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SPECTRAL MULTIPLIERS OF LAPLACE TRANSFORM TYPE FOR
THE LAGUERRE OPERATOR

EMANUELA SASSO

We shall work with the Laguerre measure on R/J. and the associated Laplacian Ca,
by means of which the Laguerre semigroup is denned. Our main result is a multiplier
theorem, saying that a function of Ca which is of Laplace transform type defines
an operator of weak type (1,1) for the Laguerre measure. Our starting point is the
well-known relationship between the Laguerre and Ornstein-Uhlenbeck semigroups.

1. INTRODUCTION

The purpose of this paper is to study the weak type (1,1) boundedness of a special
class of spectral multipliers for the Laguerre operator £Q, whenever a = (au ..., ad) is a
multi-index with a{ ^ 0, for each i = 1 , . . . , d.

The operator Ca is a self-adjoint "Laplacian" on L 2 ( / J Q ) , where /iQ is the Laguerre
d

measure of type a on R°, that is, dfj,a{x) = FT {x^e-Xi/T{ai + 1)) dx on R* = {x
>=i

6 R : i , > 0 for each i = 1,. . . , d}. It is well known that the spectral resolution of Ca

is

n=0

where V" is the orthogonal projection on the space spanned by Laguerre polynomials of
total degree n and type a in d variables (see, for instance, [12]). The operator Ca is the
infinitesimal generator of a "heat" semigroup, called the Laguerre semigroup, {e~tCa :
t ^ 0}, defined in the spectral sense as

n=0

It can be shown that for each t > 0, e~tCa is an integral operator, whose kernel with
respect to the Laguerre measure is

(1.1) mo t(x, y) = (l- e- ')-lQl
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where

d

(1.2) q±(x, y, s) = ^2(Xi + y{± 2{xiyi)
1l2si),

n (s) - 77 r(Q» +1) (•, _ 2\o(-i/2

and |a| = ai + • • • + ad. See, for instance, [1] and [12].
A line of research is devoted to the study of the boundedness properties of several

operators naturally associated with self-adjoint operators. As a significant but incomplete
sample of these investigations about the Laguerre operator, we can cite the papers [1,
3, 8] and our recent article [9]. In particular, the present work completes the study
of the functional calculus associated to the Laguerre operator of [9], by considering the
multipliers of Laplace transform type (in the terminology of [11]).

The assumption that a function M is of Laplace transform type implies that M
extends to a holomorphic function on the right half plane {z : !Rz > 0}, which is bounded
on every sector Sg = {z G C : |argz| < 0}, with 0 < 0 < TT/2. It follows from the
general Littlewood-Paley theory for semigroups that, if M is of Laplace transform type,
then M(Ca) is bounded on all spaces LP(na), with 1 < p < oo (see [11])-

In [6], the author gave a sufficient condition for the existence of a non-holomorphic
functional calculus for the generator A of a symmetric contraction semigroup on LP,
1 < p ^ oo. He proved that if the norms of the imaginary powers Aiu of a generator, as
an operator on LP, grow at most exponentially as |u| tends to infinity, then the multiplier
operator M(A) is bounded on LP, provided that M extends to a bounded and holomorphic
function on a fixed sector S ,̂ satisfying a Hormander condition of a sufficiently high order
on the boundary of the sector. A standard method to obtain estimates of the norms of
Alu on IP is via complex interpolation between a weak type (1,1) estimate and the L2

estimate. Observe that the L2 estimate is trivial, since by the spectral theorem the
operators Alu are unitary on L2.

In view of these remarks it is important to obtain sharp estimates of the weak type
(1,1) quasinorm of the imaginary powers of the operator Ca (see also [9]). This is a
particular case of a multiplier operator M(Ca) of Laplace transform type, to which we
may apply our main result.

The paper is organised as follows. Section 2 contains the setup and the derivation of
the kernel of the multiplier operator outside the diagonal, in terms of an integral involving
the kernel of the Laguerre semigroup. Finally, in Section 3, we prove the weak type (1,1)
estimate for the spectral multipliers of Laplace transform type.
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2. MULTIPLIERS O F L A P L A C E TRANSFORM T Y P E

In this section, we introduce the particular class of spectral multipliers of interest,
that is, the multipliers of Laplace transform type. We say that a function M is of Laplace
transform type if

M{k) = k f <S>{t)e-kt At, k>0,
Jo

where <f> is a bounded measurable function on R + . Changing variables e~* = r, we observe
that a function M is of Laplace transform type if and only if

(2.1) M{k) =k f ip{r)rh—, k > 0,
Jo r

where ip(r) = (j>(— logr). By spectral theory, the multiplier operator

M(£a) = f > ( n ) P°,
n=l

is a bounded operator on L2(fia). Moreover, it follows from the general Littlewood-Paley
theory for semigroups that, if M is of Laplace transform type, then M(Ca) is bounded on
all spaces LP{iJ,a), 1 < p < oo (see [11]). In the next section, we shall show that M(£Q)
is also of weak type (1,1) with respect to the Laguerre measure.

The advantage of working with multipliers of this type is that, by spectral theory,
M(Ca) may be written by means of the Laguerre semigroup. Therefore we get, at least
formally, an explicit expression of the action of M(Ca) in terms of the heat kernel ma<t.

To be more specific, by the spectral theorem and by (2.1), we have

(2.2) M(£a)= f ^(r)£ar
£°—,

Jo r

where the integral converges in the weak operator topology of L2(na). Indeed, if for every
pair of functions / , g in L2(/iQ), we denote their inner product in L2(fj.a) by ( / , g ) ^ , we
have that

(M{Ca)f,g) = £

f
fc=l

oo

Since YllC^k f > 9) ̂ <>\ ^ ll/lbllfflb. we may interchange the order of summation and inte-

gration to get
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as required.

If M is of Laplace transform type, then M(CQ) is a continuous operator from the
space of test functions to the space of distributions on R/J. and so it has a distributional
kernel. In the following, we shall deduce by (2.2) that, off the diagonal, this kernel agrees
with a function K^,, satisfying gradient estimates in a suitable neighbourhood of the
diagonal.

The first tool in the proof of our main result is the relationship between the Laguerre
and Ornstein-Uhlenbeck semigroups. It is well known that for special values of a the
analysis of the Laguerre semigroup can be interpreted as the analysis of the Ornstein-
Uhlenbeck semigroup acting on radial functions (see [1] and [3]). As in [5], the idea is to
decompose M(Ca) into two operators, one given by a kernel supported off the diagonal,
and the other satisfying "standard" gradient estimates in a suitable neighbourhood of
the diagonal.

First, it is convenient to perform a change of coordinates in R+. If x — (xlt..., xd)
is a vector in R^, then x2 denotes the vector x2 = {x\,...,x2

d). Let * : R+ —> R+ be
defined by \&(x) = x2 and let Jla = \I/*/iQ be the pull-back of the measure /uQ. Then Jia is
the the probability measure

(2.3) d j l a ( x ) = ^ ^ ^

on R+. The map / —> Uyf = f o <J> is an isometry of Lq(^a) onto Lq(Jla), for every q in
[l,oo]. Let Ca denote the operator UxuCJAy1. We may reduce the problem to the study
of the weak type (1,1) boundedness of the operator M(Ca), with respect to the measure

Ma-

It is easy to observe that rCa, with 0 ^ r < 1, may be written as an integral operator,
whose kernel is

mQ}r(x,y)= mQ,r(:r,2/,s)ds,
•'(-Ml'1

w h e r e / 2 2 >

with respect to the measure ma, that is, the probability measure on R^. defined by

(2.4)

The expression for mQ)r is obtained from (1.1) by using the change of variable t

= — logr. Since the kernel fha,e-t satisfies the heat equation dtu = —Cau, it follows that

rdTma<r = £ Q m Q r .

https://doi.org/10.1017/S0004972700035991 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700035991


[5] Spectral Multipliers for the Laguerre Operator 259

For each if> 6 L°° (R + ) , define

K$(x,y) = I Ki>{x,y,s)ds,
Jl-i.i)"

with

K^,(x,y,s)= ip(r)drma,r{x,y,s)dr.
Jo

In order to define the "local" region, we consider the extra variable s in [—l,l]d.
This artifice is suggested by the description of the local region in polar coordinates in the
Ornstein-Uhlenbeck case, and by the form of the kernel fha,r. For each r > 0 the local
region NT is the set

{(x,y,3) eR d
+ x R d x {-l,l]d: q_(x2,y\

LEMMA 1. Ifx^y the integral K${x,y) converges absolutely. Moreover, in this
case there exists a constant C such that

\K*{x,y,8)\

whenever (x, y, s) € A^T-

PROOF: By a straightforward calculation we have that

(2.5) dTma,r(x, y, s) = (l- r r ^ - ^ e ^ - ^ ^ ^

where P{y/r) is a polynomial in y/r of degree three, whose coefficients depend on x, y, s.
Thus the function r *-> dTmair(x,y, s) changes sign at most a finite number of times. It
follows that there exists a constant C such that

/ \ip{r)drmatr(x,y)\dr ^ / / \tp(r)dTmQ<T{x,y,s)\ dr ds
Jo Jo J[-i,i]d

< C|Mloo / max rha<r(x, y, s) ds < oo,

for all x and y in R^. We claim that in the local region NT the following holds

(2.6) q_(rx2,y2,s) > q-{x2,y2,s) - 2r(l - r1'2).

Assuming this claim for the moment, we complete the proof of the lemma. By (2.6), if

i / ) / and (x,y,s) G NT, we get that

,max\matr(x,y, s)\
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Moreover, if x ^ y, a straightforward calculation shows that, for each i = 1 , . . . ,d,

and similarly

dyima,r(x,y,s)

for some positive constant CQ. Hence, if (x, y, s) € NT and x ^ y,

l

This concludes the proof of the lemma.

It remains to prove the claim. Let v = {v\,...,Vd) and w = {w\,...,wd) be two
vectors in R | n | , such that Vi,wt G R n i and n( e N \ {0}, for each i = l,...,d and
\n\ = ni + • • • + n<i- Suppose that \v{\ = xt, \wi\ = yt and the angle between vt and wt is
arccos Si, for every i = 1 , . . . , d. Then we have that q±{x2, y2,s)ll2 = \v ± w\. So we get
that

\v - w\2 - 2(1 - rx'2)v • (v - w)

9-(x2
l 2 /2 ,S) - 2(1 -

as required. D
Since Lemma 1 ensures the appropriate estimates of the function K^, we may now

prove that K^, is the kernel of M(Ca) outside the diagonal.

PROPOSITION 1 . Iff is a test function,

M(£Q)/(x)= / K<,(x,y)f(y)dma(y),

for all x outside the support of f.
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PROOF: TO compute the kernel of the operator M(Ca), assume that / and g are
test functions on R+, then

= / / rhas(x,y)f(y)dma{y)£ag(x)diia(x)

= (ma>r d/xQ ® dma, (Ca)x(g <g> / ) ) .

Here (•,•) denotes the pairing between distributions and test functions on R+ x R^,
fna,r d/IQ ® dma is the distribution whose density with respect to the measure dptQ ® dma

is mayr(x, y), and {Ca)x denotes the operator La acting in the variable x. Since the
operator Ca is symmetric with respect to the Laguerre measure,

= / /

Q,r) djla ® dma, g

rdTfhaiT(x,y)g(x)f(y)dma(y)dfla{x).

Thus, by (2.2),

(M(Ca)f, g)-a = ̂  rP(r) Jj drma,(x, y)g(x)f{y) d]la(x) dma(y) dr.

If / and g have disjoint supports, by Lemma 1 the triple integral of the right hand side
is absolutely convergent. Thus, by Fubini's theorem

K4x,y)f(y)dma(y)g(x)dilQ(x).

This proves that K^ is the restriction to the complement of the diagonal of the kernel of

M(Ca). 0

3. W E A K T Y P E (1,1) BOUNDEDNESS

In this section we shall prove that M(Ca) is of weak type (1,1) with respect to the
measure jla. As we have seen, this is equivalent proving the (1, l)-estimate for M(Ca)

with respect to the Laguerre measure.

Now we shall decompose M(Ca) into a "global" and "local" part. Let r = 8(|a| +d)

and <p be a cut-off function on R^. x R^. x [-1 , l]d such that 0 ̂  <p < 1,

and

(3.1) \Vx<p{x,y,s)\ + \Vy<p{x,y,s)\
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Define

(3.2) M"f{x)= f f K^(x,y,s)(l-ip(x,y,8))daf(y)dma(y),

ocf = M(Ca)f - M°lf,

on the bounded measurable functions / . The boundedness of these operators implies the
weak type (1,1) of M(£Q). First we study M9'.

PROPOSITION 2 . The operator M9' is of weak type (1,1) with respect to the
measure Jj,a-

PROOF: It is simple to see that, for each / £ L}(p,a),

f maximair(x,y,s)(l-ifi(x,y,s))ds\f(y)\dma(y)
% J[-l,l]d°^T<1

maxma,r(a;,j/,s)(l-xjvr(a;,l/,s))ds|/(y)|dma(j/).

The latter operator is of weak type (1,1) by a modification of the proof of the correspond-
ing result for the Ornstein-Uhlenbeck case, which can be found in [4] (for more details
see [10]). D

In the following, we need the L2(/IQ)-boundedness of M9' to study Mloc. So we
introduce the following result. Let k be the function

k{x,y,s) -

\q_(x2,y2,s).

LEMMA 2 . Ifq-(x2,y2,s)1/2 > (8{\a\+d))/(l + \x\ + \y\), there exists a constant
C such that,

max Tha,T(x, y, s) < Ck(x, y, s)UQ(s).

PROOF: The proof is a modification to our case of the arguments used in the proof
of [7, Proposition 2.1]. We omit the details. D

This estimate of the kernel suffices to prove the L2(jiIQ)-boundedness of M9'.

PROPOSITION 3 . The operator M9' is bounded on L2{j2a).

PROOF: By Lemma 2, it is enough to verify that the operator K. defined by

£/(*)= / / k(x,y,s)na(s)dsf(y)dma(y)
JTVL •'[—ill]''

https://doi.org/10.1017/S0004972700035991 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700035991


[9] Spectral Multipliers for the Laguerre Operator 263

is bounded on L2(p,a). We may write

Kf(x) = I d k(x, y, s)Tla(s) dsf{y) dma(y)

+ d k(x,y,s)Ua(s)dsf(y)dma(y).

The first integral is controlled by

/ / e-M'lUs) ds\f(y)\ dma(y) = C\\f\\LHM < C\\f\\»lM.
JR^ J[-l,l]<i

Therefore it remains to estimate the second integral. Let 77 € (1/2,1) and Dv be

Mr 11 si (= R d x R d y [-1 I l d • n IT2 II2 "ji1/2 .

d

If J2 XiViSi > °i t h e n

t = l

„ (~2 ,.2 \
K(x,y,s)e ~ q(x2y2s)

„ (Jl ,,2 Q\(\a\+d-l)/2
q+(x ,y ,s)" i

where the last estimate follows from the fact that the function g(t) = te~l is bounded on
[0, +00). We shall use the previous estimate in the region N£ n Dv.

d

When 5Z XiViSi > 0 a nd (x, y, s) e N£ n £>Jj, it follows from the fact that
t = i

—q-{x2,y2,s) >q+(x2,y2,s) > q-{x2,y2, s),

that there exists a constant p such that

The conclusion follows, by applying a simple adaptation of [9, Proposition 5.4] to the
integral operator whose kernel is k(x,y,s)ev2XNc(x,y, s) with respect to the measure

Ha- T D
Now to prove our main result, it is enough to get the weak type (1,1) estimate for

Mloc. Observe that, by (3.2), the operator Mloc is a singular integral operator. However,
(R^., Jla) is not a space of homogeneous type in the sense of [2], because the measure Jia

is not a doubling measure. Therefore we cannot apply directly the Calderon-Zygmund
theory to the operator Ml o c , to prove that it is bounded on L?{jia).
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Nevertheless, we shall see that the problem may be reduced to studying the operator
on UfjUc), where ma is the measure defined in (2.4). Indeed, R/J. with the measure ma

and the Euclidean distance is a space of homogeneous type.

We need to observe that there exists a collection of balls { £ J } J 6 N , covering R^., such
that the collection {6Bj}j€n has bounded overlap for each 5 > 1 and on Bj the measure
Jla is equivalent to the measure ma (see [9, Lemma 5.9]), that is, there exist Co, C\ > 0,
such that for every measurable subset E of Bj

REMARK 1. Let K. be an operator mapping bounded measurable functions with com-
pact support to locally integrable functions. For each 6 > 1 fixed, define

-1

for each bounded measurable function / . We have that if /C extends to a bounded
operator on D'Cjia) or on Iffac) for some p € [l,oo), then Kt extends to a bounded
operator on LP^jla) and on ^(nia). The ZAoperator norm of fCe with respect to both
measures, is bounded by a constant times the .//-operator norm of /C. Moreover the same
result holds for the weak type estimates {p,p), with p € [l,oo) (see [9, Lemma 5.11]).

THEOREM 1 . If the function M is of Laplace transform type, then the multiplier
operator M(Ca) is of weak type (1,1) with respect to the measure Jla.

PROOF: By Proposition 2, M9' is of weak type (1,1). Thus by (3.2), it is enough to
analyse the operator Mloc. Let {Bj}jew be the family of balls defined above. We shall
fix 6 > 1 later. We may write Mloc as

Ml o c / - Mloc(fX6Bj) + Mloc((l - xiBj)f).

By multiplying by XBJ and adding over j , we get

|Ml 0 C/ | - XSB,)f)\

:= \MfcS\ + \Rf\-

By spectral theory and Proposition 3, M(£o) and M9' are bounded on L2(fia). It follows
that Mloc is bounded on L2{JJLa). So by Remark 1, Af]oc is bounded on L2 with respect to
both measures, mQ and ~p.a. We claim that R is bounded both on D'iJla) and on W^rria),

for 1 < p ^ oo. Assuming this claim for the moment, we complete the proof. The oper-
ator Mloc is an integral singular operator, whose kernel is /,_j l,dK^,(x,y,s)<p(x, y, s)ds,

outside the diagonal. By the claim, Mloc is bounded on L2(ma). Moreover, by (3.1) and
Lemma 1

^x, y, s)V{x,y, a)] |
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for each (x, y, s) € N2T and x ^ y. Hence by an extension of the classical Calderon-
Zygmund theory for the singular operator on (R+,mo) (see [9, Proposition 5.7]), Mloc is
of weak type (1,1) with respect to the measure ma. By Remark 1, M]oc is of weak type
(1,1) with respect to the measure jia and

I|MIOC/||L>.=O(SQ) ^ ||M;oc/||L1,=o(?a) + \\Rf\\LHM,

as desired. In order to conclude it is necessary to prove the claim. Note that the kernel
with respect to the measure ma of the operator R is

Kj,(x,y,s)<p(x,y,s)ds(l-xsBAy))-

We may choose 6 > 1 such that the function

(x, y, s) i-+ ^2 XBj{x)K^{x, y, s)tp{x, y, s) (l - XSB, (j/)),

is supported in N2T \ NT. Indeed, it is quite straightforward to see that, for t fixed, there
exists 8 > 1 such that if x G Bj and y $ 6Bj, then (x, y, s) £ Nt for each s € [-1, l ] d (see
[10, Remark 2.29]). Thus, for (x,y,s) € N2T\NT, by Lemma 1

\K+(x,y,s)\^ Cq-(x2,y2, s)-^-dUa(s) < C(l + \x\

Moreover

\ \ ^ ( 3 2 ) 1 / 2

1 + |z| + M

Hence \H(x,y)\ ^ C ( l + M)2 W + 2 d / [ - i 1 ] d XN?(x,y,s)Ha{s)ds. The boundedness of R
on Lq, with 1 $J g ^ oo, for both measures, follows from these estimates, as in the proof
of [9, Proposition 5.1 (19)]. D

REMARK 2. Now if M is of Laplace transform type, the weak type (1,1) of M(Ca) with
respect to the Laguerre measure follows easily by Theorem 1.
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