ON A CONGRUENCE RELATED TO CHARACTER SUMS

ΒY

J. H. H. CHALK

In memory of my late colleague R. A. Smith

ABSTRACT. If χ is a Dirichlet character to a prime-power modulus p^{α} , then the problem of estimating an incomplete character sum of the form $\sum_{1 \le x \le h} \chi(x)$ by the method of D. A. Burgess leads to a consideration of congruences of the type

$$f(x)g'(x) - f'(x)g(x) \equiv 0(p^{\alpha}),$$

where $fg(x) \neq 0(p)$ and f, g are monic polynomials of equal degree with coefficients in Z. Here, a characterization of the solution-set for cubics is given in terms of explicit arithmetic progressions.

1. Introduction and notation. Let $p^n (p > 3 \text{ prime}, n \ge 2)$ be a fixed prime-power, congruences to the modulus *m* will be denoted by (m) and $\operatorname{ord}_p m$ will signify the integer ν for which $p^{\nu}|m, p^{\nu+1}/m$. The symbol [[x]] for $x \in \mathbb{R}$ will denote the least integer $\ge x$, i.e., [[x]] = -[-x]. Let *f*, *g* denote monic polynomials in $\mathbb{Z}[X]$ of equal degree *r* say, and suppose that they satisfy the mild restriction, modulo p^n :

(1)
$$lf(X) + mg(X) \neq 0, \quad (p^n)$$

for all pairs $(l, m) \in \mathbb{Z}^2$ with $(l, m) \neq (0, 0)$, (p). Let

(2)
$$J(f,g,X) = f(X)g'(X) - f'(X)g(X).$$

Then J is a combinative invariant of the pencil $f + \lambda g$ with the properties

(3)
$$J(f + \lambda g, g, X) = J(f, g, X)$$

(4)
$$J'(f,g,X) = f(X)g''(X) - f''(X)g(X).$$

Let

(5)
$$S_n(f,g) = \{x \in \mathbb{Z} : fg(x) \neq 0(p), J(f,g,x) \equiv 0(p^n)\}.$$

Our purpose is to identify and classify the elements of $S_n(f, g)$ and, after some preparatory material on certain invariants of the pencil $f + \lambda g$, this is presented in the theorem for the case r = 3 (cf. §3). Apart from elements derivable by reduction (p^n) from such roots of J(f, g, x) = 0 as lie in \mathbb{Z}_p , the remaining elements of $S_n(f, g)$ form a set which is a union of at most 4 arithmetic progressions. Congruences of the type

Received by the editors August 28, 1984 and, in final revised form, February 18, 1985.

AMS Subject Classification: 10A10, 10G05.

[©] Canadian Mathematical Society 1985.

in (5) have acquired significance in the problem of estimating incomplete character sums of the type $\sum_{1 \le x \le h} \chi(x)$, where χ is a (primitive) character to a prime-power modulus p^{α} . The methods of Davenport-Erdös [2] and of Burgess [1] lead directly to a consideration of sums of the form (cf. [1], Lemma 2):

$$\sigma(p^{\alpha}) = p^{\alpha - \gamma} \sum_{\substack{1 \le x \le p^{\gamma} \\ J(f, g, x) \equiv 0(p^{\alpha - \gamma}) \\ f_g(x) \neq 0(p)}} \chi[f/g(x)], \quad (\gamma \ge \frac{1}{2}\alpha)$$

and, by the theorem (r = 3), it is now possible, for example, to give precise estimates for the number of terms in such sums. It may be remarked that while previous work on general polynomial congruences (cf. [3], for references) is effective for the case r = 2 (cf. [2]) it is difficult to apply for $r \ge 3$.

2. Invariants of the pencil $f + \lambda g$.

DEFINITION. Let

(6)
$$\mu = \mu(f,g) = \operatorname{ord}_p[f(X) - g(X)]$$

Then, by (1),

 $(7) 0 \le \mu < n$

and, from the definition of J(f, g, X),

(8)
$$J(f,g,X) \equiv J'(f,g,X) \equiv 0 \quad (p^{\mu}).$$

We assume henceforth that

(9)
$$S_n(f,g) \neq \emptyset.$$

Then it follows that there is a $t \in \mathbb{Z}$ with $fg(t) \neq 0(p)$ for which

(10)
$$f(t) + \lambda g(t) \equiv f'(t) + \lambda g'(t) \equiv 0(p^n)$$

where $(\lambda, p) = 1$ and

(11)
$$-\lambda \equiv f/g(t), \quad (p^n).$$

By Taylor's theorem, applied to $f(X) + \lambda g(X)$, we have

(12) $f(X) + \lambda g(X) \equiv u(X-t)^2 [w(X-t) + v], \quad (p^n)$

where u = u(t), w = w(t), v = v(t) are constants depending on the choice of t which we can suppose, without loss of generality, to satisfy

(13)
$$gcd(v, w, p) = 1$$
, $w = 1$ if $ord_p w = 0$ and $v = 1$ if $ord_p w > 0$.

We show firstly that $\operatorname{ord}_p u = \mu$. For, if $\operatorname{ord}_p w = 0$ so that w = 1, then $1 + \lambda \equiv u(p^n)$, by comparing the coefficients of X^3 in (12). But by $(10)_1$ and (6), $f(t) + \lambda g(t) \equiv (1 + \lambda)f(t)$, (p^{μ}) and so $1 + \lambda \equiv 0(p^{\mu})$, $u \equiv 0(p^{\mu})$. However, if $u \equiv 0(p^{\mu+1})$, then $1 + \lambda \equiv 0(p^{\mu+1})$ and $f(X) + \lambda g(X) \equiv 0(p^{\mu+1})$, contrary to the definition of μ in (6). Now, if $\operatorname{ord}_p w > 0$ so that v = 1, then again on comparing coefficients of X^3 in (12), we have $1 + \lambda \equiv uw(p^n)$. But then

(14)
$$f(X) - g(X) \equiv u[-wg(X) + w(X-t)^3 + (X-t)^2], \quad (p^n)$$

and now it is clear that $\operatorname{ord}_p(f(X) - g(X)) = \operatorname{ord}_p u$, since the polynomial on the right of (14) is primitive (p). Next, by means of a transformation $t \to T$ of the form

$$T = t + zp^l \quad (z \in \mathbf{Z}),$$

where $l = [[\frac{1}{2}m]]$, $m = n - \mu \ge 1$ and λ , u and w are kept fixed, we can ensure that, if

$$\nu = \nu(t) = \operatorname{ord}_p \nu \ge \left[\left[\frac{1}{2} m \right] \right]$$

then $v(T) = \operatorname{ord}_p v(T) = [[\frac{1}{2}m]]$, for a suitable choice of z.

Thus, we may suppose that t is chosen initially to satisfy

(15)
$$\boldsymbol{\nu} = \boldsymbol{\nu}(t) = \operatorname{ord}_p \boldsymbol{\nu} \leq \left[\left[\frac{1}{2} \boldsymbol{m} \right] \right].$$

Let

(16)
$$F_{\lambda}(X) = f(X) + \lambda g(X),$$

then it suffices to check $F_{\lambda}(T)$ and $F'_{\lambda}(T)$ and note that since $\nu \ge 1$, we have w = 1and so $u \equiv 1 + \lambda(p^n)$, from (12). But

$$F_{\lambda}(T) = F_{\lambda}(t) + zp'F_{\lambda}'(t) + \frac{z^2}{2}p^{2l}F_{\lambda}''(t) + \frac{z^3}{6}p^{3l}F_{\lambda}'''(t)$$
$$F_{\lambda}'(t) = F_{\lambda}'(t) + zp'F_{\lambda}''(t) + \frac{z^2}{2}p^{2l}F_{\lambda}'''(t),$$

since $F^{(iv)}(X) = 0$ and $F'''(X) = 6(1 + \lambda)$. Now,

$$F''_{\lambda}(t) \equiv 2uv(p^{n}), \text{ by } (12)$$

and so, by (13), either

$$\operatorname{ord}_{p} F_{\lambda}''(t) = \mu + \nu(t)$$

or $\mu + \nu(t) \ge n$, $\operatorname{ord}_p F_{\lambda}''(t) \ge n$. Then

(17)
$$F_{\lambda}(T) \equiv F'_{\lambda}(T) \equiv 0(p^n)$$

if both the inequalities

$$l + \mu + \nu(t) \ge n$$
$$2l + \operatorname{ord}_n(1 + \lambda) \ge n$$

hold. But

$$l + \mu + \nu(t) \ge [[\frac{1}{2}m]] + \mu + [\frac{1}{2}m] = m + \mu = n$$

[December

$$2l + \operatorname{ord}_p(1 + \lambda) \ge 2l + \mu \ge 2\frac{m}{2} + \mu = n,$$

and so (17) holds. Now

$$F''_{\lambda}(T) = F''_{\lambda}(t) + zp^{l} \cdot F''_{\lambda}(t)$$

= $2uv(t) + 6zp^{l}u \quad (p^{n})$
= $2u[v(t) + 3zp^{l}] \quad (p^{n})$
= $2up^{l}[p^{-l}v(t) + 3z] \quad (p^{n})$

Thus, with z = 1 if v > l and z = p if v = l

$$\operatorname{ord}_{p} F_{\lambda}''(T) = \mu + l = \mu + [[\frac{1}{2}m]]$$

and so $\nu(T) = l = [[\frac{1}{2}m]].$

We note, in passing, that we could equally well choose z so that $F''_{\lambda}(T) \equiv 0(p^n)$, in which case the pencil $f(X) + \lambda g(X)$ contains a perfect cube (p^n) , for (12) becomes

(18)
$$f(X) + \lambda g(X) \equiv (1 + \lambda)(X - T)^3 \quad (p^n),$$

whenever $\nu = \nu(t) \ge \left[\left[\frac{1}{2} m \right] \right]$.

Henceforth, we shall assume that (12) holds with v chosen so that $v = \operatorname{ord}_p v$ is *maximal*, subject to the condition $v \leq \left[\left[\frac{1}{2}m\right]\right]$.

3. The reduction formulae. By (2) and (5), and writing

(19)
$$f_1(X) = (X - t)^2 [w(X - t) + v],$$

(20)
$$S_n(f,g) = S_m^*(f_1,g) \cup E_m^*(f_1,g),$$

where

(21)
$$S_m^*(f_1,g) = \{x \in \mathbb{Z} : f_1 fg(x) \neq 0(p), J(f_1,g,x) \equiv 0(p^m)\}$$

and

(22)
$$E_m^*(f_1,g) = \{x \in \mathbb{Z} : f_1(x) \equiv 0(p), fg(x) \neq (0(p), J(f_1,g,x) \equiv 0(p^m)\}.$$

Here $S_m^*(f_1, g)$ is a modification of $S_m(f_1, g)$ for the special case $\mu = 0$, since

(23)
$$S_m^*(f_1,g) = S_m(f_1,g)$$
 when $\mu > 0$,

for $(\lambda, p) = 1$, $g(x) \equiv 0(p) \Rightarrow f(x) = -\lambda g(x) + u f_1(x) \equiv 0(p)$, if $\mu > 0$. The theorem may now be stated in terms of a 2-stage reduction formula:

THEOREM. Let r = 3(i) There is a ν with $0 \le \nu \le [[\frac{1}{2}m]]$, where $m = n - \mu$, for which $\sum_{n=1}^{\infty} (f, q) = \sum_{n=1}^{\infty} (f, q) + |A|(\mu)|$

$$S_n(f,g) = S_m(f_1,g) \cup A_m(\nu),$$

where $f_1(X)$ is as defined in (19) and $S_m^*(f_1, g)$ in (21). Further

$$A_m(0) = \{x \in \mathbb{Z} : x \equiv t(p^m)\}, A_m([[\frac{m}{2}]]) = \{x \in \mathbb{Z} : x \equiv t(p^{[[m/2]]})\}$$

and for $0 \leq \nu \leq \left[\left[\frac{1}{2}m\right]\right]$,

$$A_m(\nu) = A'_m(\nu) \cup A''_m(\nu),$$

where

$$A'_{m}(\nu) = \{x \in \mathbb{Z} : x \equiv t(p^{m-\nu})\}$$
$$A''_{m}(\nu) = \{x \in \mathbb{Z} : x = t + \nu z, z \equiv z_{0}(p^{m-2\nu})\}$$

and z_0 is uniquely defined $(p^{m-2\nu})$ and satisfies $3z_0 + 2 \equiv 0(p)$.

(ii) If $S_m^*(f_1, g) \neq \Theta$ then either, (a) all solutions of $J(f_1, g, x) \equiv O(p^m)$ are non-singular, or (b) there is a pair (t_1, v_1) with $1 \le v_1 \le v$ such that

$$S_m^*(f_1,g) = A_m(\nu_1).$$

PROOF OF PART (i) OF THE THEOREM. Observe firstly that, from (22)

$$E_m^*(f_1,g) = E_m(f_1,g)$$

where

(24)
$$E_m(f_1,g) = \{x \in \mathbb{Z} : x \equiv t(p), J(f_1,g,x) \equiv 0(p^m)\}$$

since

$$J(f_1, g, x) \equiv f_1(x) \equiv 0(p) \Rightarrow f_1'(x) \equiv 0(p), \text{ as } g(x) \neq 0(p).$$

Thus $x \equiv t(p)$ and the condition $fg(x) \neq 0(p)$ is redundant as $fg(t) \neq 0(p)$. Next, we express $J(f_1, g, X)$ is alternative forms, using the notation:

(25)
$$f_{1}(X) = (X - t)^{2}L(X), \text{ where } L(X) = w(X - t) + v,$$
$$J(f_{1}, g, X) = (X - t)^{2}L(X)g'(X) - g(X)[(X - t)^{2}L'(x) + 2(X - t)L(X)]$$

(26)
$$= (X - t)[(X - t)J(L, g, X) - 2L(X)g(X)],$$

(27)
$$= (X - t)\{(X - t)[J(L, g, X) - 2wg(X)] - 2vg(X)\}.$$

From (25), we see that in the case $\nu = 0$ the conditions $x \equiv t(p)$ and $J(f_1, g, x) \equiv 0(p^m)$ imply, by (26), that $x \equiv t(p^m)$, since $L(t)g(t) \neq 0(p)$. It remains to consider the cases where $\nu > 0$, when w = 1.

For brevity, we write

$$Y = X - t$$

and then, by (27),

(29)
$$J(f_1, g, Y + t) = Y\{Yl(Y) - 2vg(Y + t)\},\$$

where

(30)
$$L(Y) = (Y + v)g'(Y + t) - 3g(Y + t).$$

[December

Note that

(31)
$$y = x - t \equiv 0(p) \Rightarrow l(y) \equiv -3g(t) \neq 0(p), \quad g(y + t) \neq 0(p).$$

Suppose firstly that $\nu = [[\frac{1}{2}m]]$. Then, by (30) and (31),

$$y \equiv 0(p), J(f_1, g, y + t) \equiv 0(p^m) \Leftrightarrow [l(y) - vg(y + t)]^2 \equiv 0(p^m)$$
$$\Leftrightarrow \operatorname{ord}_p y \ge \frac{1}{2}m,$$
$$\Leftrightarrow x \equiv t(p^{[[m/2]]})$$

as required. It now remains to consider the case

$$0 < \nu < \frac{1}{2}m$$
.

Here the conditions on y are

(32)
$$y \equiv 0(p), y[yl(y) - 2vg(y+t)] \equiv 0(p^m)$$

and clearly imply that

$$\operatorname{ord}_{p} y \geq v$$
.

Now, for the set of such y's with $\operatorname{ord}_p y > \nu$, it is necessary and sufficient that $\operatorname{ord}_p y \ge m - \nu, x \equiv t(p^{m-\nu})$. For the remaining set of y's, we have

 $\operatorname{ord}_{\nu} y = \nu$,

and this requires more detailed consideration. On putting

(33) Y = vZ

our conditions become

(34)
$$z \neq 0(p), \quad J(f_1, g, t + vz) \equiv 0(p^m).$$

But, with X = t + vZ,

$$f_1(X) = v^3(Z^3 + Z^2) = v^3 f_2(Z)$$
, say

and

$$f'_{1}(X) = v^{3} f'_{2}(Z) v^{-1} = v^{2} f'_{2}(Z)$$

$$g(X) = g(t) + g'(t) vZ + \frac{1}{2} g''(t) v^{2} Z^{2} + \frac{1}{6} g'''(t) v^{3} Z^{3}$$

$$= g_{2}(Z) \text{ say,}$$

$$g'(X) = g'_{2}(Z) v^{-1}.$$

Thus

$$J(f_1, g, X) = v^3 f_2(Z) v^{-1} g'_2(Z) - v^2 f'_2(Z) g_2(Z)$$

= $v^2 J(f_2, g_2, Z).$

and our conditions (34) take the form

https://doi.org/10.4153/CMB-1985-052-x Published online by Cambridge University Press

1985]

CHARACTER SUMS

(35)
$$z \neq 0(p), \quad J(f_2, g_2, z) \equiv 0(p^{m-2\nu}).$$

Now

$$J(f_2, g_2, Z) = Z[Z(Z + 1)g'_2(Z) - (3Z + 2)g_2(Z)]$$

where $g'_2(Z) \equiv 0(p^{\nu})$ and $g_2(Z) \equiv g(t) \neq 0(p)$ identically in Z. Thus (35) becomes the single condition

(36)
$$F(z) \equiv 0 \ (p^{m-2\nu}),$$

where

$$F(Z) = Z(Z + 1)g'_2(Z) - (3Z + 2)g_2(Z).$$

But

$$F(Z) \equiv -(3Z + 2)g(t), \quad F'(Z) \equiv -3g(t) \neq 0 \quad (p)$$

and so (36) has just one solution $z \equiv z_0(p^{m-2\nu})$, where $3z_0 + 2 \equiv 0$ (p).

This completes the proof of part (i) of the theorem. For part (ii), we shall need the following lemma to obtain the inequality $\nu_1 \leq \nu$ in a second application of the reduction formula of part (i).

LEMMA. Suppose that

(37)
$$f(X) + \lambda g(X) \equiv u f_1(X), \quad (p^n)$$

with $(\lambda, p) = 1$ and $f_1(X)$ of the form in (19). If

$$S_m^*(f_1,g) \neq \emptyset$$

there is a $t_1 \neq t(p)$ such that

(38)
$$g(X) + \lambda_1 f_1(X) \equiv u_1 g_1(X), (p^m), m = n - \mu,$$

where

(39)
$$(\lambda_1, p) = 1, \quad f_1 f_2(t_1) \neq 0(p)$$

and

(40)
$$g_1(X) = (X - t_1)^2 [w_1(X - t_1) + v_1]$$

with

(41)
$$gcd(v_1, w_1, p), w_1 = 1 \text{ if } ord_p w_1 = 0 \text{ and } v_1 = 1 \text{ if } ord_p w_1 > 0.$$

Moreover,

(42)
$$f(X) + (\lambda + \lambda_1^{-1}u)g(X) \equiv \lambda_1^{-1}uu_1g_1(X), \quad (p^n)$$

where

(43)
$$\mu_1 = \operatorname{ord}_p u_1 = 0, \quad \lambda + \lambda_1^{-1} u \neq 0(p), \quad \nu_1 = \operatorname{ord}_p v_1 \leq \nu.$$

December

PROOF. From the definition of $S_m^*(f_1, g)$ in (21), it is clear that there is a $t_1 \neq t(p)$ which satisfies (38), (39), (40) and (41). Now (42) is obtained from (37) and (38) by multiplying (38) by $u\lambda_1^{-1}$ and substituting $u\lambda_1^{-1}(u_1g_1(x) - g(x))$ for $uf_1(x)$ in (37). Note that, if $\lambda + \lambda_1^{-1}u \equiv 0(p)$, then

$$f(X) \equiv \lambda_1^{-1} u u_1 g_1(X)$$
 (p), by (42),

which is impossible since $g_1(t_1) \equiv 0(p)$, $f(t_1) \neq 0(p)$. Hence $\lambda + \lambda_1^{-1} u \neq 0(p)$. Now, if $\operatorname{ord}_p u_1 > 0$, then, by (42)

$$f(X) + (\lambda + \lambda_1^{-1}u)g(X) \equiv 0(p^{\mu+1})$$

and (by comparing coefficients of X^3) $\lambda + \lambda_1^{-1}u \equiv -1(p^{\mu+1})$, which implies that $f(X) \equiv g(X) \ (p^{\mu+1})$, contrary to the definition of μ . Hence $\operatorname{ord}_p u_1 = 0$. Since the choice of t was taken so that $\nu = \operatorname{ord}_p v \leq [[\frac{1}{2}m]]$ was maximal, it follows from (42) that $\nu_1 = \operatorname{ord}_p v_1 \leq \nu$. This completes the proof of the lemma.

PROOF OF PART (ii) OF THE THEOREM. Suppose that $S_m^*(f_1, g) \neq \Theta$; then there is a $t_1 \neq t(p)$ such that $f_1 f_g(t_1) \neq 0(p)$ and

$$g(t_1) + \lambda_1 f_1(t_1) \equiv g'(t_1) + \lambda_1 f_1(t_1) \equiv 0(p^m),$$

where $(\lambda_1, p) = 1$. Then, by Taylor's theorem applied to $g(X) + \lambda_1 f_1(X)$, we have

$$g(X) + \lambda_1 f_1(X) \equiv u_1 g_1(X) \quad (p^m),$$

where $g_1(X)$ satisfies (40) and (41) of the lemma. Suppose first that, for *all* such choices of t_1 , $J'(f_1, g, t_1) \neq 0(p)$. Then all solutions of $J(f_1, g, x) \equiv 0(p^m)$ are non-singular and $S_m^*(f_1, g) \leq \deg J(f_1, g, X) \leq 4$, as required. If this is not the case, we may choose t_1 as above and satisfy the further condition

(44)
$$g''(t_1) + \lambda_1 f_1''(t_1) \equiv 0(p)$$

since

$$J'(f_1, g, t_1) = J'(f_1, g + \lambda_1 f_1, t_1) \equiv 0(p),$$

implies (44), as $f_1(t_1) \neq 0(p)$ and $g(t_1) + \lambda_1 f_1(t_1) \equiv 0(p^m)$, (cf. (4)). But by (38) and (40) of the lemma,

$$g''(t_1) + \lambda_1 f''_1(t_1) \equiv 2u_1 v_1(p)$$

whence

(45)
$$\nu \geq \nu_1 = \operatorname{ord}_p \nu_1 \geq 1.$$

We can now prove that $S_m(f_1, g_1) = \Theta$. For

$$J(f_1, g_1, X) \equiv 3\{(X - t)^3 (X - t_1)^2 - (X - t_1)^3 (X - t)^2\} (p)$$

$$\equiv 3(t_1 - t)(X - t)^2 (X - t_1)^2 (p),$$

where

$$f_1(x) \equiv (x - t)^3 \neq 0(p), \quad g_1(x) \equiv (x - t_1)^3 \neq 0(p)$$

by (45). Now, if $\mu \neq 0$, $S_m^*(f_1, g) = S_m(f_1, g)$ and the reduction formula of part (i) can be applied again to give

$$S_m^*(f_1,g) = S_m^*(f_1,g_1) \cup A_m(\nu_1)$$

and since $S_m^*(f_1, g_1) \subset S_m(f_1, g_1) = \emptyset$, the proof is complete. For the case $\mu = 0$, we give a direct verification, using the formula

$$S_m^*(f_1,g) = S_m'(f_1,g_1) \cup E_m'(f_1,g_1),$$

where

$$S'_{m}(f_{1},g_{1}) = \{x \in \mathbf{Z} : fgf_{1}g_{1}(x) \neq 0(p), \quad J(f_{1},g_{1},x) \equiv 0(p^{m})\}$$
$$E'_{m}(f_{1},g_{1}) = \{x \in \mathbf{Z} : g_{1}(x) \equiv 0(p), \quad fgf_{1}(x) \neq 0(p), \quad J(f_{1},g_{1},x) \equiv 0(p^{m})\}.$$

Clearly, $S'_m(f_1, g_1) \subset S_m(f_1, g_1) = \emptyset$, and

$$E'_m(f_1,g_1) = \{x \in \mathbb{Z} : x \equiv t(p), \quad J(f_1,g_1,x) \equiv 0(p^m)\},\$$

since

$$J(f_1, g_1, x) \equiv g_1(x) \equiv 0(p), \quad f_1(x) \neq 0(p) \Rightarrow g_1'(x) \equiv 0(p) \Rightarrow x \equiv t_1(p)$$

Thus the condition $fgf_1(x) \neq 0(p)$ in $E'_m(f_1, g_1)$ is redundant and we obtain

$$E'_m(f_1, g_1) = E_m(f_1, g_1) = A_m(\nu_1),$$

as required.

REFERENCES

1. D. A. Burgess, On Character Sums and L-series, Proc. London Math. Soc., (3), 12 (1962), pp. 193-196.

2. J. H. H. Chalk, A New Proof of Burgess' Theorem on Character Sums, C-R Math, Rep. Acad. Sci. Canada, No. 4 V (1983), pp. 163–168, (see Math. Reviews for a revised statement of the result).

3. J. H. H. Chalk and R. A. Smith, Sándor's Theorem on Polynomial Congruences and Hensel's Lemma, C-R Math. Rep. Acad. Sci. Canada, No. 1, II (1982), pp. 49-54.

4. H. Davenport and P. Erdös, *The Distribution of Quadratic and Higher Residues*, Publications Mathematicae, T-2, fasc., 3-4 (1952), pp. 252-265.

UNIVERSITY OF TORONTO TORONTO, CANADA

https://doi.org/10.4153/CMB-1985-052-x Published online by Cambridge University Press