. Burgess, On Character Sums and L-series, Proc. London Math. Soc., (3), 12 (1962), pp. 193-196.
2. J. H. H. Chalk, A New Proof of Burgess' Theorem on Character Sums, C-R Math, Rep. Acad. Sci. Canada, No. 4 V (1983), pp. 163-168, (see Math. Reviews for a revised statement of the result).
3. J. H. H. Chalk and R. A. Smith, Sándor's Theorem on Polynomial Congruences and Hensel's Lemma, C-R Math. Rep. Acad. Sci. Canada, No. 1, II (1982), pp. 49-54.
4. H. Davenport and P. Erdös, The Distribution of Quadratic and Higher Residues, Publications Mathematicae, T-2, fasc., 3-4 (1952), pp. 252-265.

University of Toronto
Toronto, Canada

[^0]: Received by the editors August 28, 1984 and, in final revised form, February 18, 1985.
 AMS Subject Classification: 10A10, 10G05.
 (C) Canadian Mathematical Society 1985.

