RIGHT INVARIANT INTEGRALS
ON LOCALLY COMPACT SEMIGROUPS

J. H. MICHAEL
(received 11 August 1963)

1. Introduction

An integral on a locally compact Hausdorff semigroup S is a non-trivial,
positive, linear functional x on the space & of continuous real-valued
functions on S with compact supports. If S has the property:

(A) for each pair of compact sets C, D of S, the set

CD'= {z;zeS and ay e C for some y e D}

=UCy?
veD

is compact; then, whenever y € & and q € S, the function /,, defined by

fal®) = [(%a)

is also in &. An integral x on a locally compact semigroup S with the
property (A) is said to be right invariant if

wlf) = p(fa)
for all fe# and all a€e S.
It is shown (5.1) that if S is a separable, metric, locally compact semi-
group with the properties: (A),
(B) for each pair of compact sets C, D of S, the set

DC = {z; xS and yx e C for some y e D}
=UyC
veD
is compact;

(C) S has a left ideal K that is contained in every other left ideal;
then S admits a right invariant integral.

One of the results of W. G. Rosen [6] is that a necessary and sufficient
condition for a compact, Hausdorff semigroup to admit a right invariant
integral is the existence of a unique minimal left ideal. Since compact metric
semigroups automatically satisfy conditions (A) and (B), the above theorem
(except for the restriction to separable metric semigroups) is a generalisation
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of the sufficiency part of Rosen’s result to locally compact semigroups.
However, the proof is not a generalisation, because I have to assume that
the semigroup is not compact. It is not known whether the condition (A),
(B) and (C) are necessary.

It will frequently be necessary to assume that the semigroups under
consideration have one or both of the properties (A) and (B). Whenever
this is so, it will always be stated.

2. Some preliminary theorems

In this section some of the properties of the inverse image Ax~! are
investigated. Some results, that are needed later, are obtained. It is assumed
throughout 2, that S is a locally compact Hausdorff semigroup with the
property (A).

THEOREM 2.1. If F is a closed subset of S and C is compact, then FC
is closed.

ProoF. Let y be a point of accumulation of FC. Let D be a compact
neighbourhood of y. Since

(FC) n DC{F n (DC)}C,
y is a point of accumulation of the compact set {F n (DC-1)}C, so that
y e FC.

LEMMA 2.2. If F is a closed subset of S, C is a compact subset and b is
an element of S such that Fb does not intersect C, then there exists an open
neighbourhood U of b such that FU does not intersect C.

Proor. (i) Assume first of all that F is compact. For each point ¢
of F, &b ¢ C, hence we can let P(£), Q(¢) be open neighbourhoods of &, &
respectively, such that

PEQECS~C.

Since F is compact, there exists a finite number &, - - -, &, of &’s so that

FC L_Z:IIP(E,.).

Put
v=foe

Then FUCS ~ C.
(ii) Now let F be an arbitrary closed set. Let D be a compact neigh-
bourhood of 4 and put E = CD-1. By (i), there exists an open neighbour-
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hood U of b such that UCD and (E n F)U does not intersect C. But
(F ~ E)U does not intersect C, hence FU does not intersect C.

THEOREM 2.3. If C is a compact subset of S, a € S and U is an open set
containing Ca2, then there exist open sets V, W containing C, a respectively,
and such that VW-1CU.

Proor. By 2.2, there exists a compact neighbourhood D of a such
that (S ~ U)D does not intersect C. By 2.1, (S~ U)D is closed, hence
there is an open set V' containing C and not intersecting (S~ U)D. Put
W = Int (D).

Let & be an arbitrary element of VW-L, There is a { € W with & e V.
If£¢ U, then £€ S~ U, hence & € (S~ U)D, so that & ¢ V; a contradic-
tion. Thus VW1 CU.

THEOREM 2.4. Let S also have the property (B) and suppose that S is
not compact. Then, for every compact subset C of S, there exist elements x, y
of S such that Cx', Cy™! are disjoint.

ProOF. Suppose that C is a compact subset of S with Cz~! intersecting
Cyforallz, yeS. Let ae S and put D = Ca~L. Then D is compact and
Cxtintersects D forallz € S. Hencex e D-1C forallz € S, so that SCD1C,
from which it follows that S is compact; a contradiction.

3. The construction of a special metric

In this section a separable, metrizable, locally compact semigroup S
with the property (B) is considered. It is shown (3.3), that there exists
a metric d for S such that

1) d(xz, y2) = d(z, y)

for all z, y, z € S. In the special case where S is a group the existence of the
inverse z™* implies equality in (1), a well-known result (cf. [1, 3 and 5]).

THEOREM 3.1. Let X be a locally compact metric space. The one point
compactification of X is metrizable if and only if X is separable. (This answers
Advanced Problem 5058, American Mathematical Monthly 69 (Dec. 1962),
1012.)

PRrOOF, Since every compact metric space is separable, the “only if”
part of the theorem is trivial. Assume X is separable and denote its one
point compactification by X’. There exists an increasing sequence {C,}
of compact subsets of X such that

X = liminf (C,).

£~ 00
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Hence there exists a countable system of neighbourhoods of o in X',
Then X’ has a countable base for its topology. Since X’ is T; and regular,
then by [4, Theorem 17, p. 125] X' is metrizable.

THEOREM 3.2. If S has a metric p for ils topology such that: for
every & > 0, there exists a compact subset C of S with p(x, y) < & for all
x,y €S~ C, then there exists a metric d for S such that

dlzz, yz) S d(x, y)
for all z,y,2€8S.

Proor. It can be assumed that p is bounded because otherwise it
could be replaced by p,(x, y) = p(z, ¥)/{14+p(z, y)}. Define

dy(z, y) = sup p(xw, yw).
wel

Then
dy(z, y) = di(y, %)
dl(x, y) = d]_(xx u)+d1(u, y)
and
d, (2, yz) = sup p(xzw, yzw)
weS
= sup p(zzw, yzw) =< d,(z, y).
wezsS
Now define

d(xr y) = max {P(x' ¥), dl(x’ y)}
Then 4 satisfies the triangle inequality, d(z, y) = d(y, =) and

d(xz, yz) = max {p(2z, yz), d,(xz, yz)}
=dy(z y) =d(z, 9).

Obviously, d(z, y) = p(x, y). Thus d is a metric. It remains to prove that
d generates the topology of S.
Take ¢ > 0. Let C be a compact subset of S such that

)] pl,y) <e

for all z, y € S ~ C. Let 2’ be an arbitrary point of S. Let D be a compact
neighbourhood of #’. Then D-1C is a compact subset of S, henc~ D x (D-1C)
is compact. Therefore, the function

[z, w) = xw

is uniformly continuous on D X (D-1C) (with respect to p), hence there
exists an # > 0 and such that

(2) plrw, z'w) < e
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for all z € D with p(z, 2') <% and all we D71C. Let 6 > 0 be smaller
than %, £ and such that the set

U= {x;zeS and p(z, 2') < 6}

is contained in D. Let z be an arbitrary point of U and w be an arbitrary
point of S. If neither of aw, 2'w is in C, then by (1}, p(aw, z'w) < &. If
one or both of 2w, 'wis in C, then w e D*C, so that by (2), p(zw, z'w) <e.
Thus d,(z,2') < eforallz € S with p(z, ') < d andsince 6 < ¢, d(z, 2') <&
for all 2 € S with p(z, 2') < . Thus 4 generates the topology of S.

THEOREM 3.3. There exists a metric d for S such that

d(xz, yz) = d(z, y)
for all z,94,2€S.

Proor. Let X be the one point compactification of S (X is a topological
space, not a semigroup). By 3.1, there exists a metric p, generating the
topology of X. For each ¢ > 0, there exists a compact subset C of S such
that p(2, 0) < 4e for all ze S~ C. Then p(z,y) < e forallz, ye S~ C.

Thus the restriction of p to S X S is a metric for S satisfying the
hypotheses of 3.2, hence there is a metric 4 for S such that d(xz, yz) < d{z, y)
for all z,9,2¢€S.

4. The existence of a right invariant integral on a left simple
semigroup

Throughout 4, S will be a separable metrizable locally compact semi-
group with the properties (A) and (B). It is assumed that S is not
compact and that Sz = S for all 2 € S. It is shown (4.13) that there exists
a right invariant integral for S. In 5, the condition Sz = S will be replaced
by the minimal ideal condition, described in the introduction. The as-
sumption that S is not compact is justified because of Rosen’s proof of the
existence of a right invariant integral for a compact semigroup satisfying
a minimal ideal condition.

Denote by € the collection of all non-empty compact subsets of S.
Let @ denote the collection of all finite sequences of members of €. (For
each sequence & = S, -+, S, of &, repetitions are allowed among the
S,’s. Sequences with no terms are not admitted; i.e. it is required that
s=1) If 2,8 and #=R,, -, R,, ¥ =5, S,, then &
denotes the sequence R, -, R,, S;,---, S,.

A relation F is defined on & as follows. We let

Rl:"':Rr}-Sl:"-:Su

if there exist elements z,, -+, z,, %, ", ¥, €S such that
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r 8
U R DU Sy
fm=1 jml

and S,y -+, S,y," are mutually disjoint. Clearly, this relation does not
depend on the order in which the R/'s are written or the S,’s are written.

THEOREM 4.1. I} P+ 2 and R+ P, then P53 2.

ProofF. Let #=P,,-+ -, P,, 2=0,,***,Qp, #=R;,*++, R, and
&F =8;,---,S,. Let u,,v;, %, y,€S be such that

b4 a
U Pa* DU Qo7
i=1 i=1
with the terms on the right mutually disjoint and
U R DU Sigi
k=1 (]

with the terms on the right mutually disjoint. Let C be a compact set
containing Q,v;?, S,y;* for all §, I. By 2.4, there exist elements ¢, be S
such that Ca=' does not intersect Cb~1, Then

Qy(av,)t = (Q,v7")a" C Ca™,
Siby) ™t = (S,yy)p7 CChY,
hence @;(av;)~! and S,(by,)* are disjoint for all 7, /. Since

» ? ¢
‘L_Jl Pi(au)t = U1 (Put)at D,U1 (Qsv5V)a?

= U 0s(an)

and similarly

U Ri (b)) D U S, (09:) 7%,
k=1 k=1

if follows immediately that % F 2%.
THEOREM 4.2. Z | Z.

ProOF. (i) When £ has a single term C, then since Cx~1 D Cz-! for
any x €S, the theorem is trivial in this case.

(ii) When # = R,, -, R,, with » > 1, then by (i), R, F R, for all 4,
hence by 41 Ry, -, R, FR,, -+, R,.

We now define a relation > on & as follows: we put

Az > P,
if there exists a # € & such that
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AP & SFP.

Clearly, if #,, &, are rearrangements of # and &, then Z > & if, and
only if, #, > ¥,.

By 42, 2> A.

THEOREM 4.3. If Z ¢ &L, then & > &.

PrOOF. Let ZF & and let L e@.
By 4.1 and 4.2, P} S P so that Z > &.

THEOREM 4.4. The relation > 1s transitive.

ProoF. Let Z > & and & > 7. Take #, 2 such that #2 + P and
SLIVT 2. By 4.1, RPFS 2 FPT 2, hence #PF 2+ T PF 2, so that
2>T.

THEOREM 4.5. If # > 2 and R > &, then PR > 4.

Proor. Let &/, # be such that o } 9o and #F + FS%B. By 4.1,
PARB V¢ 94 S B, hence PRARF QS A B, so that PR > 3.

THEOREM 4.6. If PR > 2K, then P > 2.

Proor. Let S be such that RS + 2R,
Then 2 > 2.

THEOREM 4.7. If PR > 2% and & > R, then P > 9.
ProoF. By 4.5, RS > 25 R, hence PRYS > 2R, so that by

4.6, 7 > 4.
LEMMA 4.8. There do not exist compact sets Cy, - -+, C, and elements
Zy, -, %, of S such that Cyai’,---, C,x,' are mutually disjoint and

v, Cx7t is properly contained in JP_, C,.

ProoF. Suppose such sets C; do exist. Let 4 be a metric for S such
that d(zz, yz) < d(z, y) forallz, y, z € S. For each 8 > 0 and each compact
subset D of S, let u,(D) denote the minimum number of sets with diameter
less than 4 that are required to cover D.

Let # > 0 be such that C,z;?, C,z;* have a distance > # for all 7 7§
and there is a point of {J%, C, with distance greater than # from every
C.x7l Let

—

and let 4,,---, A, be sets with diameters less than n covering Ui C,.
There is at least one 4, not intersecting |J%., C,x;*. Also, no 4, intersects
more than one C,z;!. Let &, be the collection consisting of all the 4,’s
intersecting C,z71. Put
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B, = {Azx; A B}

Then, the collection

»

2= %,

i=1
covers |J7., C; and & contains fewer than g sets. Since d(zz, y2) < d(z, y)
for all z,y,z¢€S, the diameter of each set in # is less than %. Thus
#y(U2, C;) < ¢; a contradiction.

THEOREM 4.9. I} C €€, we never have R > XC.

Proor. Suppose # > #C and let & be such that 2P #PC. Let
RP = R,, -, R, and let z,," ", 2,, 91, ", ¥,, ¥y €S be such that

r r
UR#'DCytu Ryt
Y]l i=1
and the sets on the right are mutually disjoint. For each 7, let u; €S be
such that u,z; = y,. Put S; = R,z;. Then each S, is compact and S;u;* =
(R4 = R,y; . Thus, the sets S,%;! are mutually disjoint and their
union is properly contained in (], S,. This contradicts 4.8.

THEOREM 4.10. Let @ be a countable, infinite collection of non-empty
compact subsets of S.

There exists a non-negative, nom-trivial real-valued function A on 2
such that for all sequences 2 =R,,- -, R,, ¥ =08,;,:+-, S, in 2 with
R > &, it is always true that

0 SAR) 2 34(5).

PRrOOF. Let
2= {Clr Cy, - }
and put
Dp={Cp,-" " Ca}
Define A(C,) = 1.
In order to define A(C,,,) we suppose that A has already been defined
on 2, in such a way that (1) is satisfied, whenever £ > & and R,, R, e 2,,
for all 7, 4. Put

t »
« = sup ¢! [‘z A(F)— 3 A(E‘)} ,
=] $=1
the supremum being taken over all
Ey + 4 Ey, Cogar* Coa > Fy, o0, Fy,
where p =0, ¢=1,¢=1, C,,, is repeated ¢ times and E,, F,;e 2,.
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Let
. 4 :
p=intq [ 3AE) - 3 AF)).
the infimum being taken over all
EI'“"ED> Fl!“':Ft» Cn+1»”‘ncn+l’

where p=1,¢=0,9 =1, C,,, is repeated g times and E,, F,e2,. If
there do not exist any such sets E,, F,, put 8 = «. Now § = «, because if

Ey,++ E,>F,,++F, Chpn,**+Cpriy
gives an approximation for g, while
Ei» -, E;,, Cots ' "% Cu+l >~ F;, e, F:/

gives an approximation for « (C,,, being repeated ¢’ times), then, denoting
the sequence of Es by &, F,s by &, etc. and a sequence of & C,_,’s by
%:, one has by 4.5

& E&>F - FC,p,
where £ is repeated ¢’ times and &% ¢’ times. Similarly
& 8Cy >F - F,
where &’ is repeated g times and %’ ¢ times. Hence by 4.5 and 4.6
EEEE - E>F - FF - F,

therefore
» »’
9’{_21 R(E;)-H‘Zl A(EY})
t ¢
2 ¢ 3 UF)+q 3 HF),
so that 8 = a.

Now define A(C,,;) = «. It remains to prove that (1) is satisfied,
whenever # > % and R,, R;e D, , for all 7, §. If # and & consist entirely
of C,.,'s, then by 4.9, »r = s and (1) is trivially satisfied. If %2 consists
entirely of C,,,’s but & does not, then by 4.9, £ has more C,,,’s than
&; by a repeated application of 4.6, one can remove all the C,,’s from &
and an equal number from #; (1) now follows from A(C,,;) =« If &
consists entirely of C,,’s but & does not, one can assume that the number
of C,.,’s in & is greater than the number in %, because otherwise (1) is
trivially true; all the C,,,’s can now be removed from # and an equal
number from %#; (1) now follows from A(C,,;) =< 8. If neither # nor &
consists entirely of C,,,’s, one can remove an equal number of C,,,’s
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from each until one of them has no C,,’s; (1) then follows from
a=4i(C,) =B
This completes the proof.

LeEmMMA 4.11. If A is a countable subset of S and D is a countable collection
of compact subsets of S, then there exists a countable collection F of compact
sets such that

i) 2C#,

(ii) for every Ce F and every ac A, Ca™' e F, and

(iii) for all C, DeF, CuDeF and CnDeXF.

ProOF. Define a string to be a finite sequence P, - - -, P, of symbols
such that each P, is either a member of &, a symbol a-1, where ae 4,
or one of the symbols U, N, (, ). A string & will be called a word if there
exists a finite sequence

Py, Py, Py =P

of strings such that (i) &, consists of a member of 2 and (ii) for each ¢ > 1,
2, is either a member of @ or has one of the forms

Ral, (R) v (F), (&) 0 (),

where ae€A and %, & are strings that precede &, in the sequence
Py, ... P,.

Let & consist of all (compact) subsets of S that correspond to words.
Since the number of words is countable, & is countable. % evidently has
the required properties.

THEOREM 4.12. If A is a countable dense subset of S, then there exists
a non-trivial regular Borel measure u on S such that

#(Ba™t) = u(B)
for every Borel set B of S and every a € A {u is a Borel measure in the sense
of Halmos [2, p. 223]. u(C) is therefore finite for every compact set C.)

ProoOF. Let & be a countable collection of compact subsets of S whose
interiors form a base for the topology of S. Since S is not compact & is
infinite. By 4.11, there exists a countable collection # of compact subsets
of S such that (i) # C&; (ii) for every CeF and ae 4, Cale F; and
{iii) for all C,De&F, CuDeZ and CnDeF. Put F,=F ~ {¢}.

By 4.10, there exists a non-negative non-trivial real-valued function
A on #, such that for all sequences

Ry, -+ R >S,, S,
with R;, R, e &, it is always true that
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0 SAR) 23 US).
Extend A to & by putting A(¢) = 0. By (1)
2) A(Ca™) = A(C)

forall Ce&# and all ae 4.
For each subset A of S, define

@) #(4) = inf 3 A(D,),

where the infimum is taken over all (finite or infinite) sequences D,, D,, - -+
of members of & such that 4 C |, Int (D,). Then 0 =< u(C) < <o for every
compact set C and u(C) = A(C) for all C € &, hence u is not trivial. If
A,, A,, -+ is a sequence of subsets of S, then clearly

WU 4,) S Sud,).

If 4 C B, then evidently u(4) < p(B). If A, B have a positive distance
and u(4 u B) < o, then take ¢ > 0 and members D,, D,, - - - of &# such
that 4 u BCJ,Int (D,) and >, A(D,) < p(4 v B)+¢; for each 7, let
E,, F, be disjoint members of & such that 4 n D,ClInt (E,) and
BnD,Clnt (F,); then D.nE,, D,nF,e# and AC|J,Int (D, n E,),
BC, Int (D, n F,), so that since D, > D,n E,, D,n F, and A(D,) =
AD,nE)+AD,nF,), p(AUB)+e>3 AD,nE)+ 3, AD,nF,) =
w(A)+u(B).

Since u(4 v B) is trivially = p(4)+u(B) when u(d v B) = o, we
have shown that, for all 4, B with a positive distance, u{4d u B) ==
#(A)-+p(B). Thus we have shown that u is a Carathéodory outer measure
[7, Chapter II]. Hence its restriction to the Borel sets is a Borel measure.
It follows immediately from (3), that ux is regular.

It remains only to prove that

(4) u(Ba~) = u(B)

for every Borel set B and every a € A.
To prove (4), suppose first of all that B is compact. Observe that for
each compact set C

u(C) = inf A(D),

where the infimum is taken over all D e F such that C CInt (D). Take
£>0 and let DeF be such that BClInt (D) and A(D) < u(B)+e.
Then Ba~1 C {Int (D)}a~2C Int (Da'), hence u(Ba=*) < A(Da™) = A(D) <
#(B)+e, so that
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(5) u(Ba~) < p(B).

To prove the inequality opposite to (5), take ¢ > 0 and let E e % be
such that BaClInt (E) and A(E) < u(Ba')+e Put V = Int (E).
The set (5~ V)a does not intersect B and, by 2.1, is closed. Let G e &
be such that BClInt (¢) and G does not intersect (S~ V)a. Then
Ga~' CInt (E), hence u(Ba1)+¢e > A(Ga™) = A(G) = u(B). Thus

(6) p(Ba=) Z u(B)

(4) now follows from (5) and (6), when B is compact. When B is not com-
pact, then, since u is regular, u(B) can be approximated by p(C), where
C is a compact set contained in B. Then Ca~1C Ba~l, so that (since
p(Cat) = u(C))
4(Ba) 2 u(B).

But we can also approximate u(Ba~!) by u(C), where C is a compact
set contained in Ba~l. Then u(C) = u{(Ca)a—'} and, since Ca C B and
p{(Ca)a=} = pu(Ca), it follows that

w(Ba) < p(B).
Thus (4) is true for an arbitrary Borel set.
THEOREM 4.13. There exists a right invariant integral v on S.

Proor. Let 4 be a countable dense subset of S. By 4.12, there exists
a non-trivial regular Borel measure g on S such that

u(Ba') = p(B)

for every Borel set B and every ae 4.
Let & denote the linear space of all real-valued continuous functions
on S with compact supports. For each fe %, define

) = [ fa)a
Then » is a positive, non-trivial Radon measure and for all s € 4,
v(fa) = v(f),

where f,(z) = f(za).

It remains to prove that
1) v(fe) = »(f)
for all ¢e€S and fe Z.

To prove (1), let p be a metric for S such that p(zz, 2y) = p(z, y) for

all z, y, z € S. (The existence of such a metric follows from 3.3). Take ¢ > 0.
Let E = spt f and C be a compact set with E contained in its interior.
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By 2.3, there exists a 6, > 0 and such that
@) Ex-1C Cgt

for all z € S with p(z, £) < d;. Let g be a continuous non-negative function
with compact support and such that g(x) = 1 for all x € C&%. Since f is
uniformly continuous, there exists a § such that 0 << é < é; and

v(@f (@) —f@) <e

for all z, 2’ € S with p(z, o') < 6. Let @ € 4 be such that p(a, ) < 6. Then,
since p(ra, &) =< pla, £) << 8 for all z e S, we have

m(Eg) = ¢,
where

7= sup [f(xa)— f(x&)].

But it follows from (2) that the supports of f; and f, are both contained
in C£-1, hence
€ = 1o~
so that
e Znp(g) = v(mg) 2 v(ifa—tel) = P(fa—7e)l
= p(fa) = ()| =p(f) —»(fe)l-

Thus »(f;) = »(f).

5. The main theorem

In this section we prove our main result concerning the existence of a
right invariant integral.

THEOREM 5.1. Let S be a separable, metrizable, locally compact semi-
group, with the properties (A) and (B) and possessing a left ideal K that is
contained in every other left ideal.

Then S admits a non-trivial right-snvariant integral.

ProoF. If S is compact, then K is a unique, mimimal left ideal; hence,
by Rosen’s theorem, S admits a non-trivial right-invariant integral. We can
assume therefore, that S is not compact.

K is certainly a semigroup and it has the properties

(1) KzDK
for all ze S and
(2) Kz =K

for all z e K. Since Sx = K when z e K, it follows from 2.1 that K is a
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closed subset of S. Then K (regarded as a metric semigroup) is locally
compact and separable and it has the properties (A) and (B). Consequently,
by 4.13, there is a right-invariant integral » for K. Let # denote the linear
space of all real-valued continuous functions on S with compact supports.
For each fe &, let f* denote the restriction of f to K and define

u(f) = »(f*).
Then u is a positive Radon measure. Since, to every function g on K with

compact support, there corresponds an f e & with f* = g, it follows that
4 is non-trivial. It remains to prove that

@) ulfe) = u(f)

for all £ S and fe &
When ¢ e K, it is sufficient for the proof of (3) to show that

() (f)* = ().

because 4.13 shows that »{(f*);} = »(f*).
Now, for all x e K

(fo)* (@) = [e(x) = f(xé) = [*(@&)=(F*)(2),

so that (4) is true. When £ ¢ K, let 7 be an element of K; then, since K& D K,
there exists an element { of K with ££& = 5; hence

u(f) = plty) = p{fe)e} = ulfe)-

so that (1) is also true when & ¢ K.
Thus g is a right-invariant integral.
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