ON EXPANDING LOCALLY FINITE COLLECTIONS

LAWRENCE L. KRAJEWSKI

Introduction. A space X is *m*-expandable, where *m* is an infinite cardinal, if for every locally finite collection $\{H_{\alpha} | \alpha \in A\}$ of subsets of X with $|A| \leq m$ (cardinality of $A \leq m$) there exists a locally finite collection of open subsets $\{G_{\alpha} | \alpha \in A\}$ such that $H_{\alpha} \subseteq G_{\alpha}$ for every $\alpha \in A$. X is expandable if it is *m*-expandable for every cardinal *m*. The notion of expandability is closely related to that of collectionwise normality introduced by Bing [1]. X is collectionwise normal if for every discrete collection of subsets $\{H_{\alpha} | \alpha \in A\}$ there is a discrete collection of open subsets $\{G_{\alpha} | \alpha \in A\}$ such that $H_{\alpha} \subseteq G_{\alpha}$ for every $\alpha \in A$. Expandable spaces share many of the properties possessed by collectionwise normal spaces. For example, an expandable developable space is metrizable and an expandable metacompact space is paracompact.

In § 2 we study the relationship of expandability with various covering properties and obtain some characterizations of paracompactness involving expandability. It is shown that \aleph_0 -expandability is equivalent to countable paracompactness. In § 3, countably perfect maps are studied in relation to expandability and various product theorems are obtained. Section 4 deals with subspaces and various sum theorems. Examples comprise § 5.

Definitions of terms not defined here can be found in [1; 5; 16].

1. Expandability and collectionwise normality. An expandable space need not be regular (Example 5.6), and a completely regular expandable space need not be normal (W in Example 5.3). However, it is not difficult to show that a normal expandable space is collectionwise normal. In fact, we have the following theorem.

THEOREM 1.1 (Katětov [12]). A T_1 -space X is normal and expandable if and only if it is collectionwise normal and countably paracompact.

It is not known whether a collectionwise normal Hausdorff space is countably paracompact. Using Theorem 1.1 one can see that this is equivalent to asking whether a collectionwise normal Hausdorff space is expandable.

In [1] Bing showed that collectionwise normality lies strictly between paracompactness and normality and that a collectionwise normal developable space is metrizable. A space X is *developable* if there is a sequence $\mathscr{G}_1, \mathscr{G}_2, \ldots$ of open covers such that, for any $x \in X$ and any open set U containing x, there is an integer n such that $St(x, \mathscr{G}_n) = \bigcup \{G \in \mathscr{G}_n | x \in G\} \subseteq U$. A regular

Received January 9, 1970 and in revised form, August 5, 1970.

developable space is called a *Moore* space. Analogously we have the following theorem.

THEOREM 1.2. An expandable developable Hausdorff space is metrizable.

Proof. We will show later (Corollary 2.9.1) that an expandable F_{σ} -screenable space is paracompact. Since a developable space is F_{σ} -screenable [1], our result follows.

Theorem 1.2 is a generalization of a result of Borges [2, Corollary 2.15] (see Theorem 3.9).

A well-known problem in topology is whether a normal Moore space is metrizable. If Theorem 1.2 is true with expandability replaced by \aleph_0 -expandability, then the problem would be solved since a normal Moore space is \aleph_0 -expandable.

Question. Is an \aleph_1 -expandable Moore space metrizable?

2. Relation to covering properties.

Definition 2.1 (Morita [20]). Let m be an infinite cardinal. A space X is *m*-paracompact if every open cover of cardinality $\leq m$ has a locally finite open refinement.

Remark 2.2. Every paracompact space is *m*-paracompact and \aleph_0 -paracompactness is just countable paracompactness.

Remark 2.3. It is clear that X is *m*-expandable if and only if for every locally finite collection of *closed* subsets $\{F_{\alpha} | \alpha \in A\}$ with $|A| \leq m$ there exists a locally finite collection of open sets $\{G_{\alpha} | \alpha \in A\}$ such that $F_{\alpha} \subseteq G_{\alpha}$ for each $\alpha \in A$.

THEOREM 2.4. If X is m-paracompact, then X is m-expandable.

Proof. Let $\mathscr{F} = \{F_{\alpha} | \alpha \in A\}$ be a locally finite collection of closed subsets of the *m*-paracompact space X with $|A| \leq m$. Let Γ be the collection of all finite subsets of A and define

$$V_{\gamma} = X - \bigcup \{F_{\alpha} \mid \alpha \notin \gamma\}, \qquad \gamma \in \Gamma.$$

Now V_{γ} is open, V_{γ} meets only finitely many elements of \mathcal{F} , and $\{V_{\gamma} | \gamma \in \Gamma\}$ covers X. Since $|\Gamma| \leq m$, there is a locally finite open refinement

$$\mathscr{W} = \{ W_{\delta} | \delta \in \Delta \}.$$

Set

$$U_{\alpha} = \operatorname{St}(F_{\alpha}, \mathscr{W}) = \bigcup \{ W_{\delta} \in \mathscr{W} | W_{\delta} \cap F_{\alpha} \neq \emptyset \}, \quad \alpha \in A.$$

Clearly $F_{\alpha} \subseteq U_{\alpha}$ and U_{α} is open for each $\alpha \in A$. We claim that $\{U_{\alpha} | \alpha \in A\}$ is locally finite. Each $x \in X$ belongs to an open set 0 which meets only finitely many members of \mathcal{W} . Thus $0 \cap U_{\alpha} \neq \emptyset$ if and only if $0 \cap W_{\delta} \neq \emptyset$ and

 $W_{\delta} \cap F_{\alpha} \neq \emptyset$ for some $\delta \in \Delta$. But W_{δ} , since it is contained in some V_{γ} , meets only finitely many F_{α} . Thus $\{U_{\alpha} | \alpha \in A\}$ is locally finite.

COROLLARY 2.4.1. If X is paracompact, then X is expandable.

The converse to Theorem 2.4 is false. In fact, there is an expandable normal Hausdorff space which is not \aleph_1 -paracompact (Example 5.1). However, one has the following theorem.

THEOREM 2.5. X is \aleph_0 -expandable if and only if X is countably paracompact.

Proof. One implication follows from Theorem 2.4. The other follows from [15, Theorem 3, the proof that (i) \Rightarrow (a)].

COROLLARY 2.5.1. An expandable space is countably paracompact.

There is a normal countably paracompact Hausdorff space which is not \aleph_1 -expandable (Example 5.2).

Mansfield [15] proved Theorem 2.5 under the assumption that X was normal. We have the following analogue of Theorem 2.5.

THEOREM 2.6. X is countably metacompact if and only if for every locally finite countable collection $\{F_i | i = 1, 2, ...\}$ of closed subsets of X there is a point-finite collection of open subsets $\{G_i | i = 1, 2, ...\}$ such that $F_i \subseteq G_i$ for each i.

Proof. A simple modification of the proofs of Theorems 2.4 and 2.5.

It is clear that a space would be expandable if it had the property that every locally finite collection is finite. Thus we state the following theorem and its corollary.

THEOREM 2.7. The following are equivalent for a space X:

- (a) X is countably compact;
- (b) Every locally finite collection of subsets is finite;
- (c) Every locally finite disjoint collection of subsets is finite;
- (d) Every locally finite countable collection of subsets is finite;
- (e) Every locally finite countable disjoint collection of subsets is finite.

Proof. This constitutes in proving that $(e) \Rightarrow (a) \Rightarrow (b)$; both implications are easy.

COROLLARY 2.7.1. A countably compact space is expandable.

Call a space *semiparacompact*[†] if each of its open covers has a σ -locally finite open refinement. If \mathcal{H} is a collection of subsets, then $\mathcal{H}^* = \bigcup \{H | H \in \mathcal{H}\}$.

Michael showed [17] that for regular spaces, paracompactness is equivalent to semiparacompactness.

[†]This terminology as well as that in Definition 3.1 were suggested by the referee.

THEOREM 2.8. X is paracompact if and only if X is \aleph_0 -expandable and semiparacompact.

Proof. Only one implication requires proof. Let $\mathscr{U} = \{U_{\alpha} | \alpha \in A\}$ be an open cover and $\mathscr{V} = \bigcup_{i=1}^{\infty} \mathscr{V}_i$ a σ -locally finite open refinement where $\mathscr{V}_i = \{V_{\alpha,i} | \alpha \in A_i\}$. $\{\mathscr{V}_i^* | i = 1, 2, \ldots\}$ is a countable open cover, and hence there is a locally finite open refinement $\{G_i | i = 1, 2, \ldots\}$, where we may assume that $G_i \subseteq \mathscr{V}_i^*$ for each *i*. Then $\{G_i \cap V_{\alpha,i} | \alpha \in A_i, i = 1, 2, \ldots\}$ is a locally finite open refinement of \mathscr{U} .

We can weaken the condition of semiparacompactness to obtain the following theorem.

THEOREM 2.9. The following are equivalent for a T_1 -space X:

- (a) X is paracompact;
- (b) X is expandable and every open cover of X has a σ-locally finite closed refinement;
- (c) X is expandable and every open cover of X has a σ -locally finite refinement.

Proof. (a) \Rightarrow (b) and (b) \Rightarrow (c). This is clear.

(c) \Rightarrow (a). Let $\mathscr{U} = \{U_{\beta} | \beta \in B\}$ be an open cover of X and $\mathscr{H} = \bigcup_{i=1}^{\infty} \mathscr{H}_i$ a σ -locally finite refinement where $\mathscr{H}_i = \{H_{\alpha,i} | \alpha \in A_i\}$ for each i. Since X is expandable, for each i there is a locally finite open collection $\{G_{\alpha,i} | \alpha \in A_i\}$ such that $H_{\alpha,i} \subseteq G_{\alpha,i}$ for every $\alpha \in A_i$. Since \mathscr{H} is a refinement, each $H_{\alpha,i} \subseteq U_{\beta(\alpha,i)}$ for some $\beta(\alpha, i) \in B$. Let

$$W_{\alpha,i} = G_{\alpha,i} \cap U_{\beta(\alpha,i)}, \quad \alpha \in A_i, \quad i = 1, 2, \ldots,$$

and let

$$\mathscr{W}_i = \{W_{\alpha,i} | \alpha \in A_i\}, \quad i = 1, 2, \ldots$$

Then $\mathscr{W} = \bigcup_{i=1}^{\infty} \mathscr{W}_i$ is a σ -locally finite open refinement, and the result follows from Theorem 2.8.

In [16] McAuley showed that paracompactness is equivalent to collectionwise normality plus F_{σ} -screenability.

COROLLARY 2.9.1. A T₁-space X is paracompact if and only if X is expandable and F_{σ} -screenable.

Proof. Theorem 2.9 (b).

There is an \aleph_0 -expandable normal Hausdorff space which is F_{σ} -screenable but is not paracompact (Example 5.2).

The following definition is due to Worrell and Wicke [29].

Definition 2.10. A collection \mathcal{W} of point sets is finite at a point p if $p \in \mathcal{W}^*$ and only a finite number of elements of \mathcal{W} contain p.

A space is θ -refinable if for every open cover \mathscr{U} of X there exists an open refinement $\mathscr{V} = \bigcup_{i=1}^{\infty} \mathscr{V}_i$, where

(θ 1) \mathscr{V}_i is an open cover of X for each *i*, and

($\theta 2$) For each $p \in X$ there is an integer k such that \mathscr{V}_k is finite at p.

Clearly every metacompact space is θ -refinable.

Michael [18] and Nagami [24] showed that paracompactness is equivalent to collectionwise normality and metacompactness.

THEOREM 2.11. X is paracompact if and only if X is expandable and θ -refinable.

Proof (Modelled after Michael's proof in [18]). Only one implication needs proof. Let $\mathscr{W} = \{W_{\alpha} | \alpha \in A\}$ be an open cover of X and let $\mathscr{V} = \bigcup_{i=1}^{\infty} \mathscr{V}_i$ be an open refinement satisfying (θ 1) and (θ 2), where $\mathscr{V}_i = \{V_{\alpha,i} | \alpha \in A_i\}, i = 1, 2, \ldots$

We shall construct, for each *i*, a sequence $\{\mathscr{G}_{i,k} | k = 0, 1, ...\}$ of collections of open sets such that:

- (1) $\mathcal{G}_{i,k}$ is locally finite for each k,
- (2) Each element of $\mathscr{G}_{i,k}$ is a subset of some element of \mathscr{V}_i ,
- (3) If $x \in X$ is an element of at most *m* elements of \mathscr{V}_i , then $x \in \bigcup_{k=0}^m \mathscr{G}_{i,k}^*$,
- (4) Each $x \in \mathcal{G}_{i,k}^*$ belongs to at least k elements of \mathcal{V}_i .

Let $\mathscr{G}_{i,0} = \emptyset$. Suppose that $\mathscr{G}_{i,1}, \mathscr{G}_{i,2}, \ldots, \mathscr{G}_{i,n}$ were constructed and let us construct $\mathscr{G}_{i,n+1}$. Let \mathscr{B} be the family of all $B \subseteq A_i$ such that B has exactly n + 1 elements. Define

$$Y(B) = \left(X - \bigcup_{j=0}^{n} \mathscr{G}_{i,j}^{*}\right) \cap (X - \bigcup \{V_{\alpha,i} \in \mathscr{V}_{i} \mid \alpha \notin B\}).$$

Clearly Y(B) is closed and we claim that $\{Y(B) | B \in \mathscr{B}\}$ is locally finite (in fact, discrete).

Case 1. *x* belongs to n + 1 or more elements of \mathscr{V}_i . Choose n + 1 elements, say, with $\alpha = \alpha(1), \alpha(2), \ldots, \alpha(n + 1)$. Then $\bigcap_{j=1}^{n+1} V_{\alpha(j),i}$ is a neighbourhood of *x* which meets Y(B) only if $B = \{\alpha(1), \alpha(2), \ldots, \alpha(n + 1)\}$.

Case 2. x belongs to less than n + 1 elements of \mathscr{V}_i . By (3), $x \in \bigcup_{j=0}^n \mathscr{G}_{i,j}^*$ which is disjoint from each Y(B).

Then $\{Y(B) | B \in \mathscr{B}\}$ is a locally finite collection of closed sets; thus, by the expandability of X, there is a locally finite collection of open sets $\{H(B) | B \in \mathscr{B}\}$ such that $Y(B) \subseteq H(B)$ for $B \in \mathscr{B}$. Now $Y(B) \subseteq V_{\alpha,i}$ for each $\alpha \in B$. Let

$$T(B) = H(B) \cap (\cap \{V_{\alpha,i} | \alpha \in B\}).$$

Then $Y(B) \subseteq T(B)$ for each $B \in \mathscr{B}$. Define

$$\mathscr{G}_{i,n+1} = \{T(B) \mid B \in \mathscr{B}\}.$$

Then (1) follows since $T(B) \subseteq H(B)$ and $\{H(B) | B \in \mathscr{B}\}$ is locally finite. (2) and (4) follow since $T(B) \subseteq \bigcap \{V_{\alpha,i} | \alpha \in B\}$. To see (3), let $x \in X$ be such that x belongs to no more than n + 1 elements of \mathscr{V}_i . If $x \in \bigcup_{j=0}^n \mathscr{G}_{i,j}^*$, then the result follows. If $x \notin \bigcup_{j=0}^n \mathscr{G}_{i,j}^*$, then $x \in Y(B)$ for some $B \in \mathscr{B}$. Now consider $\mathscr{G} = \bigcup_{i=1}^{\infty} (\bigcup_{j=0}^{\infty} \mathscr{G}_{i,j})$. Since \mathscr{V} satisfies ($\theta 2$), \mathscr{G} is an open cover which refines \mathscr{V} . (1) implies that \mathscr{G} is σ -locally finite, which together with expandability implies that X is paracompact by Theorem 2.8.

COROLLARY 2.11.1. X is paracompact if and only if X is metacompact and expandable.

COROLLARY 2.11.2. X is m-paracompact if and only if X is m-metacompact and m-expandable.

Proof. Making the obvious definition of *m*-metacompactness, we proceed as in the proof of Theorem 2.11.

Corollary 2.11.1 fails if expandability is replaced by \aleph_0 -expandability. In fact, there is a normal \aleph_0 -expandable metacompact Hausdorff space which is the countable union of closed paracompact subspaces but is not paracompact (Example 5.2). However, we do have the following result.

THEOREM 2.12. If X is an expandable T_1 -space and $X = \bigcup_{i=1}^{\infty} F_i$, where each F_i is closed and paracompact, then X is paracompact.

Proof. The proof follows immediately from the following lemma and Corollary 2.9.1.

LEMMA 2.13. If $X = \bigcup_{i=1}^{\infty} F_i$ and each F_i is closed and paracompact, then X is F_{σ} -screenable.

Proof. Let $\mathscr{U} = \{U_{\alpha} | \alpha \in A\}$ be an open cover of X, where X satisfies the hypothesis of the lemma. Then $\mathscr{U}_{i} = \{U_{\alpha} \cap F_{i} | \alpha \in A\}$ is an open cover of F_{i} . Thus there is a σ -discrete closed (in F_{i} and hence in X) refinement of \mathscr{U}_{i} , namely $\mathscr{F}_{i} = \bigcup_{k=1}^{\infty} \mathscr{F}_{i,k}$, where $\mathscr{F}_{i,k}$ is discrete in F_{i} and hence in X. Thus $\mathscr{F} = \bigcup_{i=1}^{\infty} (\bigcup_{k=1}^{\infty} \mathscr{F}_{i,k})$ is a σ -discrete closed refinement of \mathscr{U} .

3. Mapping and product spaces. By a map we mean a continuous function. Although collectionwise normality is preserved under closed maps [**22**], closed maps do not always preserve expandability (Example 5.3). If the preimages of points are restricted, then we do preserve expandability.

Definition 3.1. A countably perfect^{††} map $f: X \to Y$ is a closed surjective map such that $f^{-1}(y)$ is countably compact for each y in Y.

First we state two lemmas without proofs.

LEMMA 3.2. Let f be a map from X onto Y. If $\mathscr{H} = \{H_{\alpha} | \alpha \in A\}$ is a locally finite collection of subsets of Y, then $f^{-1}(\mathscr{H}) = \{f^{-1}(H_{\alpha}) | \alpha \in A\}$ is a locally finite collection in X.

LEMMA 3.3 (Okuyama [25]). Let f be a countably perfect map from a space X onto Y. If $\{F_{\alpha} | \alpha \in A\}$ is a locally finite collection of subsets of X, then $\{f(F_{\alpha}) | \alpha \in A\}$ is a locally finite collection in Y.

^{††}It should be noted that the term "quasi-perfect" is also used.

THEOREM 3.4. Let f be a countably perfect map from a space X onto Y. Then X is m-expandable if and only if Y is m-expandable.

Proof. Suppose that X is *m*-expandable and $\mathscr{F} = \{F_{\alpha} | \alpha \in A\}$ is a locally finite collection of subsets of Y with $|A| \leq m$. Then $f^{-1}(\mathscr{F}) = \{f^{-1}(F_{\alpha}) | \alpha \in A\}$ is a locally finite collection of subsets of X with $|A| \leq m$, and so there is a locally finite collection $\{G_{\alpha} | \alpha \in A\}$ of open subsets of X such that $f^{-1}(F_{\alpha}) \subseteq G_{\alpha}$ for each $\alpha \in A$. Set $V_{\alpha} = Y - f(X - G_{\alpha}), \alpha \in A$. It is easy to see that $F_{\alpha} \subseteq V_{\alpha}$; we show that $\{V_{\alpha} | \alpha \in A\}$ is a locally finite collection of open sets. V_{α} is open since f is a closed map. Now $V_{\alpha} \subseteq f(G_{\alpha})$, and Lemma 3.3 applies.

Now assume that Y is *m*-expandable and $\mathscr{F} = \{F_{\alpha} | \alpha \in A\}$ is a locally finite collection of subsets of X with $|A| \leq m$. By Lemma 3.3, $\{f(F_{\alpha}) | \alpha \in A\}$ is also locally finite. Hence there is a locally finite collection of open sets $\{G_{\alpha} | \alpha \in A\}$ such that $f(F_{\alpha}) \subseteq G_{\alpha}$ for each $\alpha \in A$. Then

$$F_{\alpha} \subseteq f^{-1}(f(F_{\alpha})) \subseteq f^{-1}(G_{\alpha})$$

and $\{ f^{-1}(G_{\alpha}) | \alpha \in A \}$ is an open locally finite collection by Lemma 3.2.

COROLLARY 3.4.1. If X is countably paracompact and f is a countably perfect map from X onto Y, then Y is countably paracompact.

A space is *m*-compact if every open cover of cardinality $\leq m$ has a finite subcover.

LEMMA 3.5 (Hanai [6]). If Y is m-compact and X is a space such that each of its points has a neighbourhood base of power $\leq m$, then the projection map $\pi_X: X \times Y \to X$ is a closed map.

THEOREM 3.6. Let m and n be infinite cardinals. If X is an m-expandable space and each of its points has a neighbourhood base of power $\leq n$ and if Y is an *n*-compact space, then $X \times Y$ is m-expandable.

Proof. By Lemma 3.5, $\pi_X: X \times Y \to X$ is a closed map, and since $\pi_X^{-1}(x)$ is *n*-compact (and hence countably compact), $X \times Y$ is *m*-expandable by Theorem 3.4.

COROLLARY 3.6.1. If X is an m-expandable first countable space and Y is a countably compact space, then $X \times Y$ is m-expandable.

COROLLARY 3.6.2. If X is m-expandable and Y is a compact space, then $X \times Y$ is m-expandable.

In regard to Corollaries 3.6.1 and 3.6.2, it should be mentioned that the product of expandable spaces need not be expandable (Example 5.4).

THEOREM 3.7. Let $f: X \to Y$ be a closed map of a T_1 -space X onto Y such that the boundary of $f^{-1}(y)$ is countably compact for each y in Y. If X is m-expandable, then so is Y. **Proof.** Ishii [10] has shown that if f is a map from X onto Y with the stated properties, then there is a closed subset F of X and a closed map g from F onto Y such that $g^{-1}(y)$ is countably compact for each y in Y. Since m-expandability is hereditary with respect to closed subsets (Theorem 4.1), Y is m-expandable by Theorem 3.4.

Morita has introduced a class of spaces which he terms M-spaces [19]. He gave the following characterization.

THEOREM 3.8. X is an M-space if and only if there is a countably perfect map of X onto a metric space Y.

Using the fact that every metric space is paracompact [28] and thus expandable (Corollary 2.4.1), we have the following theorem.

THEOREM 3.9. Every M-space is expandable.

The converse to Theorem 3.9 fails (Example 5.4).

4. Subspaces and sum theorems.

THEOREM 4.1. Each closed subset of an m-expandable space is m-expandable.

Subspaces of a compact space need not be expandable (Example 5.5). However, we do have the following theorem.

THEOREM 4.2. X is hereditarily m-expandable if and only if every open subset is m-expandable.

Proof. Suppose that each open subset of X is *m*-expandable. Let $B \subseteq X$ and let $\mathscr{H} = \{H_{\alpha} | \alpha \in A\}$ be a locally finite (in B) collection of subsets of B with $|A| \leq m$. Define

 $V = \{x \in X | x \text{ belongs to an open set which intersects only finitely many } \}$

members of \mathscr{H} .

Then V is open and $B \subseteq V$. Since V is *m*-expandable, there is a locally finite (in V and hence in B) collection $\{G_{\alpha} | \alpha \in A\}$ of open subsets of V such that $H_{\alpha} \subseteq G_{\alpha}$ for every $\alpha \in A$. $\{G_{\alpha} \cap B | \alpha \in A\}$ is the desired collection.

THEOREM 4.3. Let \mathcal{U} be a disjoint open cover of X. Then X is m-expandable if and only if each element of \mathcal{U} is m-expandable.

THEOREM 4.4. Suppose that $\{F_{\alpha} | \alpha \in A\}$ is a locally finite closed cover of a space X. Then X is m-expandable if and only if every F_{α} is m-expandable.

Proof. One implication follows from Theorem 4.1. To prove the other, let Z be the topological disjoint sum of the F_{α} . Then Z is *m*-expandable by Theorem 4.3 since each F_{α} is open and closed in Z. Let $f: Z \to X$ denote the natural map. Then f is a countably perfect map, and so X is *m*-expandable by Theorem 3.4.

COROLLARY 4.4.1. If $\{F_{\alpha} | \alpha \in A\}$ is a locally finite closed cover of a space X such that each F_{α} is countably paracompact, then X is countably paracompact.

Hodel [9] showed that if Q is a class of topological spaces which satisfies the following two properties:

- (1) Q is hereditary with respect to closed subsets, and
- (2) if $\{F_{\alpha} \mid \alpha \in A\}$ is a locally finite closed cover of X with each F_{α} in Q, then X is in Q,

then various sum theorems hold for Q. Since we have Theorems 4.1 and 4.4, we obtain the following two theorems.

THEOREM 4.5. Let \mathscr{U} be a σ -locally finite open cover of a space X such that the closure of each element of \mathscr{U} is m-expandable. Then X is m-expandable.

THEOREM 4.6. Let X be a regular T_1 -space. If \mathscr{U} is a σ -locally finite open cover of X, each element of which is m-expandable and has compact boundary, then X is m-expandable.

5. Examples.

Example 5.1. An expandable completely normal Hausdorff space which is not \aleph_1 -paracompact.

Let Ω denote the first uncountable ordinal. Then $X = [0, \Omega)$ with the usual order topology is countably compact (hence expandable by Corollary 2.7.1) and completely normal. It is well known [3] that the open cover $\{[0, \alpha) | \alpha < \Omega\}$ has no open locally finite refinement.

Example 5.2. A normal \aleph_0 -expandable metacompact Hausdorff space which is the countable union of closed paracompact subspaces and is not \aleph_1 -expandable.

Let F denote the normal but not collectionwise normal space constructed by Bing in [1, Example G] where the underlying space P has cardinality \aleph_1 . In [18] Michael proved that a certain subset of F (which he called G) is metacompact and normal but not collectionwise normal. If we let

 $B_k = F_p \cup \{ f \in G | f(q) = 0 \text{ except for at most } k \text{ elements } q \text{ in } Q \},$ $k = 1, 2, \dots,$

then $G = \bigcup_{k=1}^{\infty} B_k$ and each B_k is a closed discrete subspace.

The collection $\{\{f\} \mid f \in F_p\}$ is a locally finite collection, of cardinality \aleph_1 , of subsets of F, and it cannot be expanded.

Example 5.3. An expandable Hausdorff space X, a closed map $f: X \to Y$ such that Y is not expandable.

Let $W = [0, \Omega] \times [0, \Omega)$ and $X = W \times N$, where N denotes the positive integers with the discrete topology. Since W is countably compact, X is expandable. However, Zenor [30] has displayed a closed map $f: X \to Y$ such that Y is not \aleph_0 -expandable.

Example 5.4. An expandable Hausdorff space X which is not an M-space and also such that $X \times X$ is not expandable.

Let X be the space in Sorgenfrey's example [27] (the reals with the "halfopen-interval" topology). Then X is paracompact and hence expandable. If X were an M-space, then $X \times X$ would be paracompact, which it is not.

In $X \times X$, the collection $\{\{(x, -x)\} | x \in X\}$ is locally finite, yet one can show by a category argument that there does not exist a locally finite collection of open sets $\{G_x | x \in X\}$ such that $(x, -x) \in G_x$ for each $x \in X$.

Example 5.5. A compact Hausdorff space with a subspace that is not expandable.

Let X be the Tychonoff plank, $[0, \Omega] \times [0, \omega]$, and let G be the subspace $X - \{(\Omega, \omega)\}$. Then G is not \aleph_0 -expandable [7].

Example 5.6. An expandable Hausdorff space which is not regular.

Let $Y = [0, \Omega] \times [0, \Omega] - \{(\Omega, \Omega)\}$ and let $F = \{\Omega\} \times [0, \Omega)$. If X = Y/F, then X is countably compact (and hence expandable) but not regular.

Acknowledgements. I would like to thank Professor George Henderson for his advice and encouragement and the referee for his many helpful comments and suggestions.

References

- 1. R. H. Bing, Metrization of topological spaces, Can. J. Math. 3 (1951), 175-186.
- 2. C. J. R. Borges, On metrizability of topological spaces, Can. J. Math. 20 (1968), 795-804.
- 3. J. Dieudonné, Une généralisation des espaces compacts, J. Math. Pures Appl. (9) 23 (1944), 65-76.
- 4. C. H. Dowker, On countably paracompact spaces, Can. J. Math. 3 (1951), 219-224.
- 5. R. Engelking, Outline of general topology (Interscience, New York, 1968).
- 6. S. Hanai, Inverse images of closed mappings. I, Proc. Japan Acad. 37 (1961), 298-301.
- 7. Y. Hayashi, On countably metacompact spaces, Bull. Univ. Osaka Prefecture Ser. A 8 (1959/60), 161-164.
- 8. R. W. Heath, Screenability, pointwise paracompactness and metrization of Moore spaces, Can. J. Math. 16 (1964), 663–670.
- 9. R. E. Hodel, Sum theorems for topological spaces, Pacific J. Math. 30 (1969), 59-65.
- 10. T. Ishii, On closed mappings and M-spaces. II, Proc. Japan Acad. 43 (1967), 757-761.
- 11. F. Ishikawa, On countably paracompact spaces, Proc. Japan Acad. 31 (1955), 686-687.
- 12. M. Katětov, Extension of locally finite coverings, Colloq. Math. 6 (1958), 145-151. (Russian)
- 13. J. Mack, On a class of countably paracompact spaces, Proc. Amer. Math. Soc. 16 (1965), 467-472.
- 14. Directed covers and paracompact spaces, Can. J. Math. 19 (1967), 649-654.
- 15. M. J. Mansfield, On countably paracompact normal spaces, Can. J. Math. 9 (1957), 443-449.
- L. F. McAuley, A note on complete collectionwise normality and paracompactness, Proc. Amer. Math. Soc. 9 (1958), 796-799.
- 17. E. A. Michael, A note on paracompact spaces, Proc. Amer. Math. Soc. 4 (1953), 831-838.
- 18. Point-finite and locally finite coverings, Can. J. Math. 7 (1955), 275-279.
- 19. K. Morita, Products of normal spaces with metric spaces, Math. Ann. 154 (1964), 365-382.
- 20. Paracompactness and product spaces, Fund. Math. 50 (1961/62), 223-236.
- 21. On closed mappings, Proc. Japan Acad. 32 (1956), 539-543.
- 22. K. Morita and S. Hanai, Closed mappings and metric spaces, Proc. Japan Acad. 32 (1956), 10-14.

LAWRENCE L. KRAJEWSKI

- 23. S. Mrówka, On local topological properties, Bull. Acad. Polon. Sci. Cl. III 5 (1957), 951-956.
- 24. K. Nagami, Paracompactness and strong screenability, Nagoya Math. J. 8 (1955), 83-88.
- 25. A. Okuyama, Some generalizations of metric spaces, their metrization theorems and product spaces, Sci. Rep. Tokyo Kyoiku Daigaku Sect. A 9 (1967), 60-78.
- 26. M. K. Singal and S. P. Arya, On m-paracompact spaces, Math. Ann. 181 (1969), 119-133.
- R. H. Sorgenfrey, On the topological product of paracompact spaces, Bull. Amer. Math. Soc. 53 (1947), 631–632.
- 28. A. H. Stone, Paracompactness and product spaces, Bull. Amer. Math. Soc. 54 (1948), 977–982.
- J. M. Worrell, Jr. and H. H. Wicke, Characterizations of developable topological spaces, Can. J. Math. 17 (1965), 820–830.
- 30. P. Zenor, On countable paracompactness and normality, Prace Mat. 13 (1969), 23-32.

The University of Wisconsin, Milwaukee, Wisconsin