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SPECTRAL MULTIPLIERS OF LAPLACE TRANSFORM TYPE FOR
THE LAGUERRE OPERATOR

EMANUELA SASSO

We shall work with the Laguerre measure on Rd+ and the associated Laplacian L,
by means of which the Laguerre semigroup is defined. Our main result is a multiplier
theorem, saying that a function of L, which is of Laplace transform type defines
an operator of weak type (1,1) for the Laguerre measure. Qur starting point is the
well-known relationship between the Laguerre and Ornstein-Uhlenbeck semigroups.

1. INTRODUCTION

The purpose of this paper is to study the weak type (1,1) boundedness of a special
class of spectral multipliers for the Laguerre operator £,, whenever a = (a, ..., aq) is a
multi-index with o; 2 0, foreach i =1,...,d.

The operator L, is a self-adjoint “Laplacian” on L?*(y,), where y, is the Laguerre

4 d
measure of type a on R, that is, dus(z) = [](zfe % /I'(e; +1))dz on RL = {z

1=

€RY:z;>0foreachi=1,...,d}. It is well known that the spectral resolution of L,

18
x
— a
L,= E n Py,
n=0

where P is the orthogonal projection on the space spanned by Laguerre polynomials of
total degree n and type o in d variables (see, for instance, [12]). The operator L, is the
infinitesimal generator of a “heat” semigroup, called the Laguerre semigroup, {e~t= :
t 2 0}, defined in the spectral sense as

[o o]
ete =Y e pe.
=0

It can be shown that for each ¢t > 0, e"*%= is an integral operator, whose kernel with
respect to the Laguerre measure is

(1.1) mac(z,y) = (1 — e~t)~lel=d / /D as@ys) /e +)-(1/2)(a- (.8)/ =D _(5) ds,
(-1
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where

d
(1.2) g+(z,y,8) = Z(zi + 4 £ 2(zi)%s1),

i=1

_ d (o +1) 2\ai—1/2
Hu(s)_HW(l_si) 7,

and |a] = a; + - -+ + aq. See, for instance, [1] and [12].

i=1

A line of research is devoted to the study of the boundedness properties of several
operators naturally associated with self-adjoint operators. As a significant but incomplete
sample of these investigations about the Laguerre operator, we can cite the papers (1,
3, 8] and our recent article [9]. In particular, the present work completes the study
of the functional calculus associated to the Laguerre operator of [9], by considering the
multipliers of Laplace transform type (in the terminology of [11]).

The assumption that a function M is of Laplace transform type implies that M .
extends to a holomorphic function on the right half plane {z : ®2 > 0}, which is bounded
on every sector Sp = {z € C : |argz| < 8}, with 0 < § < 7/2. It follows from the
general Littlewood-Paley theory for semigroups that, if M is of Laplace transform type,
then M(L,) is bounded on all spaces LP(u,), with 1 < p < 0o (see [11]).

In 6], the author gave a sufficient condition for the existence of a non-holomorphic
functional calculus for the generator A of a symmetric contraction semigroup on L7,
1 € p € oo. He proved that if the norms of the imaginary powers A™ of a generator, as
an operator on LP, grow at most exponentially as |u| tends to infinity, then the multiplier
operator M (A) is bounded on LP, provided that M extends to a bounded and holomorphic
function on a fixed sector Sy, satisfying a Hormander condition of a sufficiently high order
on the boundary of the sector. A standard method to obtain estimates of the norms of
A™ on L? is via complex interpolation between a weak type (1, 1) estimate and the L2
estimate. Observe that the L? estimate is trivial, since by the spectral theorem the
‘operators A* are unitary on L2.

In view of these remarks it is important to obtain sharp estimates of the weak type
(1,1) quasinorm of the imaginary powers of the operator £, (see also [9]). This is a
particular case of a multiplier operator M(L,) of Laplace transform type, to which we
may apply our main result.

The paper is organised as follows. Section 2 contains the setup and the derivation of
the kernel of the multiplier operator outside the diagonal, in terms of an integral involving
the kernel of the Laguerre semigroup. Finally, in Section 3, we prove the weak type (1, 1)
estimate for the spectral multipliers of Laplace transform type.
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2. MULTIPLIERS OF LAPLACE TRANSFORM TYPE

In this section, we introduce the particular class of spectral multipliers of interest,
that is, the multipliers of Laplace transform type. We say that a function M is of Laplace
transform type if

M(k) =k /0 T swetdt, k>0,

t

where ¢ is a bounded measurable function on R.,.. Changing variables e™* = r, we observe

that a function M is of Laplace transform type if and only if

2.1) M(k) = k/ol ¢(r)rk£:_£, k>0,

where 1(r) = ¢(—logr). By spectral theory, the multiplier operator

= iM(n)'P
n=1

is a bounded operator on L?(u,). Moreover, it follows from the general Littlewood-Paley
theory for semigroups that, if M is of Laplace transform type, then M(L,) is bounded on
all spaces LP(uq), 1 < p < oo (see [11]). In the next section, we shall show that M(L,)
is also of weak type (1,1) with respect to the Laguerre measure.

The advantage of working with multipliers of this type is that, by spectral theory,
M(L,) may be written by means of the Laguerre semigroup. Therefore we get, at least
formally, an explicit expression of the action of M(L,) in terms of the heat kernel my,.
To be more specific, by the spectral theorem and by (2.1), we have

22) M) = [ vr)Larts

where the integral converges in the weak operator topology of L?(u,). Indeed, if for every
pair of functions f, g in L?(u,), we denote their inner product in L?(ps) by (f, 9) 4., we
have that

(M(La)f,9),, =D M(K)PLS.9)
k=1
=Yk / () dr/r(PE L, )
k=1

o0
Since 3°|(P2f, 9ua| < Ifll2llgll2, we may interchange the order of summation and inte-
k=0

gration to get

(ME1,9),, = [ 60k PEL e /e

1
- / B Lar™ £, g dr/r,
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as required.

If M is of Laplace transform type, then M(L,) is a continuous operator from the
space of test functions to the space of distributions on R% and so it has a distributional
kernel. In the following, we shall deduce by (2.2) that, off the diagonal, this kernel agrees
with a function Ky, satisfying gradient estimates in a suitable neighbourhood of the
diagonal.

The first tool in the proof of our main result is the relationship between the Laguerre
and Ornstein-Uhlenbeck semigroups. It is well known that for special values of « the
analysis of the Laguerre semigroup can be interpreted as the analysis of the Ornstein-
Uhlenbeck semigroup acting on radial functions (see [1] and [3]). As in [5], the idea is to
decompose M (L,) into two operators, one given by a kernel supported off the diagonal,
and the other satisfying “standard” gradient estimates in a suitable neighbourhood of
the diagonal.

First, it is convenient to perform a change of coordinates in R%. If z = (z4,...,4)
is a vector in R%, then z? denotes the vector z2 = (?,...,z%). Let ¥ : R4 — R be
defined by ¥(z) = z? and let fio = ¥*pu, be the pull-back of the measure p,. Then Ji, is '
the the probability measure

2a,+le_13

(23) d/.ta(l' = 2dH m‘ d

on R%. The map f — Uy f = f o ¥ is an isometry of LI(u,) onto L9(K,), for every ¢ in
(1, 00]. Let E denote the operator Uy L, L{” We may reduce the problem to the study
of the weak type (1, 1) boundedness of the operator M(L,), with respect to the measure
ﬂa-

It is easy to observe that 'rE", with 0 € 7 < 1, may be written as an integral operator,

whose kernel is
Fiar(@9) = [ Fiar(zy,5)ds
[-1,1)¢

where ( 242 5)
q_ ’rx )y b s
2 (),

with respect to the measure m,, that is, the probability measure on Ri defined by

Mar(2,9,8) =(1 - r)""‘"d exp(—

z2a.+1

(24) dma IE) = 2dH m dz.

The expression for Mm,, is obtained from (1.1) by using the change of variable ¢
—log . Since the kernel m, .-+ satisfies the heat equation ,u = —L,u, it follows that

rOrMmayr = LoaMar-
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For each ¢ € L>*(R.,), define
Kl/»'(x)y) = / K¢(zayys) dS,
[-1,1]d

with .
Kl/)(x) v, S) = / ¢(T)3rﬁla,r($, Y, S) dr.
0
In order to define the “local” region, we consider the extra variable s in [—1,1]%.
This artifice is suggested by the description of the local region in polar coordinates in the

Ornstein-Uhlenbeck case, and by the form of the kernel m,,. For each 7 > 0 the local
region N, is the set

T
(xyyas) € Rd X Rd X [_lal ¢ : q_(xZ,yZ’s)l/Z < _'—‘_‘—}
{ PRl TT el +Ta

LEMMA 1. Ifz #y the integral K,(z,y) converges absolutely. Moreover, in this
case there exists a constant C such that

C“"Mloo‘l— ’y2,s)—|u|—dna(s),

|Ky(z,y,5)| <
|V(z,y)K\lJ(z: Y,s | S C”d)“ooq ayZ)S)—|a|_d—l/2Ha(s)1

whenever (z,y,s) € N,.

PrOOF: By a straightforward calculation we have that
(2.5) Brhar(z,y, 8) = (1 — r)7lel=d=2¢~(a-02%y"8)/1=1) p( /r)p =120 (s),

where P(,/7) is a polynomial in \/7 of degree three, whose coefficients depend on z,y, s.
Thus the function r — 8,Mq(z,y, s) changes sign at most a finite number of times. It
follows that there exists a constant C such that

1 _ 1 _
/Olzp(r)arma,(x,y)ldrs/o /[_1‘1]d|¢(r)8,ma,r(x,y,s)|drds

< C||¢||oo/ max g (2, Y, 5) ds < oo,

1 1]d 0r<1
for all z and y in R4. We claim that in the local region N, the following holds
(2.6) g_(rz%, 3%, 5) > ¢_(2%, 9%, 5) — 27(1 — 1'f2).

Assuming this claim for the moment, we complete the proof of the lemma. By (2.6), if
z # y and (z,y,s) € N,, we get that

| Ky (2,9, 5)| < Cllflleo max [ias(z,y,5)]
2,2
_ —|a|—d _Q—(x Y 13)
< Ollplleo gmax (1 = 1)1 exp ~ =52 ) 1, )

1—17r
< CllYlloog- (22, 42, 8) 14 (5).
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Moreover, if z # y, a straightforward calculation shows that, for each i = 1,...,d,

q_(,,.x2’ y2’ 3))1-10(3)

Oriia (2,9, 8) = C(1 = r) 1016 g/2 — 5, 1/2 exp (20

—la|-d—1/2 (g- (7’2:2, y2> 3))1/2

g_(rz?,y% s
sc-r) d—r)r exp - (1—1; ))H“(s)
_ o\ -laj-d-1/2 _ g-(rz?,y?%,s)
<Ci-n exp (e t=2 2, ),

and similarly

q_(rz?, 42, S))Ha(s),

ay,-ﬁla,,.(:l,‘, y,8) < C(1 - ,r)-la|—d—1/2 exp(—co 1—r

for some positive constant ¢y. Hence, if (z,y,s) € N; and z # y,
'V(I,U)Ktll(x’ Y, S)I < C”w”m OIE%IV(:,y)ﬁLa,r(I, Y, S)l

olea ¢-(a, 9%, 9)
< Clllloo gmax (1 = r) 7142 exp (e =22V 11, (s)

l1—7r
< Cll¥lloog-(2, 7, 8) 7147211, ().
This concludes the proof of the lemma.
It remains to prove the claim. Let v = (vi,...,vq) and w = (wy,...,wy) be two

vectors in R!™, such that v;,w; € R™ and n; € N\ {0}, for each z = 1,...,d and
|n| = n1 + - - - + nq. Suppose that |v;| = z;, |wi| = y; and the angle between v; and w; is
arccos s;, for every i = 1,...,d. Then we have that g4(z%, 32, 5)/? = [v £ w|. So we get
that

g-(rz*, 9%, ) = Ir'/?v — wf?

> v-w?=-201-7"- (v-w)
> g (2%, 9%, 5) — 2(1 — r'/?)|zlg_ (27,47, 5) /2
= q- (1'2, yza S) - 2T(1 - 7.1/2)’

as required. 0
Since Lemma 1 ensures the appropriate estimates of the function Ky, we may now
prove that Ky, is the kernel of M(L,) outside the diagonal.

PROPOSITION 1. If f is a test function,
ME @) = [ Kole,)f @) dmato),
+

for all z outside the support of f.
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PRroOF: To compute the kernel of the operator M (Ea), assume that f and g are
test functions on R4, then

(Eu"'za f’ g)ua <TL° f1 ag
/ mar(x 1) £ (¥) dMa(y) Lag (z) dfia(z)

= (ma,r d/‘la ® dma;( 0)1(§® f)>

Here (-,-) denotes the pairing between distributions and test functions on Rd X R“
Mo,y A, ® dm, is the distribution whose dens1ty with respect to the measure dg,® dm,
iS Mar(z,y), and (L4); denotes the operator L, acting in the variable z. Since the
operator Ea is symmetric with respect to the Laguerre measure,

(Lar® f,9)5 = {((€a),iar) dfia ® dma,5® 1)
- / / O,y (2, )7(2) () Ao (y) da(z).

Thus, by (2.2),

(ML), = [ 90) [[ Bray (21)9(0) 1) () o) .

If f and g have disjoint supports, by Lemma 1 the triple integral of the right hand side
is absolutely convergent. Thus, by Fubini’s theorem

(M) f,9);. /Kw:y y) dma(y)3(z) dFia(2).

This proves that K is the restriction to the complement of the diagonal of the kernel of
M(Ly). 0

3. WEAK TYPE (1,1) BOUNDEDNESS

In this section we shall prove that M(C ) is of weak type (1,1) with respect to the
measure fi,. As we have seen, this is equivalent proving the (1, 1)-estimate for M (L,)
with respect to the Laguerre measure.

Now we shall decompose M (L,) into a “global” and “local” part. Let 7 = 8(Ja| +d)
and ¢ be a cut-off function on R4 x RS x [~1,1]¢ such that 0 < ¢ < 1,

1’ (.7}, yv 5) E NT’
T,Y,8) =
(p( v ) {0: (J“’yis)¢N27’
and
Ct
(3.1) IVzw(z,y,S)l + |Vy<p(z,y,s)| < q_(zZ,y2’s)l/2'
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Define
32)  MYf(x) = /R d /[ o Fo @)1= 0l@,9,9) 4o/ ) dma(v),
+ V=t
MY f = M(La)f — M*'f,

on the bounded measurable functions f. The boundedness of these operators implies the
weak type (1,1) of M(L,). First we study M9,

PROPOSITION 2. The operator M9 is of weak type (1,1) with respect to the
measure fq.

PROOF: It is simple to see that, for each f € L'(i,),

| M f(z)| <C||1/)||°°/ / max (2,9, 8)(1 — v(z,y,s)) ds|f(y Idma )
R{ JI-

1 l]d 0gr<1

< Cllil)lloo/ni/[“]d orggxdmar(x ¥,9)(1 — xn, (2,9, 5)) ds|f ()| dma ().
The latter operator is of weak type (1, 1) by a modification of the proof of the correspond-
ing result for the Ornstein-Uhlenbeck case, which can be found in [4] (for more details
see [10]).

In the following, we need the L?(Ji,)-boundedness of M% to study M'c. So we
introduce the following result. Let & be the function

d
eI, D TiYisi <0
k(.’ll, Y, S) = 2 .2 d i=1
(__‘1+($ .Y ’3))“‘"* V2 P lel®) /2 (4- (242 9 Pas (Gt otherwise.
q-(z% 9% s)

LEMMA 2. Ifq_(z% 4% s)/% > (8(|a| +d))/(1+ |z|+ |y|), there exists a constant
C such that,
max Maqr(Z,¥,s) < Ck(z,y, s)[I,(s).

0gr<«t

Proor: The proof is a modification to our case of the arguments used in the proof
of [7, Proposition 2.1]. We omit the details. 0
This estimate of the kernel suffices to prove the L?(fi,)-boundedness of M.

PROPOSITION 3. The operator M¥ is bounded on L?(fi,).
ProoF: By Lemma 2, it is enough to verify that the operator K defined by

10 = [, [, Koy als) ds10) dma)
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is bounded on L?(fi,). We may write
Kf@) = [ k{2, v, $)TTa(s) dsf(y) dma(y)
{36, zivisi<0}
+ / k(z,y, 9)1a(s) dsf (y) dma(y).
{T4, ziyisi>0}
The first integral is controlled by
L[ e M0a(s) 45| £ dma(s) = CU sy < Ol sy
Rq J[-1,1)¢

Therefore it remains to estimate the second integral. Let 5 € (1/2,1) and D,, be

{(z,y,5) € R x R x [-1,1)%: q_(2?, 1%, 5)"/ < gy (22,47, 5)'/%}.

d
If Y z;y:s; > 0, then

=1
k ) > — g4 (z?,y?, 5)(lal+d-1)/2
(I’ y,S € - q_(x2’y2’ S)(|a|+d+1)/2
(W2 +z1%)/2 g+ (2% 37 5) /2 q- (2% y?,9)V /%) /2

¢+ (2%, 9% 8) 1D (o ayge
q- (3;2, y?, s)(|a|+d+l)/2 ’

a+ (.’E2, y2a S)l/2q— (.’E2, yza 3)1/2

where the last estimate follows from the fact that the function g(t) = te~* is bounded on
[0, +00). We shall use the previous estimate in the region N°N D,,.

d
When Y z;y;5; > 0 and (z,y,s) € N7 N Dy, it follows from the fact that

i=1
1
FQ— (.’1:2, y2, S) 2 Q+(I2, y2’ S) >q- (1.2’ y2a S),
that there exists a constant p such that
k(z,y, s)e¥’ < Cellv H=l*/2-pa-(z* 3%9),

The conclusion follows, by applying a simple adaptation of [9, Proposition 5.4] to the
integral operator whose kernel is k(z,y, s)eyszs(:c, y, 8) with respect to the measure
ﬁo- D

Now to prove our main result, it is enough to get the weak type (1,1) estimate for
M. Observe that, by (3.2), the operator M'*¢ is a singular integral operator. However,
(R¢, Zi,) is not a space of homogeneous type in the sense of [2], because the measure fiq
is not a doubling measure. Therefore we cannot apply directly the Calder6n-Zygmund
theory to the operator M™°¢, to prove that it is bounded on LP(fi,).
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Nevertheless, we shall see that the problem may be reduced to studying the operator
on L?(m,), where m, is the measure defined in (2.4). Indeed, R% with the measure m,
and the Euclidean distance is a space of homogeneous type.

We need to observe that there exists a collection of balls { B;};en, covering R2, such
that the collection {0B;};en has bounded overlap for each § > 1 and on B; the measure
Ho is equivalent to the measure m, (see (9, Lemma 5.9]), that is, there exist Cy, C; > 0,
such that for every measurable subset E of B;

Coe—lzjlzma(E) < o(E) £ C16_Izj|2ma(E)'

REMARK 1. Let X be an operator mapping bounded measurable functions with com-
pact support to locally integrable functions. For each & > 1 fixed, define

Kef = Z]. x8;K(fxs5;),

for each bounded measurable function f. We have that if X extends to a bounded
operator on LP(ji,) or on LP(m,) for some p € [1,00), then K, extends to a bounded -
operator on LP(fi,) and on LP(m,). The LP-operator norm of K, with respect to both
measures, is bounded by a constant times the LP-operator norm of . Moreover the same
result holds for the weak type estimates (p, p), with p € [1,00) (see [9, Lemma 5.11]).

THEOREM 1. If the function M is of Laplace transform type, then the multiplier

operator M(L,) is of weak type (1,1) with respect to the measure [i,.

PROOF: By Proposition 2, M9 is of weak type (1,1). Thus by (3.2), it is enough to
analyse the operator M'°°. Let {B;};en be the family of balls defined above. We shall
fix & > 1 later. We may write M'°° as

M f = M"(fxsp,) + M ((1 - xs8;) f)-

By multiplying by x; and adding over j, we get

IMIOCfl s

Z] X B; MlOC (fXJBj)
= | M f| + |Rf|.

+ ‘ZJ X M ((1 - XaB,)f)‘

By spectral theory and Proposition 3, M(L,) and M¥ are bounded on L?(i,). It follows
that M is bounded on L?(%,). So by Remark 1, M}®® is bounded on L? with respect to
both measures, m, and fi,. We claim that R is bounded both on L?(ii,) and on L?(m,),
for 1 € p € co. Assuming this claim for the moment, we complete the proof. The oper-
ator M'¢ is an integral singular operator, whose kernel is f[-],l]d Ky(z,y, s)p(z,y, s) ds,
outside the diagonal. By the claim, M is bounded on L%(m,). Moreover, by (3.1) and
Lemma 1

{V(z,y) [Ku(z,y, 5)o(z,, S)]\ < Clitlloog- (22,47, s)71oI=4 21 o (),
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for each (z,y,s) € Ny, and = # y. Hence by an extension of the classical Calderén-
Zygmund theory for the singular operator on (R%,m,) (see [9, Proposition 5.7]), M is
of weak type (1,1) with respect to the measure m,. By Remark 1, M}°° is of weak type
(1,1) with respect to the measure g, and

1M fll 1oy < M FllLreoa) + IRFIL o)

as desired. In order to conclude it is necessary to prove the claim. Note that the kernel
with respect to the measure m, of the operator R is

) = 3, xe,(@ [ Kolow,5)0(o,9.5)ds(1 = xas, ().

[—l,l]d

We may choose d > 1 such that the function
(2,9,) = D x5, (2) Ky (2,4, 8)0(2,9,5) (1 — Xe, (v)),

is supported in Ny, \ N;. Indeed, it is quite straightforward to see that, for ¢ fixed, there
exists § > 1 such that if z € B; and y ¢ §B;, then (z,y,s) ¢ N, for each s € [—1,1]¢ (see
(10, Remark 2.29}). Thus, for (z,y,s) € Na,; \ N, by Lemma 1

|Ky(z,9,5)| < Ca_(a?, ¢, 5) 71 0,(s) < C(1 + |z| + |y]) X1+ DL, ().
Moreover

2 27

z — y| < ¢_(=?, 2,sl/<—.
|z — y] < ¢- (2%, 4% 3) T+ 2+ 0]

Hence |H(z,y)| < C(1+ |y|)2|°|+2d f[_l 14 xne(Z, 9y, $)Ia(s) ds. The boundedness of R
on L9, with 1 £ ¢ < oo, for both measures, follows from these estimates, as in the proof
of [9, Proposition 5.1 (19)]. 1]

REMARK 2. Now if M is of Laplace transform type, the weak type (1,1) of M(L,) with
respect to the Laguerre measure follows easily by Theorem 1.
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