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Petri map for rank two bundles with

canonical determinant

Montserrat Teixidor i Bigas

Abstract

We prove the Bertram–Feinberg–Mukai conjecture for a generic curve C of genus g and
a semistable vector bundle E of rank two and determinant K on C, namely we prove the
injectivity of the Petri-canonical map S2(H0(E)) → H0(S2(E)).

1. Introduction

Consider a generic curve of genus g. Classical Brill–Noether theory deals with the existence of line
bundles of a fixed degree d that possess a preassigned number of sections k traditionally denoted
by r +1. The loci of such line bundles L is a subvariety of the Picard scheme Picd(C) and is usually
denoted by W r

d .
A key role in the study of classical Brill–Noether theory is played by the Petri map. Fix a line

bundle L such that h0(C,L) = r + 1. Consider the map

H0(C,L) ⊗ H0(C,ω ⊗ L−1) → H0(C,ω).

The orthogonal to the image of this map is identified with the tangent space to W r
d at the point L.

For generic C and every L, this map is injective. This fact alone proves that W r
d is empty when its

expected dimension is negative and of expected dimension when non-empty. Moreover, its singular
locus is W r+1

d .
The most straightforward generalization of Brill–Noether theory to higher rank is to consider

the loci inside the moduli space of stable vector bundles of rank r and degree d that have at least
a given number k of sections. The equivalent of the Petri map is then

H0(C,E) ⊗ H0(C,ω ⊗ E∗) → H0(C,ω ⊗ E ⊗ E∗).

The vector space on the right-hand side is identified to the cotangent space to the moduli space of
vector bundles of fixed rank and degree (but variable determinant). As in the line bundle case, the
orthogonal to the image of this map is the tangent space at E to the locus of vector bundles with
k sections. These loci, though, do not enjoy most of the good properties of classical Brill–Noether
theory; in particular the Petri map is not injective for many stable vector bundles even on a generic
curve (see [Tei91a]).

On the other hand if one restricts to the case of rank two with fixed determinant the canonical line
bundle ω, one obtains the moduli space U(2, ω). Bertram, Feinberg and Mukai (cf. [BF98, Muk95])
introduced the loci Bk

2,ω of (semi)stable vector bundles E of rank two and determinant ω that have at
least k independent sections. They conjectured, based on some evidence for small genus, that these
loci would be well behaved. The object of this paper is to prove the part of this conjecture about
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non-existence and singularity. The question of existence was partially answered in our previous
work [Tei04] as well as in a work of S. Park.

We want to study the equivalent of the Petri map in this situation. When the rank is two and
the determinant

∧2 E ∼= ω, there is a natural identification of ω ⊗ E∗ ∼= E. Also, the tangent
space to U(2, ω) inside the moduli space of stable vector bundles of rank two and degree 2g − 2 can
be identified to the dual of H0(C,S2(E)) where S2(E) denotes the symmetric power of E and is
interpreted as a quotient of E ⊗ E. As

∧2 H0(E) maps to zero when passing to the quotient, we
can factor the map

H0(C,E) ⊗ H0(C,E) → H0(C,S2(E))
by moding out the original space H0(C,E) ⊗ H0(C,E) by

∧2 H0(E). One obtains a map that we
shall call the canonical Petri map or simply the Petri map when there is no danger of confusion:

S2H0(C,E) → H0(S2E).

Then the tangent space to Bk
2,ω at E is identified with the orthogonal to the image of this map.

Hence, its injectivity shows that the locus is empty when the expected dimension

ρ = ρk
2,ω = 3g − 3 −

(
k + 1

2

)
< 0,

of dimension exactly ρ when non-empty and singular only along Bk+1
2,ω . In particular, when ρ = −1,

the generic curve does not have a linear series with so many sections and the locus of curves where the
sections exist is expected to be a divisor of the moduli space of curves Mg. When g = 10 this divisor
provided the first counterexample to the slope conjecture (see [FP05]). For various values of k, g for
which ρ = −1, one can now obtain divisors in Mg that can provide information on the slope of Mg.

In addition, from work of Mukai [Muk01], these loci have been useful in studying which curves
are contained in K3 surfaces. For curves of small genus and for particular values of k, their geometry
seems very interesting [OPP98].

Our result is stated as Theorem 1.1.

Theorem 1.1. The canonical Petri map is injective for every semistable vector bundle E of rank
two and determinant ω on a generic curve of genus g defined over an algebraically closed field of
characteristic different from two.

The proof is based on some of the techniques used to show the injectivity of the classical Petri
map in [EH83], although dealing with vector bundles of rank two is substantially more involved
than dealing with line bundles. The degeneration of the smooth curve to a singular reducible curve
is also different. Instead of a rational curve with g elliptic tails as in [EH83], we consider a chain of
elliptic curves (see [Wel85]). This allows us to work in arbitrary characteristic different from two.
Moreover, as pointed out in [FP05] the result fails for at least some of the Eisenbud–Harris curves.

We will first need to determine what are the possible limits of vector bundles with canonical
determinant when the curve becomes reducible. The limit of the vector bundle may become a
torsion-free sheaf for which the determinant is not even defined. We use the results of Nagaraj and
Seshadri [NS97] as well as the results in [Tei91b] to find these limits. Then the theory of limit linear
series for vector bundles [Tei91a] can be used to study the behavior of sections in the kernel.

2. Conditions on semistable vector bundle with canonical determinant on
reducible curves

Let C be a reducible curve of arithmetic genus g consisting of two components C1, C2 with one node
obtained by gluing the point Q1 ∈ C1 to the point P2 ∈ C2. Fix a polarization of C (i.e. positive
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integers w1, w2 such that w1+w2 = 1). Fix a degree d for rank two bundles and define χ = d+2(1−g).
If w1χ is not an integer, then the moduli space of rank two bundles on C that are semistable by the
given polarization consists of two components that are characterized by the splitting of the degrees
among C1 and C2 (see [Tei91b]). Define the two numbers χ1 = χ(E|C1

) and χ2 = χ(E|C2
) where χ

denotes the Euler–Poincaré characteristic. Then, the semistability condition gives

w1χ � χ1 � w1χ + 2. (∗)
We now look at the conditions on the determinant. Let d1 be such that χ1 = d1 + 2(1 − g) is

the lowest possible value allowed in (∗). Let d2 be defined as d2 = d − d1. One can then define the
determinant map from the moduli space of torsion-free sheaves on C to the Picard variety of line
bundles of bidegree d1, d2 on C as follows [NS97].

(a) If E is a vector bundle of bidegree d1, d2, take its determinant.

(b) If E is a vector bundle of bidegree d1 + 1, d2 − 1, take

((det E1)(−Q1), (det E2)(P2)).

(c) If E is a sheaf that is not locally free, then at the node P (see Claim 2.3(b) below), EP ≡
OP ⊕ MP . In this case, w1χ < χ1 < w1χ + 1 and χ1 + χ2 = χ + 1. Hence, the bidegree is
d1, d2 − 1. The image of E by the determinant map is then

(det(E1),det(E2(P2))).

These results will be generalized in Claim 2.2 to reducible curves with more components.
In the rest of the paper we shall consider a curve of the following type.

Definition 2.1. Assume we have curves C1, . . . , CM each with points Pi, Qi. Glue Qi to Pi+1,
i = 1, . . . ,M − 1. Assume that every curve is either rational or elliptic, the points Pi, Qi are generic
on the (elliptic) curve and the genus of the resulting curve is g (and there are therefore exactly g
elliptic components). We shall call such a curve a chain of genus g.

Assume that a chain of genus g as above is the central fiber of a one-dimensional family of curves.
If we modify the total space by base change and blow-ups, the central fiber will still be of the same
kind, maybe with a few more rational components.

Claim 2.2. Fix a multidegree d1, . . . , dM giving rise to a component of the moduli space of torsion-
free sheaves on the total curve C semistable by a certain polarization. Fix another component of the
moduli space of vector bundles of rank two on C corresponding to a multidegree d1+ε1, . . . , dM +εM

(hence
∑

εi = 0). Let E be an element of this component with restriction to Ci being Ei. Then the
determinant map takes the form

E → (det Ei)
((∑

k<i

εk

)
Pi −

(∑
k�i

εk

)
Qi

)
.

Proof. We use induction on M . If M = 2, this is the result of [NS97] about the determinant map.
Assume that the formula is correct for M − 1 and prove it for M . Consider our curve as the union
of two pieces, CM and the rest. Using the case of two components, we obtain that on the curve
CM the determinant must be taken to be (detEM )(−εMPM ). As

∑
i=1,...,M εi = 0, one finds that∑

k<M εk = −εM and
∑

k�M εk = 0; this agrees with the formula above.
On the union of C1, . . . , CM−1, one must take the determinant that we had in the case of

M − 1 and modify it with εMQM−1 = (−∑
k<M εk)QM−1. This modification does not change

anything except on CM−1. On CM−1, the restriction of the determinant for the case of M − 1
components does not have QM−1 in the expression as this is not a node of CM−1. The expression
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then is det(EM−1)(
∑

k<M−1 Pk). Modifying this by εMQM−1 = −(
∑

k<M εk)QM−1 gives the stated
result.

Assume given a family of curves Ct with generic curve non-singular and special curve C0 = C
reducible. Consider a family of line bundles Lt degenerating to a line bundle L0. Then the moduli
space of vector bundles on Ct with determinant Lt degenerates to the set of torsion-free sheaves on
C0 with determinant L0 in the sense above (see [NS97]).

In addition to the conditions on the degree of the restriction of the vector bundle to each compo-
nent as stated in (∗), one finds conditions on the structure of the restrictions of the vector bundles
themselves. The statement that follows tells us that these restrictions cannot be too unstable. Its
proof is very similar to the proof of (∗) given in [Tei91b] (see also [Gie84]).

Claim 2.3. Let C be a curve as in Definition 2.1. Consider torsion-free sheaves of rank two and
fixed Euler–Poincaré characteristic χ and a polarization {wi} such that

∑
i∈I wiχ is not an integer

for any I ⊂ {1, . . . ,M}.
(a) The restriction of a semistable sheaf to one of the irreducible components is either inde-

composable or the direct sum of two line bundles whose degrees differ in at most one unit (or of
necessarily the same degree in the case of the first and last components).

(b) If a sheaf is not locally free at one node P , then the fiber at that node is EP
∼= MP ⊕ OP

where MP denotes the maximal ideal at P .

Proof. Note that, on a rational curve, every vector bundle is a direct sum of line bundles, while on
an elliptic curve a vector bundle of rank two is either indecomposable or the direct sum of two line
bundles (see [Ati57]). The only statement that needs to be proved in part (a) is that the difference
between the degrees of these bundles is either one or zero and that the former is only a possibility
for components with two nodes.

Assume that the restriction of E to a component Ci is the direct sum of two line bundles L′, L′′.
Consider the subsheaf F of E consisting of sections of L′ on Ci vanishing at the nodes extended

by zero outside Ci. Then, the semistability condition is

χ(L′) − s

wi
=

χ(F )
wi

� χ(E)
2

,

where s denotes the number of nodes in the component.
Similarly, consider the subsheaf G consisting of sections of L′′ on Ci and sections of E|Cj

that
glue with L′′ on the components other than Ci. Then,

χ(G)
2 − wi

=
χ(E) − χ(L′)

2 − wi
� χ(E)

2
.

The two inequalities put together give

wi
χ(E)

2
� χ(L′) � wi

χ(E)
2

+ s.

The same inequality holds for L′′. By assumption, wiχ is not an integer, hence, part (a) follows.
Assume now that the sheaf is not locally free at a node P and that the torsion-free sheaf is

isomorphic at the node to M2
P . Denote by C ′

1, C
′
2 the two connected components of C − {P}.

Consider the subsheaf F of E consisting of sections of E on C ′
1 vanishing at P extended by zero

on C ′
2. Write w′

1 (w′
2) for the sum of the wi corresponding to C ′

1 (C ′
2). Then, the semistability

condition is
χ(E|C′

1
)

2w′
1

=
χ(F )
2w′

1

� χ(E)
2

.
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Similarly, consider the subsheaf G consisting of sections of E on C ′
2 vanishing at P extended by

zero on C ′
1. Then,

χ(E|C′
2
)

2 − 2w′
1

=
χ(G)
2w′

2

� χ(E)
2

.

As in this case, χ(E) = χ(E|C′
1
) + χ(E|C′

2
), the two inequalities put together give

w′
1χ(E) � χ(EC′

1
) � w′

1χ(E),

and this is impossible because, by assumption, w′
1χ(E) is not an integer. This proves part (b).

3. Limits on families with singular fiber

We now want to see how to apply the results above to our situation. Assume that we have family
of curves π : C → S with S one-dimensional such that the fiber over t0 is a curve of the form in
Definition 2.1 while the generic fiber is non-singular. Note that the structure of the special fiber is
preserved by finite base change and resolution of singularities.

Assume that we have a family of rank two vector bundles E on C − C0 → S − {t0} such that
the determinant of the restriction to the fibers is the canonical line bundle on the fibers. Choose a
line bundle L defined on C → S such that the Euler–Poincaré characteristic χ of E ⊗ L restricted
to each fiber is non-zero. Choose a polarization {wi} associated to the components Ci of Ct0 so that∑

i∈I wiχ /∈ Z for all I ⊂ {1, . . . ,M}. Using the arguments of Seshadri (cf. [Ses82]), replacing a
single curve by a family with enough sections, one has a moduli space of {wi}-semistable torsion-
free sheaves on C → S. By properness, E gives rise to a map from S to this moduli space. There
exists an étale covering of the moduli space over which a universal family exists. Therefore, up to
replacing C → S with a suitable covering, we can assume that E can be extended to a semistable
torsion-free sheaf on the family of curves that we shall still denote by E . If the sheaf is not locally
free on Ct0 , one can blow up some of the nodes of Ct0 to obtain a new surface

C′ ��

��

C

��
S′ �� S

on which the sheaf E can be extended to a sheaf E ′ that is locally free. In this process, one adds
a few rational curves among the nodes of Ct0 and, therefore, the central fiber is still of the type
given in Definition 2.1. Moreover, from Claim 2.3(b), the restriction of the vector bundle to these
new components is either trivial or of the form O ⊕O(1) (see [Gie84, § 5] or [Xia95, Lemma 1.7]).
Denote still with L the pull-back of the original L to the new families obtained by base change and
blow-up. Now E ′ ⊗ π∗(L−1) restricted to the central fiber can be taken as the limit of the original
E and satisfies the conditions in Claim 2.3.

We assume in what follows that we are in the framework we just described, namely we have a
family of curves C → S where S is the spectrum of a discrete valuation ring. Denote by η the generic
point in S, by t a generator of the maximal ideal of the ring and by ν the discrete valuation.

We assume that Cη is non-singular while the central fiber is a chain of curves as described in
Definition 2.1.

We want to consider linear series for vector bundles of rank two. On the central fiber, one
obtains then a limit linear series in the sense of [Tei91a]. For the convenience of the reader, we shall
reproduce the definition here.
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Definition 3.1 (Limit linear series). A limit linear series of rank r, degree d and dimension k on
a chain of M (not necessarily rational and elliptic) curves consists of data I, II below for which
data III, IV exist satisfying conditions (a)–(c):

(I) for every component Ci, a vector bundle Ei of rank r and degree d and a k-dimensional space
of sections Vi of Ei;

(II) for every node obtained by gluing Qi and Pi+1 an isomorphism of the projectivization of the
fibers (Ei)Qi and (Ei+1)Pi+1;

(III) a positive integer a;
(IV) for every node obtained by gluing Qi and Pi+1, bases st

Qi
, st

Pi+1
, t = 1, . . . , k of the vector

spaces Vi and Vi+1;
subject to the conditions
(a)

∑M
i=1 di − r(M − 1)a = d,

(b) the orders of vanishing at Pi+1, Qi of the sections of the chosen basis satisfy ordPi+1s
t
i+1 +

ordQis
t
i �, a,

(c) sections of the vector bundles Ei(−aPi), Ei(−aQ i) are completely determined by their
value at the nodes.

For the reader who is unfamiliar with the concept of limit linear series, this is to be understood
in the following way. On a family of curves, fix a vector bundle on the generic fiber and extend
it (after some base change and normalizations) to a vector bundle on the central fiber. This limit
vector bundle on the central fiber is not unique. We could modify it by for example tensoring the
bundle on the whole curve C with a line bundle with support on the central fiber. This would
leave the vector bundle on the generic curve unchanged but would modify the vector bundle on the
reducible curve (by adding to the restriction to each component a linear combination of the nodes).
In this way, for each component Ci, one can choose a version Ei of the limit vector bundle such that
the sections of Ei that vanish at some of the nodes of a component Cj , i 	= j, are in fact identically
zero on Cj . If a vector bundle E was {wi}-semistable, these modified versions no longer are. But
the restriction to each component preserves the same structure. Therefore, results as in Claim 2.3
are still valid.

As we are allowed to tensor with line bundles supported on the components of the central fiber,
we can assume that deg(Ei|Ci

) = 2g − 2 + εi, −1 � εi � 1,
∑

εi = 0. These Ei are not independent
of each other. Each Ei+1 can be obtained from Ei as Ei+1 = Ei(−aFi) where Fi is the union of the
components Ci+1, . . . , CM . In our case, a can be taken to be g − 1.

Of special interest to us is the limit of the canonical linear series. This has rank one and is
considered in [EH83] and [Wel85]. The restriction of the corresponding line bundle to a component
Ci is given by

ωi|Ci
= O

(
2
(∑

k�i

g(Ck) − 1
)

Pi + 2
(

g −
(∑

k�i

g(Ck)
))

Qi

)
.

In the case of a rational curve, this can be written more simply as O(2g − 2).
Assume now that we have a limit linear series with canonical determinant. Write Ei|Ci

= Ei and
write deg Ei = 2g − 2 + εi, −1 � εi � 1, as above. Then,

detEi

((∑
j<i

εj

)
Pi −

(∑
j�i

εj

)
Qi

)
= O

(
2
(∑

j�i

g(Cj) − 1
)

Pi + 2
(

g −
(∑

j�i

g(Cj)
))

Qi

)

Hence,

detEi = O
((

2
(∑

j�i

g(Cj) − 1
)
−

∑
j<i

εj

)
Pi +

(
2
(

g −
(∑

j�i

g(Cj)
)

+
∑
j�i

εj

))
Qi

)
.
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As each Ei is either semistable or a direct sum of two line bundles whose degrees differ in one unit,
the sections of Ei(−(g − 1)Pi), Ei(−(g − 1)Qi) are completely determined by their values at the
nodes. We then take a = g − 1 in the definition of limit linear series and the condition∑

i

deg Ei − 2a(M − 1) = 2g − 2

is satisfied.
The orders of vanishing at a point Pi (or Qi) of a linear series will be denoted by (aj(Pi))

(respectively (aj(Qi))), j = 1, . . . , k. Note that each aj will appear at most twice and, when this
happens, there is a two-dimensional space of sections with this vanishing at Pi (respectively Qi).

4. Vanishing at the nodes of elements in the kernel

The following results are analogous to [EH83, Lemma 1.2, Proposition 1.3]. The proof of the first
is almost identical to the one in [EH83] and is omitted.

Here t denotes the parameter in the discrete valuation ring and ν its valuation. Choose a compo-
nent Ci and denote by Ei as in the previous section the vector bundle on π : C → S whose restriction
to all components of the central fiber except Ci has trivial sections.

Lemma 4.1. For every component Ci, there is a basis σj, j = 1, . . . , k, of π∗Ei such that:

(a) ordPi(σj) = aj(Pi);
(b) for suitable integers αj , tαjσj are a basis of π∗(Ei+1).

Proposition 4.2. Let σj be a basis of π∗ECi such that tαjσj is a basis of π∗(Ei+1). Then, the orders
of vanishing of the σj at the nodes satisfy:

(b) ordPi(σj) � g − 2 − ordQiσj � αj − 1 � ordPi+1t
αjσj − 1 if Ei is an indecomposable vector

bundle of degree 2g − 3;
(b) ordPi(σj) � g − 1 − ordQiσj � αj � ordPi+1t

αjσj if Ei is an indecomposable vector bundle
of degree 2g − 1, a direct sum of two line bundles of degree g − 1, an indecomposable vector
bundle of degree 2g − 2 or a direct sum of two line bundles of degrees g − 1, g − 2;

(c) ordPi(σj) � g − ordQiσj � αj + 1 � ordPi+1t
αjσj + 1 if Ei is a direct sum of two line bundles

of degrees g − 1, g.

Moreover, if equality holds, then σj vanishes only at Pi, Qi as a section of Ei.

Proof. The proof is similar to the proof of the analogous result in Proposition 1.1 in [EH83].
For a line bundle of degree d, the sum of the vanishing at two given points is at most d and, if

equality holds, the section does not vanish at any other point.
Similarly (see [Ati57]), for an indecomposable vector bundle of degree 2d+1 or 2d on an elliptic

curve, a section vanishes at two given points with orders adding to at most d and again, if equality
holds, the section does not vanish anywhere else. This gives the first inequality in each of parts (a),
(b), and (c) above.

For the second inequality, note that tαjσj is a section of π∗(Ei+1) = π∗(Ei(−(g − 1)Fi+1)) where
Fi+1 represents the divisor Ci+1 ∪ · · · ∪CM . Therefore, σj|Ci

vanishes as a section of π∗(Ei) to order
at least g − 1 − αj along Fi+1. Hence, σj|Ci

vanishes to order at least g − 1 − αj at Qi. This gives
the second of the inequalities.

For the last inequality, use the fact that Ei+1 = Ei locally along C −Fi+1. Hence, tαjσj vanishes
as a section of π∗(Ei+1) to order at least αj on C −Fi+1. Hence, tαjσj vanishes to order at least αj

at Pi+1.
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Remark 4.3. The inequalities above can be equalities only if there is a section whose order of
vanishing at Pi, Qi adds up to the maximum possible. We describe next when this happens for each
of the possible structures of the restriction of the vector bundle to Ci. We are assuming that Ci is
elliptic and Pi, Qi are generic and in particular O(Pi − Qi) is not a torsion point of the Jacobian.

If E is indecomposable of degree 2(g− 1)+ 1 (respectively 2(g− 1)− 1), there is a finite number
of sections (up to a constant) such that ordPi(s) + ordQi(s) = g − 1 (respectively g − 2). In fact,
for each possible vanishing ai at Pi, 0 � ai � g − 1 (respectively 0 � ai � g − 2), there is one such
section and no two of them are sections of the same line bundle. This follows from the fact that
h0(Ei(−aP − (d − a)Q)) = 1 if deg(Ei) = 2d + 1.

In the case of an indecomposable vector bundle of degree 2(g − 1), there is at most one section
with sum of vanishings at the nodes being g − 1.

If E = Lg ⊕Lg−1, there is at most one section that vanishes with maximum sum of vanishings g.
There is at most one section of Lg−1 such that the sum of vanishing at the nodes is g− 1. For every
value a, there is one section of Lg with vanishing a at P and g − 1 − a at Q.

If E is the direct sum of two line bundles of degree g − 1, there are at most two independent
sections with maximum vanishing at the nodes adding up to g − 1.

We now want to define the order of vanishing of a section ρ of S2(π∗(Ei)) as follows. Let σj be a
basis of π∗Ei such that their orders of vanishing are the orders of vanishing of the linear series at Pi.
Write ρ =

∑
j�l fjl(σj ⊗ σl + σl ⊗ σj) with fjl functions on the discrete valuation ring.

Definition 4.4. We say ordPiρ � λ if, for every j, k with fj,k(Pi) 	= 0, ordPiσj + ordPiσk � λ.

As in [EH83, p. 278] one can identify π∗Ei and S2(π∗Ei) with submodules of π∗Eη and S2(π∗Eη)
and also with submodules of π∗Ei+1 and S2(π∗Ei+1). Let

ρ ∈ S2(π∗Eη).

One can then find a unique value βi such that

ρi = tβiρ ∈ S2(π∗Ei) − tS 2(π∗Ei).

Then for αi = βi+1 − βi, one has

ρi+1 = tα
i
ρi ∈ S2(π∗Ei+1) − tS2(π∗Ei+1).

The following proposition follows immediately from the definitions.

Proposition 4.5. Fix a component Ci. Assume that

ρ =
∑

fjl (σj ⊗ σl + σl ⊗ σj)

where the σj are a basis of π∗Ei such that tαjσj is a basis of π∗Ei+1,

tα
i
ρ ∈ S2(π∗(Ei)) − tS 2(π∗(Ei)).

Then

ordPi(ρ) = min{j,l|ν(fjl )=0} ordPi(σj) + ordPi(σl),

αi = max{j,l}(αj + αl − ν(fjl)).

We now assume that the kernel of the Petri map is non-trivial on the generic curve. We can then
find a section ρη in the kernel of the Petri map over the generic point. As above, we can find a ρi

for each i, 1 � i � M , in the kernel of the map

S2(π∗(Ei)) → (π∗(S2Ei))

with ρi /∈ tS2(π∗Ei).
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Proposition 4.6. Let Ci be an elliptic curve such that the restriction of the vector bundle to Ci

is the direct sum of two line bundles of degree g − 1. Then,

ordPi+1(ρi+1) � ordPi(ρi) + 1.

Equality above implies that the terms of ρi that give the vanishing at Pi can be written as

(σ′ ⊗ σ̄′ + σ̄′ ⊗ σ′) + (σ′′ ⊗ σ̄′′ + σ̄′′ ⊗ σ′′),

with σ′, σ′′ being two independent sections that vanish at Pi, Qi with orders adding up to g−1 (and
in particular equality implies that these sections exist). Moreover, if

ordPi(ρ) � 2
(∑

j<i

g(Cj)
)
−

∑
j<i

εj − 1 = λi − 1

then

ordPi+1(ρi+1) � min(ordPi(ρi) + 2, λi + 2).
When the inequalities for the order of vanishing at Pi+1 are equalities, the terms of ρi+1 that give
the minimum vanishing at Pi+1 glue with the terms of ρi that give the minimum vanishing at Pi.

Proof. Assume that Ci is an elliptic curve and the vector bundle on Ci is of the form L′⊕L′′, where
L′, L′′ are line bundles of degree g − 1. Then,

L′ ⊗ L′′ = O
((

2
((∑

k�i

g(Ck)
)
− 1

)
−

∑
k<i

εk

)
Pi +

(
2
(

g −
(∑

k�i

g(Ck)
)

+
∑
k�i

εk

))
Qi

)
.

For ease of notation, we write this line bundle as

O(λiPi + µiQi), λi + µi = 2(g − 1).

Let ρ =
∑

fj,l(σj ⊗ σl + σl ⊗ σj) be an element in the kernel of the Petri map written in terms
of a basis of π∗Ei such that the tαjσj is a basis of π∗Ei+1. Note that a single element of the form
σj ⊗σl +σl⊗σj is not in the kernel of the Petri map. Hence, any ρ in the kernel has in its expression
at least two summands of this type with the σ appearing there being independent [we could have
something like c11σ1⊗σ1+c22σ2⊗σ2 but not something like c12(σ1⊗σ2+σ2⊗σ1)+c13(σ1⊗σ3+σ3⊗σ1)
as the latter could be written as σ1 ⊗ (c12σ2 + c13σ3) + (c12σ2 + c13σ3) ⊗ σ1].

Note that ordPi(σj) � αj � ordPi+1t
αjσj, with the first inequality being an equality for at

most two independent sections σ′, σ′′ that vanish at Pi, Qi with orders adding up to g − 1 (see
Proposition 4.2 and Remark 4.3).

Hence, ordPi+1(ρi+1) � ordPi(ρi) + 1 and ordPi+1(ρi+1) � ordPi(ρi) + 2 except in the case when
the expression of ρ that gives the vanishing at Pi contains exactly two summands and one of the
sections appearing in each summand is one of the two sections σ′, σ′′ named above. So, we can write
the restriction of ρ to Ci as

ρ = (σ′ ⊗ σ̄′ + σ̄′ ⊗ σ′) + (σ′′ ⊗ σ̄′′ + σ̄′′ ⊗ σ′′) + · · · ,

where the dots stand for sections with higher vanishing at Pi. Using the decomposition of E into
a direct sum and up to replacing σ̄′ and σ̄′′ by linear combinations of themselves, assume that
σ′ = (σ′

1, 0) and σ′′ = (0, σ′′
2 ). Write then σ̄′ = (σ̄′

1, σ̄
′
2) (and similarly for σ̄′′) in terms of the

decomposition of Ei. Using that ρ is in the kernel of the Petri map, we obtain σ̄′
1 = 0, σ̄′′

2 = 0.
Hence, the order of vanishing of σ̄′ is in fact the order of vanishing of σ̄′

2. From the fact that σ′
1σ

′′
2 is

a section of L′L′′ vanishing to order adding up to 2g − 2 between the two nodes, ordPi(σ
′σ′′) = λi

and ordPi(σ
′σ̄′) 	= ordPi(σ

′σ′′). Assume now that ordPi(ρi) � λi. Then

λi � ordPi(ρi) = ordPi(σ
′) + ordPi(σ̄

′)
	= ordPi(σ

′) + ordPi(σ
′′) = λi.
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Hence

λi + 1 � ordPi(ρi) = ordPi(σ
′) + ordPi(σ̄

′).

On the other hand by Propositions 4.2 and 4.5,

ordPi+1(t
αi

ρi) � ordPi+1(t
α′

σ′) + ordPi+1(t
ᾱ′

σ̄′)
� ordPi(σ

′) + ordPi(σ̄
′) + 1.

The two inequalities together conclude the proof of the result when ordPi(ρi) � λi.
Assume now that ordPi(ρi) = λi − 1 and we want to show that also in this case ordPi+1(ρi+1) �

ordPi(ρi) + 2.
We can again assume that the terms in ρ that give the minimum vanishing at Pi are of the form

(σ′ ⊗ σ̄′ + σ̄′ ⊗ σ′) + (σ′′ ⊗ σ̄′′ + σ̄′′ ⊗ σ′′)

and that αi = α′ + ᾱ′ = ᾱ′′ +α′′ = ordPi(ρi)+1, otherwise using Propositions 4.2 and 4.5, we would
be done. Note now that

h0(Ci, L
′ ⊗ L′′(−(λi − 1)Pi − µiQi)) = 1

because the degree of this line bundle is one. Also

h0(Ci, L
′ ⊗ L′′(−λiPi − µiQi)) = h0(C,O) = 1

while

h0(L′ ⊗ L′′(−(λi − 1)Pi − (µi − 1)Qi)) = 2.

As

H0(C,L′ ⊗ L′′(−λiPi − µiQi)) ⊂ H0(C,L′ ⊗ L′′(−(λi − 1)Pi − µiQi)),

these two vector spaces, having the same dimension, coincide and a section of L′⊗L′′ that vanishes at
Pi with multiplicity precisely λi−1 vanishes at Qi with multiplicity at most µi−1 = 2g−2−λi−1 =
2g−2−(λi+1). Then a section gluing with it vanishes at Pi+1 with order at least λi+1 = (λi−1)+2.
In particular, (tα

′
σ′)(tᾱ′

σ̄′) and (tα
′′
σ′′)(tᾱ′′

σ̄′′) satisfy the condition. Then,

ρi+1 = tα
i
ρi = (tα

′
σ′ ⊗ tᾱ

′
σ̄′ + tᾱ

′
σ̄′ ⊗ tα

′
σ′) + (tα

′′
σ′′ ⊗ tᾱ

′′
σ̄′′ + tᾱ

′′
σ′′ ⊗ tα

′′
σ̄′′)

vanishes at Pi+1 with the required multiplicity.
If there is equality, αi = α′ + ᾱ′ = α′′ + ᾱ′′ and the terms in ρi+1 that give the vanishing at Pi+1

glue with the terms in ρi that give the vanishing at Pi.

Proposition 4.7. Assume that Ei is an indecomposable vector bundle of degree 2(g − 1). Then

ordPi+1(ρi+1) � ordPi(ρi) + 2.

If the inequality is an equality, the terms in ρi+1 that give minimum vanishing at Pi+1 glue with
the terms in ρi that give minimum vanishing at Pi.

Proof. In this case there is at most one section σ that vanishes at Pi and Qi with multiplicity adding
up to g − 1 (see Remark 4.3). As an element of the form σ ⊗ σ̄ + σ̄ ⊗ σ is not in the kernel of the
Petri map, in the terms of ρi that give minimum vanishing at Pi,

ρi =
∑
jl

(σj ⊗ σl + σl ⊗ σj) + · · ·

for at least one pair {σj , σl} does not contain σ. Hence the inequality follows. If some of the terms on
ρi+1 that give the vanishing at Pi+1 come from terms on ρi with vanishing at Pi at least ordPiρi +1,
then by the same argument ordPi+1(ρi+1) � (ordPi(ρi)+1)+2. This proves the second statement.
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Proposition 4.8. Assume that Ei is an indecomposable vector bundle of degree 2(g − 1) + ε,
ε = 1,−1. Let ρi be as before then either

(a) ordPi+1(ρi+1) � ordPi(ρi) − ε + 2

or

(b) ordPi+1(ρi+1) � ordPi(ρi) − ε + 1

and the terms in ρi that give the vanishing at Pi can be written in the form

ρ = c12(σ1 ⊗ σ2 + σ2 ⊗ σ1) + c34(σ3 ⊗ σ4 + σ4 ⊗ σ3) + · · · ,

where all the σj are sections such that the sum of vanishing at Pi, Qi is g−1 if ε = 1, g−2 if ε = −1
and ρ does not admit an expression with fewer than three summands σj ⊗ σl + σl ⊗ σj .

Also, when equality occurs, the terms in ρi+1 that give minimum vanishing at Pi+1 glue with
the terms in ρi with minimum vanishing at Pi.

Proof. We prove it in the case ε = 1, the other being analogous.
If ρi =

∑
fj,l(σj ⊗ σl + σl ⊗ σj) is an element in the kernel, then there are at least two pairs j, l

that give the minimum vanishing at each point in the above expression. If in one of these pairs at
most one of the sections has vanishings at Pi, Qi adding up to g − 1, using Propositions 4.2 and 4.5
above, we are done. Assume then that in the above expression all the sections that appear have
sum of vanishings at Pi, Qi equal to g − 1. We want to check that then the expression for ρ has at
least three summands.

Choose a line bundle L′ of degree g−1 not linearly equivalent to aP +(g−1−a)Q, 0 � a � g−1.
Let L′′ be the line bundle of degree g such that L′ ⊗ L′′ = detE. Then, E can be deformed to a
direct sum L′⊕L′′. On L′⊕L′′ there are exactly g sections sj with sum of vanishing at Pi, Qi being
g−1. In fact ordPi(sj) = j, ordQi(sj) = g−1− j. As deg(L′′(−jPi − (g−1− j)Qi)) = 1, each one of
these sections vanishes at an additional point Rj . The Rj are all different: if Rj = Rk, j > k, then
from the fact that sj, sk are sections of the same line bundle L′′, we obtain (j − k)Pi ≡ (j − k)Qi,
contradicting the genericity of the pair Pi, Qi. Assume then that

ci1i2(σi1 ⊗ σi2 + σi2 ⊗ σi1) + ci3i4(σi3 ⊗ σi4 + σi4 ⊗ σi3)

is in the kernel of the Petri map. Then, 2ci1i2si1si2 = −2ci3i4si3si4 . Hence these two sections vanish
at the same points and we obtain {Ri1 , Ri2} = {Ri3 , Ri4}, which is a contradiction.

Proposition 4.9. Assume that Ci is elliptic and Ei is a direct sum of two line bundles of degree
g − 1 and g − 1 + ε, ε = 1,−1 respectively. Then either

ordPi+1(ρi+1) � ordPi(ρi) − ε + 2

or

ordPi+1(ρi+1) � ordPi(ρi) − ε + 1

and ρi can be written in the form

ρi =
∑

fjl(σj ⊗ σl + σl ⊗ σj) + f ′(σ′ ⊗ σ + σ ⊗ σ′) + f ′′(σ′′ ⊗ σi + σi ⊗ σ′′),

where the σj , σl, σi, σ′ are all sections of the line bundle of higher degree.

Moreover, if

ordPi(ρ) � 2
((∑

j�i

g(Cj)
)
− 1

)
−

∑
j<i

εj − 1,
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then

ordPi+1(ρi+1) � ordPi(ρi) + 2
or ρ can be written as before with f ′ = f ′′ = 0. When the inequalities for the order of vanishing at
Pi+1 are equalities, the terms in ρi+1 that give the minimum vanishing at Pi+1 glue with the terms
in ρi that give the minimum vanishing at Pi.

Proof. We assume ε = 1, the case ε = −1 being similar.
Write Ei = L′ ⊕L′′ where L′ is a line bundle of degree g and L′′ is a line bundle of degree g− 1.

There are then at most one section of L′ and one section of L′′ that vanish only at Pi, Qi with the
sum of vanishing at these two points being g, g − 1 respectively. For these two sections, one has

ordPi(σ
′) � g − ordQi(σ

′) � α′ + 1 � ordPi+1(t
α′

σ′) + 1,

ordPi(σ
′′) � g − 1 − ordQi(σ

′′) � α′′ � ordPi+1t
α′′

σ′′.

For any other section of L′ one has

ordPi(σ
′
j) � g − 1 − ordQi(σ

′
j) � α′

j � ordPi+1t
α′

jσ′
j

while for other sections σ′′
j one has

ordPi(σ
′′
j ) � g − 2 − ordQi(σ

′′
j ) � α′′

j − 1 � ordPi+1t
α′′

j σ′′
j − 1.

Write now
ρi =

∑
fjl(σj ⊗ σl + σl ⊗ σj).

As ρi is in the kernel of the Petri map, not all terms in this expression can contain σ′. Hence,
ordPi+1(ρi+1) � ordPi(ρi).

If this expression has some σj or σl that are not paired with linear combinations of σ′, σ′′ or the
sections σ′

j, then the vanishing of ρi+1 at Pi+1 increases by at least one unit with respect to that
at Pi. If this increase does not take place, using the decomposition of Ei into a direct sum, we can
write

ρi = f ′((σ′, 0) ⊗ (σ′
1, σ

′′
1 ) + (σ′

1, σ
′′
1 ) ⊗ (σ′, 0))

+ f ′′((0, σ′′) ⊗ (σ′
2, σ

′′
2 ) + (σ′

2, σ
′′
2 ) ⊗ (0, σ′′))

+
∑

fjl((σj , 0) ⊗ (σl, 0) + (σl, 0) ⊗ (σj , 0)).

From the condition of this section being in the kernel, one obtains

σ′′
2 = 0, f ′σ′σ′′

1 + f ′′σ′′σ′
2 = 0.

If f ′, f ′′ = 0, we are in the case when ρ can be written only in terms of the sections of the line
bundle of higher degree. If f ′, f ′′ are not both zero, then both must be non-zero by the equation
above and we proceed as in the case of the sum of two line bundles of the same degree to get the
result.

Proposition 4.10. If Ci is a rational curve and Ei is the direct sum of two line bundles of degree
g − 1, then

ordPi+1(ρi+1) � ordPi(ρi).
If Ci is a rational curve and Ei is a direct sum of two line bundles of degree g − 1, g − 1 + ε, then
either

ordPi+1(ρi+1) � ordPi(ρi) − ε

or

ordPi+1(ρi+1) � ordPi(ρi) − ε − 1
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and ρi can be written in the form

ρi =
∑

fjl(σj ⊗ σl + σl ⊗ σj),

where all of the σj , σl are sections of the line bundle of higher degree.

The proof of this last claim is similar to the previous ones and is left to the reader.

Proposition 4.11. Let Ci be elliptic and the restriction of E to Ci a direct sum of two line bundles
of degree g − 1. If in the expression of the restriction of ρ to Ci all of the sections of E that appear
are linearly dependent at Pi, then

ordPi+1(ρi+1) � ordPi(ρi) + 2

and equality above implies that in the expression of ρi there are at least three terms or that the
expression for ρi can be written in terms of sections of a line subbundle of Ei.

Proof. The inequality has already been proved in Proposition 4.6.
Assume now that there is equality and the expression for ρi has precisely two terms. Because of

the condition on the fibers at Pi at most one of the sections appearing in the expression for ρi has
vanishing at the nodes adding up to g − 1. Call this section σ′ and the line bundle it generates L.
Write

ρi = (σ′ ⊗ σ̄′ + σ̄′ ⊗ σ′) + (σ′′ ⊗ σ̄′′ + σ̄′′ ⊗ σ′′).
Then σ′′, σ̄′′ have order of vanishing at Pi, Qi adding up to g − 2. Therefore they are completely
determined by their direction at P . This implies that σ′′, σ̄′′ are also sections of the line bundle
L and hence so is σ̄′ by the condition of ρ being in the kernel of the Petri map. So the result is
satisfied in this case.

Assume now that none of the sections involved vanishes to the maximum order g − 1 between
the two nodes. Write the sections appearing in the expression in terms of the decomposition of Ei as

((σ′
1, σ

′
2) ⊗ (σ̄′

1, σ̄
′
2) + (σ̄′

1, σ̄
′
2) ⊗ (σ′

1, σ
′
2))

+ ((σ′′
1 , σ′′

2 ) ⊗ (σ̄′′
1 , σ̄′′

2 ) + (σ̄′′
1 , σ̄′′

2 ) ⊗ (σ′′
1 , σ′′

2 )).

Each of the σ that appears in the expression above is either zero or is the unique section of L
(respectively L′) whose order of vanishing at Pi is a given a and at Qi is at least g − 2 − a. Then,
the condition of ρ being in the kernel implies that

σ′
1σ̄

′
1 + σ′′

1 σ̄′′
1 = 0, σ′

2σ̄
′
2 + σ′′

2 σ̄′′
2 = 0, (�)

σ′
1σ̄

′
2 + σ′

2σ̄
′
1 + σ′′

1 σ̄′′
2 + σ′′

2 σ̄′′
1 = 0.

An argument as in the proof of Proposition 4.8 implies that

σ′
1 = λσ′′

1 , σ̄′′
1 = −λσ̄′

1 or σ′
1 = λσ̄′′

1 , σ′′
1 = −λσ̄′

1.

Similarly
σ′

2 = µσ′′
2 , σ̄′′

2 = −µσ̄′
2 or σ′

2 = µσ̄′′
2 , σ′′

2 = −µσ̄′
2.

Let us assume that we are in the first case for both equations (the remaining cases are treated
similarly). Substituting in the third equation above, we obtain

(λ − µ)(σ′′
1 σ̄′

2 − σ′′
2 σ̄′

1) = 0.

If λ = µ, the original section was trivial against the assumption. If λ 	= µ, then (σ′′
1 σ̄′

2 − σ′′
2 σ̄′

1) = 0
and an argument as in the proof of Proposition 4.8 implies that

σ′′
1 = νσ′′

2 , σ̄′
1 = νσ̄′

2 or σ′′
1 = νσ̄′

1, σ′′
2 = νσ̄′

2.

In both cases, the original section was trivial against the assumptions.
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Proposition 4.12. Let C be an elliptic curve and assume that Ei is an indecomposable vector
bundle of degree 2g−1. Consider the sections of the vector bundle that vanish at P with multiplicity
a and at Q with multiplicity g − 1 − a. Then, the fibers of these sections at P are different except
maybe for some pairs a1, a2 and if this happens then det Ei = O((a1 + a2)P + (2g − 2− a1 − a2)Q).

Proof. Consider two line subbundles of Ei generated by these sections, say

O(a1P + (g − 1 − a1)Q) → Ei,

O(a2P + (g − 1 − a2)Q) → Ei.

Assume a1 > a2 and write a′ = a1 − a2, b′ = g − 1 − a2, E′ = Ei(−a2P ). Tensoring the spaces in
the two maps above with O(−a2P ), we obtain the following:

0 �� O(a′P + (b′ − a′)Q) �� E′ �� L �� 0

O(b′Q)

��

As the vertical arrow does not factor through O(a′P +(b′−a′)Q), it gives rise to a non-zero morphism
to L (which is a line bundle of degree b′ + 1). If this map is zero at Pi, then L = O(Pi + b′Qi). In
particular Ei is as claimed and a2 is determined by Ei and a1.

5. Proof of Theorem 1.1

Proposition 5.1. For a section ρ in the kernel of the Petri map, one has one of the three options
below:

(a)

ordPi(ρ) � 2
(∑

k<i

g(Ck)
)
−

∑
k<i

εk;

(b)

ordPi(ρ) � 2
(∑

k<i

g(Ck)
)
−

∑
k<i

εk − 1

and on Ci−1 the equation for the terms of ρt giving the maximum vanishing at Qi−1 is of the
form ∑

jl

fjl(σj ⊗ σl + σl ⊗ σj)

and cannot be written with fewer than three summands and the σ appearing in the expression
vanish only at the two nodes;

(c)

ordPi(ρ) � 2
(∑

k<i

g(Ck)
)
−

∑
k<i

εk − 1

and on Ci−1 the equation for the terms of ρt giving the maximum vanishing at Qi−1 can be
written in terms of sections of a line subbundle of Ci−k ∪ · · · ∪ Ci−1 of degree 1

2 [deg(Ei−k) +
· · · + deg(Ei−1)] + 1.

Proof. This will be by induction on i, the case i = 1 being clear because

2
(∑

k<1

g(Ck)
)
−

∑
k<1

εk = 0.
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Assume the result correct for i − 1 and show it for i. If condition (a) holds, then the result can be
obtained from the propositions in the previous section.

If condition (b) holds, and Ci is rational or elliptic with E the direct sum of two line bundles,
then the result follows also from the previous propositions.

Assume that Ci is elliptic and Ei is an indecomposable vector bundle of odd degree. If the
vanishing at Pi increases by at least one unit, we are back to conditions (a) or (b). Otherwise,
the restriction of ρ to Ci has at least three terms. With a suitable choice of gluing of Qi, Pi+1 up
to two arbitrary directions can be made to agree. By the independent genericity of Ci−1, Ci not all
directions involved in ρi will glue with those in ρi−1. Hence, this is impossible.

Assume now that condition (c) holds. If Ci is elliptic and Ei is an indecomposable vector bundle,
we reason as in case (b). If Ci is elliptic or rational and Ei is the direct sum of two line bundles of
the same degree, then Propositions 4.6, 4.10 and 4.11 above show that either condition (a) or (c)
holds again. If Ci is elliptic or rational and Ei is the direct sum of two line bundles of different
degrees, then, by stability, the line bundle of higher degree cannot glue with a line bundle of higher
degree in the previous component. Hence, the result is satisfied again.

Theorem 1.1 now follows from the statement above: on the last component (that we can assume
to be rational), the vector bundle is the direct sum of two line bundles of the same degree g− 1 and∑

εj = 0. The proposition above implies that ρ vanishes at Pg with multiplicity at least 2g − 1
and this is impossible as this multiplicity is at most 2g− 2. Hence ρ cannot exist and the Petri map
is injective.
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