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Abstract

This paper provides a gentle introduction to problem-solving with the IDP3 system. The

core of IDP3 is a finite model generator that supports first-order logic enriched with types,

inductive definitions, aggregates and partial functions. It offers its users a modeling language

that is a slight extension of predicate logic and allows them to solve a wide range of search

problems. Apart from a small introductory example, applications are selected from problems

that arose within machine learning and data mining research. These research areas have

recently shown a strong interest in declarative modeling and constraint-solving as opposed

to algorithmic approaches. The paper illustrates that the IDP3 system can be a valuable tool

for researchers with such an interest. The first problem is in the domain of stemmatology,

a domain of philology concerned with the relationship between surviving variant versions

of text. The second problem is about a somewhat related problem within biology where

phylogenetic trees are used to represent the evolution of species. The third and final problem

concerns the classical problem of learning a minimal automaton consistent with a given set

of strings. For this last problem, we show that the performance of our solution comes very

close to that of the state-of-the art solution. For each of these applications, we analyze the

problem, illustrate the development of a logic-based model and explore how alternatives can

affect the performance.

KEYWORDS: knowledge representation and reasoning, declarative modeling, logic pro-

gramming, knowledge base systems, FO(·), IDP system, stemmatology, phylogenetic tree,

deterministic finite state automaton
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1 Introduction

In his seminal paper, Kowalski (1974) proposed to use first-order predicate logic

(FO) as a programming language. He argued that it is possible to use deduction for

computation by associating a procedural interpretation to the Horn clause subset

of first-order logic. These ideas found their incarnation in the language Prolog.

Whereas Prolog uses deduction as an inference method, other inference methods

also exist. Most prominent is the model generation as used in propositional

SAT solvers. Also, the inference method of Constraint Programming (CP) can

be considered as model generation; indeed, its solvers attempt to assign values

to variables while satisfying a set of constraints. The last decades have wit-

nessed tremendous progress in solver technology for Constraint Programming

and SAT solving. In Constraint Programming, this progress is at the basis of a

shift from Constraint Programming to Constraint Modeling.1 Notorious examples

are Essence (Frisch et al. 2008) and Zinc (Marriott et al. 2008). Within logic

programming, the introduction of stable semantics (Gelfond and Lifschitz 1988)

eventually led to the Answer Set Programming (ASP) paradigm (Brewka et al. 2011)

that, similar to SAT, uses model generation instead of deduction for inference. Many

ASP-based systems exist. Examples are DLV (Leone et al. 2002), clasp (Gebser

et al. 2007) and Smodels (Syrjänen and Niemelä 2001).

All this progress raises the question as to what is the status of logic as a modeling

language. SAT is restricted to propositional logic. It can be considered as the

assembler language for modeling. Indeed, there are many examples of programs

that generate SAT encodings to obtain the state-of-the-art solvers for various

classes of problems. One can find examples in the areas of planning and generating

deterministic finite automata, to name just a few. However, SAT is not suited as a

language for developing models. For what concerns ASP, it is an expressive high-level

language, but it is not based on predicate logic. Today, many intricacies of stable

model semantics are hidden in high-level ASP constructs such as constraints and

choice rules; however, its two forms of negation (“not” and strong negation) (Brewka

et al. 2011) clearly distinguish it from the first-order logic; the deviation from first-

order-logic semantics could be an obstacle for newcomers.

Historically, predicate logic was always viewed as a very expressive modeling

language. This is remarkable, given that anyone who used it for modeling a practical

domain will have experienced its inconvenience in expressing certain common

propositions. A clear weakness is in expressing inductively definable concepts such as

the transitive closure of a binary relation. Another deficiency is in expressing bounds

on the cardinality or the sum of sets. Practical modeling languages in Constraint

Programming or ASP therefore support some of these propositions. While ASP

can express inductive definitions, it is built on radically different foundations than

FO. A more conservative solution that preserves FO’s foundations is to extend it

1 In this paper, we use the word model in two different meanings. First, a model is a structure that
satisfies the theory, as in “model generation.” Second, a model is the result of modeling a problem
domain. It is a theory in logic, a formal specification of the problem domain. It should be clear from
the context what is intended.
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with suitable language constructs. For instance, it was argued in several works,

for example by Denecker and Ternovska (2008) and Denecker and Vennekens

(to appear), that a rule set formalism under an extension of the well-founded

semantics (Van Gelder et al. 1991) is a natural formalism to express the most

common forms of inductive definitions. Such a formalism can be integrated with FO

in a conceptually clean way. The resulting logic was named FO(ID) by Denecker

and Ternovska (2008). The link between FO(ID) and ASP was recently studied by

Denecker et al. (2012). Below, we use the notation FO(·) to denote the family of

extensions of first-order logic.

In this paper, we explore the use of FO(·)IDP3, the instance of the FO(·) family that

is supported by IDP3, the current version of the IDP Knowledge Base System (De

Pooter et al. 2011). FO(·)IDP3 extends first-order logic with inductive definitions,

partial functions, types and aggregates. The IDP system supports model generation

and model expansion (Mitchell and Ternovska 2005; Wittocx et al. 2013) as inference

methods and is one of the fastest such systems (Calimeri et al. 2011). Particular to

the modeling language used here is the combination of a purely declarative modeling

language with a procedural language that handles interaction with the outside world.

Indeed, in contrast to Prolog, the control of the search can be left to the solver, and

the user can concentrate on modeling. As we will illustrate in the paper, this does

not mean that any correct model will do; when performance matters, models have

to be designed with care.

As for the organization of the paper, we start Section 2 with recalling the FO(·)
family of extensions of predicate logic. Next, we introduce the FO(·)IDP3 instance of

FO(·) and the IDP knowledge base system that supports FO(·)IDP3 as a modeling

language. The section continues with the shortest path problem as an illustrative

example. After describing a very basic model, it explores how alternative models

affect the performance of the underlying solver.

The other sections explore the use of the IDP system for solving some real-

world problems encountered in the domain of machine learning and data mining by

some of the authors. Researchers in this domain have become increasingly aware

of the fact that data analysis problems come in many different variants, which do

not always fit the standard algorithms well. It is infeasible to develop algorithms

for each specific variant, but recently it has been shown that some standard data

mining problems, as well as their variants, can be modeled as constraint problems,

and solved by general-purpose solvers with performance comparable to that of

dedicated algorithms (Guns et al. 2011). Our discussion on the use of IDP for three

different tasks adds support for the claim that declarative modeling may have an

important role to play in machine learning and data mining.

The first task, addressed in Section 3, is in the domain of a stemmatology, a part

of philology that studies the relationship between surviving variant versions of a

text. A stemma is a family tree that shows how different copies of the same text

relate to each other. These copies – manuscripts – are not identical, but evolve.

Manuscripts often do not have a single parent, different parts can be copied from

different parents, so a stemma is in fact a directed acyclic graph. A typical task

is to analyze the plausibility of a stemma hypothesis. For this task, the philologist
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collects datasets describing features of the text. The values of a feature represent

variant readings of a fragment of the text. A common assumption is that the stemma

has, for each variant, a unique manuscript that is the source of the variant. The

feature value is unknown for some manuscripts, and the question is whether these

unknown values can be assigned such that there is indeed a unique source for each

feature value. In working out this task, we also illustrate how the procedural side of

FO(·)IDP3 allows the user to organize a complete workflow.

The second task (Section 4), although in the very different domain of biology,

is somewhat related to the previous one as it is concerned with phylogenetic trees.

Phylogeny is an area in which many problems arise. Several problems have been

tackled by means of ASP, see Erdem (2011) for an overview. Here we address a

new problem in this area. Phylogenetic trees have in their leaves a set of current

species and the tree represents the evolutionary relationship between them. Often

there are several equally plausible evolutionary explanations and hence different

phylogenetic trees. The question addressed here is: what is the minimal supergraph

that represents each of the individual trees? What makes the problem difficult is

that the correspondence between the internal nodes of different trees is unknown

and has to be guessed. Different guesses result in different supergraphs.

In Section 5, we study the well-known problem of learning a minimal deterministic

finite state automaton (DFA) that is consistent with a given set of accepted and

rejected strings. This is a classical machine learning task for which competitions

are organized. The state-of-the-art method (Heule and Verwer 2010; Heule and

Verwer 2012), winner of the 2010 Stamina competition (Stamina 2010), solves it

by a problem-specific program that iteratively creates a SAT encoding and applies

a SAT-solver for an increasing number of states until a model is found. Here

we explore to what extent a high level FO(·) formalization can compete with a

laboriously constructed encoding as a propositional SAT problem.

These three problems can be abstracted as graph problems and are nondeter-

ministic polynomial time (NP)-complete. Solving them inherently involves search;

heuristics are needed to guide the search toward solutions. Developing an algorithm

in a procedural language is time-consuming, error-prone and challenging. The use of

a declarative modeling language liberates the programmer from the task and allows

him to devote more time to proper formalization. Moreover, the default heuristics

of the underlying solvers are often sufficient to obtain adequate solutions.

In Section 6, we reflect on our achievements and discuss where there is potential

for further improvement. Some of the material in this paper is based on the work of

Blockeel et al. (2012), and for stemmatology, on the work of Andrews et al. (2012).

2 FO(·) and the IDP system

First-order logic has a long tradition and a well-understood semantics but also some

limitations with regard to its expressiveness, which makes it not so well suited as

a language for knowledge representation. The most notorious problem is that it

cannot naturally express transitive closures such as “x is reachable from y if either

x and y are connected or there exists a z such that x and z are connected and x is
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reachable from z.” Note that Prolog programmers can cope with transitive closure

and that the least Herbrand interpretation captures its meaning; actually, in the first

years of logic programming, many Prolog programmers did not realize that it was

an issue in the knowledge representation community; at the same time, many in

the latter community were ignorant about Prolog’s expressiveness. In the knowledge

representation community, there are two ways to work around the limitation. On the

one hand, one can introduce knowledge representation languages with a semantics

different from first-order logic; on the other hand, one can enhance first-order logic

with additional constructs. The former approach is taken by the ASP community;

the latter approach has been advocated in Denecker and Ternovska (2008), where

first-order logic was extended with (not necessarily monotone) inductive definitions.

It was argued that this extension resulted in a very natural and expressive language

whose meaning was captured by a generalization of the well-founded semantics

introduced by Van Gelder et al. (1991). This extension was named FO(ID) and

later work used the notation FO(·) for a family of languages extending first-order

logic.

The FO extension used as a modeling language throughout this paper includes

not only inductive definitions but also partial functions, types and aggregates. It is

the extension supported by the IDP3 version of the IDP Knowledge Base System

that was for the first time described by De Pooter et al. (2011).2 We denote this

extension as FO(·)IDP3.
Functions, of which constants are a special case, are very convenient in modeling.

They are used in all the modeling examples of the paper. While n-ary functions

can be considered as syntactic sugar for predicates with n + 1 arguments, the use

of functions makes models more concise and readable. Indeed, when functions are

represented as predicates, the functional dependency between the input arguments

and the result needs to be represented as a separate constraint. Partial functions

give extra flexibility to the modeler. An example can be found in the model of finite

state automata in Section 5, where a state doesn’t need a transition for all symbols

in the automaton’s input alphabet.

In almost all applications, the universe is not uniform but contains different types.

Relations are typed. Quantification is “naturally” typed, namely, we quantify over

objects of a type. It is not difficult to make typing explicit in untyped predicate logic.

Yet, it requires an extra discipline of the user to make the types in her quantifications

and her relations and functions explicit. By introducing an explicit type system, even

a simple many-sorted type system, and a type checking and inference system (to

discover type clashes and to guess the types of variables and/or parameters), theories

become more compact and graceful. Moreover, a number of bugs can be detected:

syntactic errors in variable names, swapped or missing arguments, unintended reuse

of variables etc. This is common wisdom. Indeed, well-typed theories go wrong less

often (Milner 1978). The type system of IDP3 is not needed from a computational

point of view, but for above-mentioned reasons, we often find it convenient.

2 The examples used throughout the paper make use of IDP version 3.2.0.
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Aggregates are another extensions that contribute to the readability and con-

ciseness of models. Consider, for example, the constraint expressing the functional

dependency. One needs to express that there is exactly one value (or in the case of

a partial function at most one value) for each combination of input arguments. The

availability of aggregates makes it a lot more convenient to express such constraints.

A study about the semantics of aggregates in definitions, including the case of

recursion, has been made by Pelov et al. (2007).

2.1 The logical components of an FO(·)IDP3 model

In this section, we introduce the basic notions of an FO(·)IDP3 model. We restrict

ourselves to what is needed to understand the examples later on in the paper.

An FO(·)IDP3 model comprises a number of logical components, namely vocabu-

laries, structures, terms and theories. A vocabulary declares the symbols to be used.3

A structure is used to specify the domain and the data; it can be viewed as a sort

of database, it provides a partial (three-valued) interpretation of the symbols in the

vocabulary. In the context of optimization problems, a term component declares

the numerical cost term to be optimized. A theory comprises FO formulas and

definitions. A definition is a set of rules of the form ∀x̄ : P (x̄) ← ϕ(x̄). where ϕ

is an FO(·)IDP3 formula.4 An FO(·)IDP3 formula differs from FO formulas in two

ways. First, FO(·)IDP3 is a many-sorted logic: every variable has an associated type

and every type has an associated domain. Moreover, it is order-sorted: types can be

subtypes of others. Second, besides the standard terms in FO, FO(·)IDP3 formulas can

also have aggregate terms: functions over a set of domain elements and associated

numeric values that map to the sum, product, cardinality, maximum or minimum

value of the set.

We write M |= T to denote that structure M satisfies theory T . With xM, we

denote the interpretation of x underM, where x can be a formula or a term. Without

going in full details, M satisfies T when (i) every FO formula F of T is satisfied

in M (FM is true), and (ii) every definition of T is satisfied in M. A structure M
satisfies a definition D when the well-founded model construction on D (Van Gelder

et al. 1991) that starts from O, the restriction of M to the predicates not defined in

D, results in M. See De Cat et al. (2014) for more details.

2.2 The IDP3 system

The IDP3 system (De Pooter et al. 2011) is a Knowledge Base System (KBS) that

intends to offer the user a range of inference methods, such as model expansion,

optimization, verification, symmetry breaking and grounding, and to make use

of different state of the art technologies, including SAT, SAT Modulo Theo-

ries (Nieuwenhuis et al. 2006), Constraint Programming and various technologies

from logic programming.

3 Contrary to Prolog and ASP, the first character of a symbol has no bearing on its kind.
4 Definitions have a lot in common with pure Prolog rules.
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In this paper, we make use of the inference methods model expansion, satisfiability

checking and model minimization. The most important inference method is model

expansion discussed by Mitchell and Ternovska (2005) and further extended by

Wittocx et al. (2013). The idea of model expansion is to extend a partial structure

(an interpretation) into a full structure that satisfies all constraints specified by the

FO(·)IDP3 model. More formally, the task of model expansion is, given a vocabulary

V , a theory T over V and a partial structure S over V (at least interpreting all

types), to find a structure M that satisfies T and expands S , i.e., M is a model of

the theory and the input structure S is a subset ofM. In the IDP3 system, this task

is executed by modelexpand(T,S). The result of the modelexpand procedure is a list

of models of T that expands S . If the option nbmodels is set to a value n different

from 0, IDP3 will stop searching for more models once it has found n models.

Satisfiability checking is related to model expansion. Calling sat (T,S) in the IDP3

system will return true if and only if modelexpand(T,S) would have returned at

least one model. However, since we are not interested in the actual models, some

optimizations can be done to speed up this inference.

In case of model minimization, also a numerical cost term t is given. The task is to

find a model M of T that expands S such that, for all other models M’ expanding

S , tM � tM
′
. Model minimization is activated by minimize(T,S,t ) with t referring to

the term component defining the term.

The IDP3 system allows users to specify FO(·)IDP3 problem descriptions. The basic

overall structure of the logical components is as in the following schema.

vocabu l a ry V { . . . } t h eo ry T: V { . . . }
term t : V { . . . } s t r u c t u r e S : V { . . . }

This schema defines a vocabulary V, which is then used as a context in the theory T,

the term t and the structure S. In general, several vocabularies can be defined, even

extending other vocabularies.

We use IDP syntax in the examples throughout the paper. Each IDP operator has

an associated logical operator, the main (non-obvious) operators being: &(∧), |(∨),

∼(¬), !(∀), ?(∃), <=>(≡), ∼=( �=).

A distinguishing feature of FO(·)IDP3 models is that they not only comprises logical

components but also have one or more procedural components. These procedural

components comprises procedural code that can perform actions. Actions include

the execution of an inference method on a particular logical theory, but also the

presentation of results to the user. Procedures allow to glue together a sequence of

actions in a process that performs a task for the user. The convention is that the

user’s task is performed by invoking the procedure main(). Such a task can start with

procedural code to prepare one or more structures from input files or databases,

continue with performing a number of inference task on combinations of theories

with structures and end with presenting the results to the user. The procedural

language has to be a flexible and extensible scripting language that offers a smooth

integration with the C++ solvers of the IDP system. The IDP system (De Pooter

et al. 2011) makes use of the Lua (Ierusalimschy et al. 1996) scripting language for
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this purpose. It allows us to treat the various logical components of an FO(·)IDP3
theory as objects that can be manipulated from within the procedures.

More information on the IDP system and in particular its IDP3 version as

given by Wittocx et al. (2008) and De Pooter et al. (2011) can be found at

http://dtai.cs.kuleuven.be/krr/software/idp3.

2.3 An example: the shortest path problem

As an illustration, we model the shortest path problem (Listing 1). The vocabulary

comprises a single type, two constants and three predicates. The structure specifies

the given graph: the interpretation of the type node (the domain elements A,

B, C and D) and the predicate edge(node,node) (the domain atoms edge(A,B),

edge(B,C), edge(C,D) and edge(A,D)) as well as the constants from (the domain

element A) and to (the domain element D), which identify the begin- and endpoint of

the path searched for. The predicate edgeOnPath(node,node) is used to represent

the edges that participate in the shortest path. It provides the base case of the

transitive relation reaches(node,node), which is defined in the theory component.

Definitions are given between “{” and “}.” Note that we use the most basic definition

for transitive closure: we join the reaches relation with itself.

Besides this inductive (recursive) definition, the theory also specifies the constraints

expressing that the edgeOnPath/2 atoms included in a model of the theory indeed

compose a simple path from from to to. The first constraint, a universally quantified

implication, ensures that edgeOnPath/2 atoms are indeed edge/2 atoms. This

constraint explicitly mentions the type of the quantified variables; however, this

is optional; these types can be inferred from the type declarations of the predicates

of the formula. The types of the quantified variables are omitted in the following

constraints. The second constraint, a simple fact, imposes that reaches/2 includes

the pair (from,to). The third constraint, a conjunction of negated formulas, states

that the edgeOnPath/2 atoms should neither include an edge arriving in from nor

an edge leaving to. The fourth constraint is a universally quantified conjunction of

two cardinality constraints; it expresses that every node has less than two incoming

edges and less than two outgoing edges (i.e., the path is simple). The notation ?<2 y

: edgeOnPath(y,x) means that there are strictly less than two y’s that have an edge

to x in the path. This is syntactic sugar for the aggregate #{ y : edgeOnPath(y,x)}
< 2. This aggregate is a more concise formulation of the FO constraint ! y1 y2

: edgeOnPath(y1,x) & edgeOnPath(y2,x) => y1=y2. Finally, the last constraint,

another universally quantified implication, states that the endpoints of selected edges

are reachable from from (i.e., no edges are selected that do not contribute to the

path).

The term component of the model defines the term lengthOfPath as an aggregate

expression counting the number of tuples in the edgeOnPath relation of a model of

the theory. Minimizing this term ensures that the path described in a model of the

theory is indeed the shortest path.

The procedure component shows the Lua code invoking the model minimization

task and printing the result. The Lua code treats the logical components as first-class
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citizens and uses them as parameters in the method call activating the solver. The

annotation [1] directs the solver to return at most one solution.

Listing 1. Calling main() solves the shortest path problem for the given data.
vocabu l a ry sp voc {

t ype node

from , to : node

edge ( node , node )

edgeOnPath ( node , node )

r eache s ( node , node )

}
t h eo ry sp theory1 : sp voc {

{ ! x y : r eache s ( x , y ) <− edgeOnPath ( x , y ) .

! x y z : r eache s ( x , y ) <− r eache s ( x , z ) & reache s ( z , y ) . }

! x [ node ] y [ node ] : edgeOnPath ( x , y ) => edge ( x , y ) . // ( 1 )

r eache s ( from , to ) . // ( 2 )

˜ (? x : edgeOnPath ( x , from ) ) & ˜(? x : edgeOnPath ( to , x ) ) . // ( 3 )

! x : (?<2 y : edgeOnPath ( y , x ) ) &

(?<2 y : edgeOnPath ( x , y ) ) . // ( 4 )

! x y : edgeOnPath ( x , y ) => r eache s ( from , y ) . // ( 5 )

}
s t r u c t u r e s p s t r u c t : sp voc {

node = {A . .D} // shorthand fo r A, B ,C,D

edge = {A,B; B ,C; C,D; A,D} // ‘ ; ’ s epa ra t ed l i s t of t u p l e s

from = A

to = D

}
term l engthOfPath : sp voc { #{ x y : edgeOnPath ( x , y ) } }
procedu r e main ( ) {

/∗ Search a minimal model ∗/
so l = minimize ( sp theory1 , s p s t r u c t , l engthOfPath ) [ 1 ]

/∗ I f no r e s u l t i s re turned , no models e x i s t ∗/
i f ( s o l == n i l )

t hen p r i n t ( "No models e x i s t . \ n" )

e l s e p r i n t ( s o l )

end

}

The IDP3 system performs model expansion and model minimization by first

reducing the problem to extended CNF, using the grounder GidL (Wittocx et al.

2010) and subsequently calling the solver MiniSAT(ID) (Mariën et al. 2008). The

grounding process can be fine-tuned using options for symmetry breaking (Devriendt

et al. 2012), grounding with bounds (Wittocx et al. 2010), lazy grounding (De

Cat et al. 2012) etc. The solver is an extension of MiniSat (Eén and Sörensson

2003) with support for aggregate expressions, inductive definitions and branch-

and-bound optimization. Recently, MiniSAT(ID) was extended to offer support for

finite domain constraints, using the propagation techniques described in Schulte

and Stuckey (2008), or, alternatively, interfacing with the Gecode Constraint

Programming engine.
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2.4 Exploring the space of models for the shortest path problem

The above is a correct IDP3 model that provides a declarative solution to the

problem at hand. However, if performance matters, or the instances are that large

that the grounding cannot fit in memory, then other models can be preferable. In the

long run, perhaps an optimizer can transform a simple model in a model for which

model generation has a better performance, but, with the current state of affairs,

it is up to the user to explore the design space and to look for better performing

models. We do so in this section for the shortest path problem.

Listing 2. Another definition for reaches.
t h eo ry sp theory2 : sp voc {
{ r eache s ( x , y ) <− edgeOnPath ( x , y ) .

r ea che s ( x , y ) <− edgeOnPath ( x , z ) & reache s ( z , y ) . }
/∗ . . . c o n s t r a i n t s as in sp theory1 . . . ∗/

}

Prolog programmers would never define the reaches/2 predicate as in theory

sp theory1 of Listing 1 but rather as in theory sp theory2 of Listing 2. Indeed,

apart from the risk of entering an infinite loop, reaches(x,z) can have many more

solutions than edgeOnPath(x,z) (which is bounded by the number of edges), and

hence the search space for Prolog’s proof procedure can be substantially larger.5

While model generation cannot loop in the IDP system, the search space argument

remains valid. Comparing the runtime of both systems (see Figure 1) reveals that

the heuristics of the underlying SAT solver do not compensate for the larger search

space and that the version of Listing 2 is substantially faster.6 However, there is

another factor contributing for the difference between both versions. Figure 1 splits

runtime in grounding time (the vertical bar) and solving time (above the bar). For

larger problems, one can observe that the grounding also takes more time. The

explanation is the difference in grounding size (see Figure 2). The size difference

must be attributed to the grounding of the recursive reaches(x,z) rule. With n

nodes, there are n3 instances of the recursive reaches/2 rule in sp theory1. As for

sp theory2, it follows from constraint (1) that edgeOnPath(x,z) is false whenever

edges(x,z) is false, hence with e the number of edges, the number of instances is

limited to e ∗ n, which is typically substantially smaller than n3.

Although the performance has improved quite a bit, we see that it is still rapidly

increasing with the size of the graph. Moreover (see Figure 1), most of the runtime

is the grounding time. Can we do better? The recursive reaches/2 rule has three

variables and remains expensive. The grounding has n2 atoms reaches(n1,n2),

expressing whether n1 and n2 are connected while we are only interested in paths

going from from to to. Hence, we should better use a unary reachable predicate and

define the points that are reachable from from. The new versions of the vocabulary

5 When using a system with tabling, the order in the body of the recursive clause is better inverted (Swift
and Warren 2012).

6 Using an IntelR CoreTM i5-3550 CPU at 3.30 GHz with 7.8-GB RAM running Ubuntu with the IDP3

default options.
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Fig. 1. (Colour online) Different grounding and total running times for sp theory1, sp theory2

and sp theory3. Experiments are performed on graphs with an increasing number of nodes

but a constant edge density. The vertical bar shows the grounding time, the part above the

vertical bar is the solving time.

Fig. 2. (Colour online) Grounding size for sp theory1, sp theory2, sp theory3 and sp theory4.

Experiments are performed on graphs with an increasing number of nodes but a constant

edge density.
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and the theory are shown in Listing 3. The term and procedure parts are as in

Listing 1.

Listing 3. A unary reachable relation instead of the binary reaches relation.
vocabu l a ry sp voc2 {

t ype node

from , to : node

edge ( node , node )

edgeOnPath ( node , node )

r eachab l e ( node )

}
t h eo ry sp theory3 : sp voc2 {

{ r eachab l e ( from ) .

r eachab l e ( y ) <− edgeOnPath ( x , y ) & reachab l e ( x ) . }

! x [ node ] y [ node ] : edgeOnPath ( x , y ) => edge ( x , y ) . // ( 1 )

r eachab l e ( to ) . // ( 2 )

˜ (? x : edgeOnPath ( x , from ) ) & ˜(? x : edgeOnPath ( to , x ) ) . // ( 3 )

! x : (?<2 y : edgeOnPath ( y , x ) ) &

(?<2 y : edgeOnPath ( x , y ) ) . // ( 4 )

! x y : edgeOnPath ( x , y ) => r eachab l e ( y ) . // ( 5 )

}

As Figure 1 shows, this modification results in a dramatic speed-up. Also, the

grounding size (Figure 2) is substantially reduced.

Constraints (3) and (4) are cardinality constraints on the number of edges

connected to the same node that can participate in a path. They are redundant

with respect to the minimization of the lengthOfPath term. Indeed, paths of

minimal length satisfy both constraints. Dropping them, as in Listing 4, spoils the

clarity of the model; however, it further reduces the size of the grounding as can be

seen in Figure 2. The effect on the runtime is negligible for small graphs and rather

negative for larger ones as one can observe in Figure 3. The explanation is that

the removal of these constraints increases the search space. Indeed, partial solutions

violating constraints (3) and (4) are not immediately rejected. This causes a lot more

variance in the solving times.

Listing 4. Removing redundant constraints.
t h eo ry sp theory4 : sp voc {

{ r eachab l e ( from ) .

r eachab l e ( y ) <− r eachab l e ( x ) & edgeOnPath ( x , y ) . }

! x [ node ] y [ node ] : edgeOnPath ( x , y ) => edge ( x , y ) . // ( 1 )

r eachab l e ( to ) .

}

The above example, in which we solved a classical problem with IDP3, illustrates

the basic features of FO(·)IDP3. It shows that problem-solving with IDP3 is a quite

different endeavor from problem-solving in other languages. This holds not only

for procedural languages but also for a declarative language such as Prolog. It also
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Fig. 3. (Colour online) Different grounding and total running times for sp theory3 and

sp theory4. Experiments are performed on graphs with an increasing number of nodes but a

constant edge density.

shows the importance of exploring various models when performance and memory

use matters.

3 Stemmatology

Before the invention of the printing press, texts were copied manually by scribes.

This copying process was not perfect; scribes often modified texts, either accidentally

or intentionally. As a result the surviving copies of many old texts vary significantly.

No text written before the invention of the printing press, and even up to the end of

the 18th century, when the habit of circulating texts in manuscript form practically

disappeared, can be read without a preliminary critical analysis of its material

witnesses. This is the purpose of stemmatology. The Oxford English Dictionary

defines the field as “the branch of study concerned with analyzing the relationship

of surviving variant versions of a text to each other, especially so as to reconstruct

a lost original.”

A stemma is a kind of “family tree” of a tradition, a set of related manuscripts.

It indicates how manuscripts (“children”) have been copied from other manuscripts

(“parents”), and the manuscript that is the original source. It may include both

extant (currently existing and available) and non-extant (“lost”) manuscripts. The

stemma is not necessarily a tree: sometimes a manuscript has been copied partially

from one manuscript, and partially from another, in which case the manuscript has

multiple parents.

More formally, a stemma can be defined as a CRDAG, a Connected Directed

Acyclic Graph with a single Root (Andrews and Macé 2013). A dataset contains
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the manuscripts from one tradition. Each manuscript is described by a fixed set of

features F1, . . . , Fn, each of which has a nominal domain Dom(Fi) (variant readings

of feature Fi). Typically, a feature refers to a particular location or a section in a

text, although it can also be the spelling of a particular word, e.g., the dwelling of

“Van den Vos Reynaerde” can be spelled as Malpertuis, Malpertus or Malpertuus.

The 19th century philologist Karl Lachmann was among the first to apply a

principled method for reconstructing stemmata from sets of manuscripts (Timpanaro

2005). Nowadays, a variety of methods exist. Many are borrowed from biology, where

a similar problem, reconstruction of phylogenetic trees, is well studied. However,

these methods do not always fit the stemmatological context well. First, they assume

that phylogenies are tree-shaped, while stemmata are DAGs.7 Second, these trees

contain only bifurcations, while stemmata can have multifurcations. Third, in most

methods, the trees are such that each extant copy is at a leaf of the tree, whereas in

stemmatology one extant copy may be an ancestor of another (and hence should be

an internal node). Fourth, stemmatologists often have additional information, for

instance, about the time or place of origin of a manuscript, which ideally should be

taken into account. Research continues to develop new algorithms better suited for

the stemmatological context (Baret et al. 2006).

3.1 The task

Apart from reconstructing stemmata from data, stemmatologists are also interested

in other types of analyses, which may, for instance, use a known stemma or a

manually constructed best-guess stemma as an input. These types of analysis can be

very diverse. The data mining tasks that we address in this section belong to this

category.

The problem studied here assumes that a CRDAG representing a stemma of a

tradition is given, as well as feature data about the manuscripts from the tradition.

More specifically, the data include a feature for each location where variation is

observed in the tradition represented by the stemma. For each extant manuscript

in the tradition, the feature data describe its variant reading; the variant reading is

unknown for the non-extant ones. For most features, it seems rather unlikely that the

same variant reading originated multiple times independently; i.e., it is reasonable

to assume that there is one ancestor where the variant reading occurred for the first

time (the “source” of the variant). Therefore, we say that the feature is consistent

with the stemma if it is possible to indicate for each variant a single manuscript that

may have been the origin of that variant. Since for some manuscripts the value of

the feature is not known, checking consistency boils down to assigning a variant to

each node in the CRDAG in such a way that, for each variant, the nodes having

that variant form a CRDAG themselves. Note that one can imagine exceptions to

the above, e.g., a new spelling of a word can be independently introduced in different

copies.

7 Some methods return phylogenetic networks, but these represent uncertainty about the real tree, which
is different from claiming that the network represents the actual phylogeny.
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Fig. 4. (Colour online) Left: A partial labeling showing for a given feature which manuscripts

have which variant readings/colors. Right: A complete extension of that labeling where each

variant reading is a CRDAG. Because such an extension exists, the feature is consistent with

the stemma.

3.2 Consistency checking of a stemma is NP-complete

We learned about this problem through contacts with researchers in stemmatology.

One of them had developed an algorithm (implemented with a program of about

370 lines of Perl using a graph library as a back end) to solve the basic task, did

several iterations to handle yet uncovered cases and was still worried about the

completeness of their approach (does the algorithm always find a solution when a

solution exists?). The algorithm attempts not to make wrong decisions by initially

assigning several variant readings to the non-extant manuscripts and, in the second

phase, remove variant readings while preserving consistency. Once understood, the

problem was formalized as a graph problem and shown to be NP-complete by

one of the authors of this paper. In this formalization, the variant reading of

a text is represented as a color, and checking a stemma is a color-connected

problem.

Definition 1 (Color-connected )

Two nodes x and y in a colored CRDAG are color-connected if a node z exists

(z can be one of x and y) such that there is a directed path from z to x, and

one from z to y, and all nodes on these paths (including z, x, y) have the same

color.

Given a partially colored CRDAG, the color-connected problem is to complete the

coloring such that every pair of nodes of the same color is color-connected.

An illustration is given in Figure 4. A candidate coloring can be checked in

polynomial time, hence proving that the color-connected problem is NP-hard implies

it is NP-complete.

Theorem 1

The color-connected problem is NP-hard.

Proof

The proof is by showing a polynomial reduction from SAT to color-connectedness.
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Fig. 5. A partially colored CRDAG constructed from a CNF theory T . The black ai nodes

represent the positive clauses, the white bi nodes the negative clauses. The grey nodes represent

the propositional variables; they are linked to the clauses in which they participate and have

to be colored.

There exists a polynomial reduction from a conjunctive normal form (CNF)

formula to one with all clauses either positive (all literals are positive) or negative

(all literals are negative). Indeed, replace all occurrences of a negative literals ¬x by

a new positive literals notx and add for every such notx literal the clauses x ∨ notx

and ¬x ∨ ¬notx.

So we assume without loss of generality a CNF formula T comprising positive

clauses T+ and negative clauses T−. We construct a color-connected problem

whose solutions correspond to the models of T . Let T+ = C+
1 ∧ C+

2 ∧ . . . ∧ C+
m and

T− = C−1 ∧ C−2 ∧ . . . ∧ C−n with C+
1 , . . . , C

+
m positive clauses and C−1 , . . . , C

+
n negative

clauses. Let V be the set of propositional variables in T .

Now we construct a DAG G comprising the nodes V (G) = r ∪ A ∪ B ∪ V

where A = {a, a1, a2, . . . , am} (ai stands for clause C+
i ; a is an extra node) and

B = {b, b1, b2, . . . , bn} (bi stands for clause C−i ; b is an extra node). The directed edges

are given by E(G) = {(v, ai)|i ∈ [1..m], v ∈ C+
i }∪{(v, bi)|i ∈ [1..n], v ∈ C−j }∪{(a, v)|v ∈

V } ∪ {(b, v)|v ∈ V ∪ {(r, a), (r, b)}. Next we color r, a and all nodes ai black, and b

and all nodes bi white. We obtain a partially colored CRDAG (see Figure 5 for an

example). Moreover, a solution to the color-connected problem encodes a solution

to the original SAT problem. Indeed, each ai node, representing a positive clause,

is connected with at least one black variable. Hence, making all black variables

true satisfies all positive clauses. Also, each bi node, representing a negative clause,

is connected with at least one white variable. Hence, making the white variables

false satisfies all negative clauses. It follows that the color-connected problem is

NP-hard. �

The problem being NP-complete, it is unlikely it can be solved by a procedural

program without search. The proof suggests the problem becomes hard when nodes

can have multiple parents. This situation is not dealt with (and therefore usually

abstracted away) in traditional stemmatological methods. However, it does occur

in the datasets we analyzed. Constructing small examples where several nodes have

multiple parents, we quickly obtained an example for which the procedural code

erroneously claimed no connected coloring exists. So the worries of the developer

about the completeness of the code were grounded.
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3.3 An FO(·)IDP3 Solution

A first FO(·)IDP3 solution used a binary relation SameVariant for representing that

two manuscripts have the same variant reading and imposed two constraints: (i)

transitivity of SameVariant relation, and (ii) manuscripts with the same variant

reading have a common ancestor with that variant reading and are connected to

that ancestor through manuscripts with that same variant reading. This resulted in

a working version that could serve as a golden standard for the procedural code,

but was much slower than the latter.

As we already noted in the shortest path problem, modeling transitive closures

results in large grounding sizes and runtime. Hence, a major improvement can be

expected when that can be avoided. Representing the variant reading as a function

from manuscripts to variants allowed us to drop the transitivity constraint. The final

improvement, resulting in the program below, came from learning more about the

procedural code: It checks for connectedness by following a path to the original

source manuscript of the variant reading and checks that there is a single such

source for the variant reading. Expressing the latter as a single constraint resulted in

a version that turned out to be faster than the incomplete procedural algorithm. The

IDP3 model is shown in Listing 5 and explained below. We also show most of the

procedural code so that the reader can see how a number of satisfiability-checking

tasks can be embedded in a single process.

Listing 5. Checking the consistency between stemma and features.
procedu r e main ( ) {

proce s s ( " beso in " )

p roce s s ( " pa r z i v a l " )

p roce s s ( " f l o r i l e g i um " )

p roce s s ( " sermon158 " )

p roce s s ( " h e i n r i c h i " )

}

/∗ −−−−− Knowledge base −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∗/
vocabu l a ry V {

t ype Manuscript

t ype Var iant

CopiedBy ( Manuscript , Manuscript )

VariantReading ( Manuscript ) : Var iant

}
vocabu l a ry Vtask {

ex t e r n vocabu l a ry V

SourceOf ( Var iant ) : Manuscript

}
t h eo ry Ttask : Vtask {

! x : ( x ˜= SourceOf ( VariantReading ( x ) ) ) =>
? y : CopiedBy ( y , x ) & VariantReading ( y ) = VariantReading ( x ) .

}

/∗ −−−−− Check con s i s t e n c y between f e a t u r e and stemma −−−−−−−− ∗/
procedu r e check ( f e a t u r e ) {

s e t vocabu l a ry ( f e a tu r e , Vtask )
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r e tu rn s a t ( Ttask , f e a t u r e )

}

/∗ −−−−− Procedures fo r p ro c e s s i ng −−−−−−−−−−−−−−−−−−−−−−−−−−− ∗/
procedu r e proce s s ( t r a d i t i o n ) {

i o . w r i t e ( " Proce s s i ng " , t r a d i t i o n , " . \ n" )

l o c a l path = " data /"
l o c a l stemmafi lename = path . . t r a d i t i o n . . " . dot "
l o c a l f e a t u r e f i l e n ame = path . . t r a d i t i o n . . " . j son "
p r o c e s sF i l e s ( stemmafilename , f e a t u r e f i l e n ame )

}
procedu r e p r o c e s sF i l e s ( stemmafilename , f e a t u r e f i l e n ame ) {

l o c a l stemma , nbnodes , nbedges = readStemma ( stemmafi lename )

io . w r i t e ( "Stemma has " , nbnodes , " nodes and

" , nbedges , " edges . \ n" )

l o c a l nbp , nbs , t ime = proce s sFea tu r e s ( stemma , f e a t u r e f i l e n ame )

io . w r i t e ( "Found " , nbp , " p o s i t i v e out of " , nbs , " groupings " )

io . w r i t e ( " i n " , t ime , " s e c . \ n" )

}
procedu r e readStemma ( stemmafi lename ) {

/∗ 19 l i n e s of lua code ∗/
}
procedu r e proce s sFea tu r e s ( stemma , f e a t u r e f i l e n ame ) {

/∗ 23 l i n e s of lua code

a loop i t e r a t i n g over the f e a t u r e s ,

−− compute f e a t u r e as stemma extended with

the f e a t u r e s p e c i f i c data

−− c a l l check ( f e a t u r e )

−− proce s s the r e s u l t s

f i n a l l y , r e tu rn the o v e r a l l r e s u l t s ∗/
}

The logical model is described in the “Knowledge base” section of the code. The

vocabulary has been split in two parts. The vocabulary V is used to represent the

input data: the stemma and the feature. It introduces the types Manuscript and

Variant, the binary relation CopiedBy representing the parent–child pairs in the

given structure of the stemma and the function VariantReading representing the

known data about variant readings of manuscripts. The vocabulary Vtask extends

V with the task-specific vocabulary. Only one extra function is needed, namely

sourceOf which maps a variant reading to the manuscript that is the source of

that variant reading. The theory Ttask comprises a single constraint; it states that

a manuscript that is not the source of its own variant reading must have a parent

with the same variant reading.

The remainder is procedural code. The procedure main iterates over all traditions

to be analyzed and calls the procedure process for each of those. The latter

procedure uses concatenation to construct two filenames from the name of the

tradition and passes these file names to the processFiles procedure; the “.dot”

file contains the stemma data; the “.json” file the feature data. The readStemma

procedure (code omitted) returns the input structure describing the stemma as

well as the number of manuscripts (nodes) and parent–child pairs (edges). The
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Table 1. The five traditions used in this work

#Variant readings
#Manu- #Parent–child

Name scripts pairs #Features maximum average

Notre Besoin 13 13 44 5 2.18

Parzival 21 20 122 6 2.59

Florilegium 22 21 547 5 2.19

Sermon 158 34 33 270 3 2.12

Heinrichi 48 51 1042 17 4.84

processFeatures procedure (code omitted) iterates over the features in the file. For

each feature, it constructs a feature structure by extending the stemma structure

with the feature-specific data. It then calls the check procedure. This proce-

dure extends the feature structure with the symbols from the Vtask vocabulary

(setvocabulary(feature,Vtask)) and then checks the color-connectedness of the

feature (sat(Ttask,feature)). The yes/no result is returned to the processFiles

procedure which collects and returns the global results: number of consistent

(positive) features, total number of features and time. The processFiles procedure

prints these global data and returns to main.

As can be seen in the main() procedure, we used the code to perform consistency

checking for the features of five traditions; two of them, Sermon 158 and Florilegium

are real traditions, with stemmata that have been constructed according to current

philological best practice; the other three are artificial traditions, produced under

test conditions by volunteers for the purposes of empirical research into stemmato-

logical methods. We received the data from Tara Andrews (at the time of writing

employed at the KULeuven). A website where such stemma data can be found is

http://byzantini.st/stemmaweb/. Some information about the stemma we used

is given in Table 1.

The IDP program determines consistency for all features and datasets in a matter

of seconds8:

> main()
Processing besoin.
Stemma has 13 nodes and 13 edges.
Found 26 positive out of 44 groupings in 0 sec.
Processing parzival.
Stemma has 21 nodes and 20 edges.
Found 45 positive out of 122 groupings in 1 sec.
Processing florilegium.
Stemma has 22 nodes and 21 edges.
Found 431 positive out of 547 groupings in 2 sec.
Processing sermon158.
Stemma has 34 nodes and 33 edges.
Found 64 positive out of 270 groupings in 2 sec.
Processing heinrichi.
Stemma has 48 nodes and 51 edges.
Found 1 positive out of 1,042 groupings in 12 sec.
>

8 Using an IntelR CoreTM 2 Duo CPU at 3.00 GHz with 3.7 GB of RAM running Ubuntu
with the IDP3 options stdoptions.groundwithbounds = false (disabling bounded grounding) and
stdoptions.liftedunitpropagation = false (disabling lifted unit propagation).
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Our largest benchmark is the heinrichi data set (Roos and Heikkilä 2009). This

stemma about old Finnish texts includes 48 manuscripts, 51 copiedBy tuples and

information about 1,042 features. Processing all features takes 12 sec with the IDP

system, while it took 25 sec with the original procedural code.

One can observe that rather few features are consistent with the stemma. This

raises the question, what is the minimal number of sources needed to explain the

data. To solve that inference task, it suffices to replace the vocabulary extension

Vtask and the theory Ttask in the knowledge base and to introduce the term to be

minimized. As core procedure, Check is replaced by minSources and the processing

of results has to be adjusted. The most relevant new parts are shown in Listing 6.

The IsSource predicate is defined as manuscripts that do not have a parent with

the same variant reading.

Listing 6. Minimize the number of sources.
/∗ −−−−− new pa r t s of Knowledge base −−−−−−−−−−−−−−−−−−−−−−−−− ∗/
vocabu l a ry Vms {

ex t e r n vocabu l a ry V

IsSource ( Manuscript )

}
t h eo ry Tms : Vms {
{ ! x : I sSource ( x ) <− ˜? y : CopiedBy ( y , x ) &

VariantReading ( y ) = VariantReading ( x ) . }
}
term NbOfSources : Vms {

#{ x : I sSource ( x ) }
}

/∗ −−−−− the core procedure −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∗/
procedu r e minSources ( f e a t u r e ) {

s e t vocabu l a ry ( f e a tu r e , Vms)

r e tu rn minimize (Tms , f e a tu r e , NbOfSources ) [ 1 ]

}

Although this is a minimization problem, processing the traditions is still a matter

of seconds, except for the larger Heinrichi dataset, which now requires about 5 min

to process its 1,042 features.

Other variations are of interest to the researchers. One variation, mentioned by

Andrews et al. (2012), considers the possibility that the scribe has copied from an

older ancestor than the direct parent, thus reintroducing a variant. Playing with the

relative penalty of introducing a new variant versus reverting to an older variant,

one can obtain various explanations of interest to the stemmatologist. All these can

be achieved with modifying a handful of lines in the model. Interesting about the

above variant is that it uses a predicate IndirectAncestor that is defined in terms

of the stemma data, so it can be computed once and reused when processing each

of the features. As illustrated in Listing 7, the tight integration of the knowledge
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base with the procedural code makes this very easy.9 The procedure readStemma,

which constructs the stemma structure from the inputfile, is extended with the call

modelexpand(T,stemma)[1]. The resulting model is the stemma structure extended

with the true IndirectAncestor atoms. This structure, together with the other

outputs of readStemma, is returned to the procedure processFiles which uses it

to handle the features one by one.

Listing 7. Materializing a definition once and using the materialization many times.
vocabu l a ry V {

/∗ . . . as in L i s t i n g 5 . . . ∗/
Ind i r e c tAnce s t o r ( Manuscript , Manuscript )

}

t h eo ry T : V {
{ ! x y : Ind i r e c tAnce s t o r ( x , y ) <−

? z : CopiedBy ( x , z ) & Ind i r e c tAnce s t o r ( z , y ) .

! x y : Ind i r e c tAnce s t o r ( x , y ) <−
? z : CopiedBy ( x , z ) & CopiedBy ( z , y ) . }

}

procedu r e readStemma ( stemmafi lename ) {
l o c a l stemma = news t ruc tu re (V, " stemma" )

/∗ . . . r ead ing the stemma data . . . ∗/
r e tu rn modelexpand (T , stemma ) [ 1 ] , #nodes , #edges

}

4 Minimum common supergraphs of partially labeled trees

Phylogenetic trees, extensively surveyed by Felsenstein (2004), are the traditional

tool for representing the evolution of a given set of species. However, there exist

situations in which a tree representation is inadequate. One reason is the presence

of evolutionary events that cannot be displayed by a tree: genes may be duplicated,

transferred or lost, and recombination events (i.e., the breaking of a DNA strand

followed by its reinsertion into a different DNA molecule) as well as hybridization

events (i.e., the combination of genetic material from several species) are known

to occur. The second reason is that even when evolution is indeed tree-like, there

are cases in which a relatively large number of tree topologies are “equally good”

according to the chosen criterion, and that not enough information is available to

discriminate between those trees. One solution that has been proposed to address

the latter issue is the use of consensus trees, where the idea is to find a tree that

represents a compromise between the given topologies. Another approach, the focus

of this section, consists in building a network that is compatible with all topologies

of interest. A somewhat loose description of the variant we are interested in, which

will be stated in a more formal way below, is to find the smallest graph that contains

9 With a more recent version of IDP3, the user can leave this optimization to the system (Jansen et al.
2013).
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Fig. 6. Two 7-graphs, T1 and T2, and two of their common supergraphs. G1 is a minimum

common supergraph.

a given set of evolutionary trees. For more information about phylogenetic networks,

see the recent book by Huson et al. (2010) and the online, up-to-date annotated

bibliography maintained by Gambette (2010).

4.1 The problem

The studied problem is about the evolution of a fixed set of m species. The input is

a set of phylogenetic trees, each tree showing a plausible relationship between the

m species. All trees have n (> m) nodes, m of them are labeled with the name of

the species (typically, in the leaves, but also internal nodes can be labeled). Given

n−m extra names, the labeling of each tree can be extended to a full labeling. Now

we can consider the union of these full labelings: a network with m labeled nodes

and edges which are induced by the bijections between the fully labeled trees and

the network. Obviously, the number of edges of the network depends on the chosen

full labelings of the trees. The task is to find a network with a minimum number of

edges. Below, we formulate the problem as a slightly more general graph problem

where we do not fix the size of the initial labeling.

Definition 2 (Common supergraph of partially labeled n-graphs)

Given is a set N of n names and a set of graphs {G1, G2, . . . , Gt} where each graph

Gi = (V , Ei,Li) has n vertices (the set V ), edges connecting pairs of vertices (the set

Ei) and where some of the vertices are labeled by names (an injective partial function

Li : V → N). A graph (N,EN) is a common supergraph of {G1, G2, . . . , Gt} if there

exists, for each i, a bijectionL′i : V → N that extendsLi and such that {v, w} ∈ EN

iff there exists an i such that {v′, w′} ∈ Ei and {v, w} = {(L′i(v′),L′i(w′))}.
A common supergraph (N,EN) is a minimum common supergraph if no other

common supergraph (N,EN ′) exists for which |EN ′| < |EN|.

Note that every labeling function L′i induces an injection Ei → EN, hence the

name common supergraph. Figure 6 shows two partially labeled 7-graphs, along

with two of their common supergraphs. G2 is not a minimum common supergraph

since it has more edges than G1; G1 is a minimum common supergraph since T1

and T2 are not isomorphic and G1 has only one more edge than each of T1 and T2.

Now we can consider the following decision problem: Given a set of partially

labeled n-graphs, can the labelings be completed such that the n-graphs have a
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common supergraph with at most k edges? Labarre and Verwer (to appear) prove

that this problem is NP-hard, even if the n-graphs are trees with all leaves labeled.

4.2 An FO(·)IDP3 solution

Listing 8 shows a simple model inspired by Labarre and Verwer (to appear). It

makes use of three types, tree, vertex and name. The latter two types have the

same number of elements in a correct input structure. The structure of the given

trees is described by the ternary predicate edge (the first argument refers to the tree

to which the edge belongs), the structure of the common supergraph (over the names

themselves) by the predicate arc. The labeling is described by the function label

from the nodes of the given trees to the names. It is partially given in the input

structure and is completed during model expansion. The constraint in the theory,

stating that, for each name nm and each tree t, there exists exactly one node nd

(denoted ? 1 nd) such that its label is nm, ensures that the labeling is bijective. The

arc atoms can be defined as the pairs of names induced by the labels on the nodes

of an edge of the tree (the definition in the theory). However, as the minimization is

on the number of arc atoms in a model, some care is required. One should ensure

that either arc is a symmetric relation or there is at most one arc atom for each pair

of names. The latter approach is taken as it gives a somewhat smaller grounding.

It is achieved by exploiting the total order that exists over each domain (the tests

label ( t ,x) < label(t ,y)).

Listing 8. Modeling cs-plt in FO(·)IDP3.
vocabu l a ry CsPltVoc {

t ype t r e e

t ype v e r t e x

t ype name // Isomorphic to v e r t e x

edge ( t r e e , node , node ) // t r e e s , g iven in input s t r u c t u r e

arc ( name , name ) // the induced network

l a b e l ( t r e e , node ) : name // the l ab e l i n g ,

// p a r t i a l l y g iven in the input s t r u c t u r e

}
t h eo ry CsPltTheory : CsPltVoc {
{ // induced network ; arc i s an t i−symmetric

! t x y : arc ( l a b e l ( t , x ) , l a b e l ( t , y ) ) <− edge ( t , x , y ) &

l a b e l ( t , x ) < l a b e l ( t , y ) .

! t x y : arc ( l a b e l ( t , x ) , l a b e l ( t , y ) ) <− edge ( t , y , x ) &

l a b e l ( t , x ) < l a b e l ( t , y ) .

}
! t nm : ?1 nd : l a b e l ( t , nd ) = nm. // l a b e l i s b i j e c t i v e

}
term SizeOfSupergraph : CsPltVoc { #{ x y : arc ( x , y ) } }
procedu r e main ( ) {

p r i n t ( minimize ( CsPltTheory , CsP l tS t ruc tu r e , S izeOfSupergraph ) [ 1 ] )

}

In this solution, each rule of the arc definition has two occurrences of the terms

label ( t ,x) and label ( t ,y). The current grounder naively associates a distinct symbol
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with each occurrence, which boils down to grounding a clause of the following

form:

Listing 9. One of the arc rules after initial processing by the grounder.
! t x y l x1 l x2 l y1 l y2 : arc ( lx1 , l y1 ) <− l x1=l a b e l ( t , x ) &

ly1=l a b e l ( t , y ) & lx2=l a b e l ( t , x ) & ly2=l a b e l ( t , y ) &

edge ( t , x , y ) & lx2 < l y2 .

This approach creates extra variables and very large groundings. To avoid this

behavior, on can rewrite the definition as follows:

Listing 10. Better performing definition of arc.
{ // induced network

! t x y l x l y : arc ( lx , l y ) <− l x=l a b e l ( t , x ) & l y=l a b e l ( t , y ) &

edge ( t , x , y ) & l x < l y .

! t x y l x l y : arc ( lx , l y ) <− l x=l a b e l ( t , x ) & l y=l a b e l ( t , y ) &

edge ( t , y , x ) & l x < l y .

}

While the formulation is less elegant, the effect on the size of the grounding and

the solving time is dramatic; e.g., the grounding is reduced from 620,798 to 6,024

propositional clauses, and the solving time from 144 sec to 8 sec on a problem with

five trees of eight vertices and four initial labels.

One can explore several other variations. As mentioned above, one could use a

symmetric arc relation. Also, as the arc definition is free of recursion,

one could replace it with the two implications of the completion. Then, exploiting

the minimization on the number of arc atoms, one could drop the only-if part of

the completion. The effect on solving time of all these variations is rather marginal.

4.3 An approximate solution

The solving time is exponential in the number of nodes and, if several trees are

involved, the program becomes impractical on real-world problems, even if the best

solution found so far is returned when some time budget is exceeded. However, the

versatility of the IDP system allowed us to experiment with various strategies for

greedily searching an approximate solution. This led to the following quite natural

solution that performed very well with respect to both running time and quality of

the solution.

1. Find a minimum common supergraph (MCS) for every pair of trees.

2. Pick an MCS with minimum size (say G) and remove the two trees that are the

input for G.

3. Find an MCS between G and every remaining tree.

4. Replace G10 by an MCS with minimum size, remove the tree that is the input

for this MCS and go back to step 3 if any tree remains.

10 This way, the MCS is assembled by each time incorporating one additional original tree.
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Table 2. Randomly generated instances of the minimum common subgraph problem solved with

a time bound of 2,000 sec. Sizes of MCS (average over four runs) for exact and greedy approach
*Approximate solution due to time out

#Initial Exact Greedy

#Trees #Nodes labels #edges #edges

5 55 5 130 131.25

5 60 10 128 132.75

5 75 25 207.75* 184.75

10 55 5 183.75* 154.50

10 60 10 177.75* 154.75

10 75 25 270.00* 269.25

20 55 5 241.50* 171.75

20 60 10 232.00* 152.25

20 75 25 346.25* 279.00

Steps 1 and 3 of this simple procedure are performed by IDP3 using a model

very similar to that of Listing 8 (see Labarre and Verwer (to appear) for the actual

model).11 This greedy approach works very well. Indeed, for large instances and

a fixed time budget, the exact method runs out of time and returns a suboptimal

solution, while the greedy method completes and returns a solution that, although

suboptimal, is typically much smaller. Table 2 shows some experimental results on

randomly generated data with various parameters. A timeout was set to 2,000 sec,12

and the average number of edges were recorded over four runs for each instance for

both exact and greedy methods.

5 Learning deterministic finite state automata

The third task is about learning a DFA. The goal is to find a (non-unique) smallest

DFA that is consistent with a given set of positive and negative examples. It is one

of the best studied problems in grammatical inference (de la Higuera 2005), has

many application areas and is known to be NP-complete (Gold 1978). Interestingly,

one of the first algorithms proposed to solve this problem was based on a translation

to constraint programming (Biermann and Feldman 1972). Much later, translations

of this problem to graph coloring (Coste and Nicolas 1997; Costa Florêncio and

Verwer 2012) and satisfiability (Grinchtein et al. 2006; Heule and Verwer 2010) were

proposed. Although the DFA learning problem is typically tackled using greedy

approaches (de la Higuera 2005), Heule and Verwer (2012) recently won the 2010

Stamina DFA learning competition (Stamina 2010) by an improved translation to

a SAT problem and running an off-the-shelf SAT solver. Here we explore to what

extent an FO(·)IDP3 formalization can compete with this competition winner.

11 The whole method can be implemented as an IDP3 procedure; however, the scripts had been
implemented before the Lua interface was available.

12 Using an IntelR CoreTM i7 CPU 870 at 2.93 GHz with 8 GB of RAM running Ubuntu; default
settings for IDP3.
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Fig. 7. An augmented prefix tree acceptor (APTA) for

S = (S+ = {a, abaa, bb}, S− = {abb, b}). The start state (annotated with incoming arrow) is

the root of the APTA.

5.1 The problem

A DFA is a directed graph comprising a set of states Q (nodes) and labeled transitions

T (directed edges). The root is the start state and any state is either an accepting

or a rejecting state. In each state, there is exactly one transition for each symbol.

A DFA defines a language, the set of strings it accepts. It can be used to generate

or verify sequences of symbols (strings) using a process called DFA computation.

When verifying strings, the symbols of the input string determine a path through the

graph. When the final state is an accepting state, the string is accepted, otherwise it

is rejected.

Given a pair of finite sets of positive example strings S+ and negative example

strings S− (the input sample), the goal of DFA identification (or learning) is to find a

(non-unique) smallest DFA A that is consistent with S = {S+, S−}, i.e., every string

in S+ is accepted, and every string in S− is rejected by A. Typically, the size of a

DFA is measured by |Q|, the number of states it contains.

Most DFA learning algorithms are based on the method of state-merging. This

method first constructs a tree-shaped automaton called the augmented prefix tree

acceptor (APTA). As can be seen in Figure 7, the APTA accepts the positive examples

and rejects the negative ones. Other strings either end up in a non-final state or

cannot be processed due to a missing transition. The APTA automaton can be

completed to obtain a DFA with the same number of states by (arbitrarily) labeling

the non-final states and adding the missing transitions. When all non-final states are

labeled as reject and all extra transitions target a reject state with no path to an

accepting state, this DFA accepts only the positive examples.

A smaller DFA, accepting more strings, can be constructed by state-merging

on the APTA. Merging states under the constraints that the automaton remains

deterministic (at most one transition/label in each state) and accepting and rejecting

states cannot be merged preserves consistency with the input sample. State-merging

increases the number of strings accepted by the automaton, and hence generalizes

the language accepted by the DFA that completes the automaton.

States of the final automaton are thus equivalence classes of states of the APTA.

Calling the states of the final automaton colors, the problem becomes that of

finding a coloring of the states of the APTA that is consistent with the input sample.

Following Coste and Nicolas (1997), Heule and Verwer (2010) take this approach.

They formulate constraints expressing which pairs of states are incompatible, and

abstract the problem as a graph. The nodes of this graph are the states of the
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APTA and the edges are the incompatible pairs. The decision problem, whether

there exists an automaton with k states, becomes a graph coloring problem for k

colors. They use a clever SAT encoding to solve this decision problem and embed

it in a workflow to solve the minimization problem. For really large problems, the

SAT formulation becomes too big (hundreds of colors, resulting in over 100 million

clauses) to be handled by a SAT solver (Heule and Verwer 2010). To reduce the

problem size, they used a greedy heuristic procedural method based on state-merging.

Every merge performed by this method reduces the size of the APTA and therefore

also the size of the encoding. In addition, this preprocessing identifies a clique of

pairwise incompatible states in the APTA. For states in this clique, the colors can

be fixed in advance. The effect is to break the symmetries between these colors

and thus to further reduce the size of the problem. The preprocessing also deduces

that certain state/color combinations cannot result in a solution. A preprocessed

problem instance is then extended with a set of SAT clauses and is the input for

the SAT solver. The SAT clauses express the constraints of the problem and are

generated from the instance.

5.2 An FO(·)IDP3 solution

Our goal is not to set up the complete workflow described above, but to compare the

performance of the native SAT encoding of Heule and Verwer (2010) and Heule and

Verwer (2012) with the performance of an FO(·)IDP3 model on the same problem

instances as obtained after the preprocessing. Our FO(·)IDP3 model for solving a

single instance is shown in Listing 11.

Listing 11. Modeling DFA in FO(·)IDP3.
vocabu l a ry dfaVoc {

t ype s t a t e // s t a t e s used in APTA

t ype l a b e l // symbols t r i g g e r i n g t r a n s i t i o n s

t ype co lo r // a v a i l a b l e s t a t e s fo r r e s u l t i n g automaton

p a r t i a l t r an s ( s t a t e , l a b e l ) : s t a t e // t r a n s i t i o n s of APTA

acc ( s t a t e ) // ac c ep t i ng s t a t e s of APTA

r e j ( s t a t e ) // r e j e c t i n g s t a t e s of APTA

colorOf ( s t a t e ) : co lo r // f i x e d in input fo r co l o r s in c l i q u e

// the r e s u l t i n g automaton :

p a r t i a l co lorTrans ( co lor , l a b e l ) : co lo r // t r a n s i t i o n s of DFA

accColor ( co lo r ) // ac c ep t i ng s t a t e s

}
t h eo ry dfaTheory : dfaVoc {

! x : acc ( x ) => accColor ( colorOf ( x ) ) .

! x : r e j ( x ) => ˜ accColor ( colorOf ( x ) ) .

// t r an s induces co lorTrans :

! x l z : t r an s ( x , l )=z =>
! i j : co lorOf ( x)= i & colorOf ( z)= j => co lorTrans ( i , l )= j .

}
procedu r e main ( ) {

p r i n t ( modelexpand ( dfaTheory , i n s t an c e ) [ 1 ] )

}
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The types state, label, the function trans and the predicates acc and rej

describe the given input samples (and hence the APTA). Note that trans is partial

as it is only defined for the transitions present in the input sample. The states of the

resulting automaton are the elements of the type color. Its transitions are described

by the function colorTrans. This function is also declared as a partial function.

To obtain a complete DFA, the function colorTrans has to be extended with the

missing transitions. Which one is assigned does not matter, as it does not affect

the processing of the strings in the input sample (although it has an effect on the

language that is accepted). The function colorOf maps the states of the APTA

on the states (colors) of the DFA. The predicate accColor describes the accepting

states of the resulting automaton.

The theory expresses two constraints on accColor: accepting states of the APTA

must and rejecting states cannot be mapped to an accepting state of the DFA.

The third constraint states that each transition in the APTA induces a transition

(between colors) in the DFA.

The input structure, which is omitted, not only completely defines the types

color, state and label but also the APTA. That implies that the IDP3 grounder

has complete knowledge about the relations accept and reject and the function

trans. Hence, for example, the grounder only grounds the formula

colorTrans(colorOf(x ), l)=colorOf(z) for tuples (x,l,z) for which trans(x, l)=z is true in

the input structure. Further, the input structure also contains the partial information

about colorOf and colorTrans that has been derived by preprocessing.

The main procedure assumes that the input structure is named instance; it calls

the solver to search for a model, and prints it.

The above model is a very natural formulation of the problem and corresponds

quite closely to a “decompilation” of the SAT clauses expressing the constraints

of the problem (Table 1 in both Heule and Verwer (2010) and Heule and Verwer

(2012)). The most noticeable difference is in a redundant constraint, which can be

decompiled into:

Listing 12. Redundant constraint
! v l w: t r an s (w, l )=v =>

! j : co lorTrans ( colorOf (w) , l )= j => colorOf ( v)= j .

This formula can be derived from the last formula in our theory together with the

fact that colorOf is a total function.

In FO(·)IDP3, it is very straightforward to extend the model with a term counting

the number of colors used and to minimize that number. This makes our FO(·)IDP3
method very similar to the optimization method used by Heule and Verwer (2010,

2012). IDP, however, has several advantages over an encoding constructed by hand.

For instance, variants of the model such as minimizing the number of transitions

in the DFA instead of the number of states are very straightforward to obtain,

but would require a major re-engineering of the SAT encoding. This has practical

value as different application domains of DFA prefer different optimization criteria.

Furthermore, it is much easier to introduce bugs in handmade encodings than in

the few lines of IDP code. In fact, by analyzing and comparing the results of IDP
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Fig. 8. (Colour online) Solving time for the SAT encoding (DFASAT), the FO(·)IDP3 model

of Listing 11 (IDP) and the model extended with the redundant constraint of Listing 12

(IDP+RED). Time in each system is monotonically increasing, so the order of problem

instances is different for each system. Timeout is set at 5,000 sec. Sixty-nine problems are

solved by DFASAT, 59 by IDP and IDP+RED.

and the handmade encoding, we discovered some subtle bugs in the handmade

translation that caused an incorrect answer in rare occasions.

5.3 Experiments

We compared the performance of our model with that of the SAT encoding,

denoted DFASAT, for 100 tough problems (the DFA is restricted to have only five

states on top of those in the initial clique) from the 2010 Stamina DFA learning

competition (Stamina 2010).13

Figure 8 compares the solving time of DFASAT with that of two FO(·)IDP3
models. The first one is as shown in Listing 11 (IDP); the second one extends the

model with the redundant constraint of Listing 12 (IDP+RED). One can observe

that the redundant constraint improves the performance of the IDP3 system and

that the performance comes quite close to that of DFASAT. Still, DFASAT can

solve more problems than IDP+RED (69 versus 59). We also have to add that the

dedicated preprocessing that generates the SAT instances requires on average 5 sec,

while the grounding takes substantially more time. For the IDP version, it is on

average 124 sec; for ID+RED, the average is 168 sec. The results reported here

are substantially better than those reported in Blockeel et al. (2012). By analyzing

13 Using an IntelR CoreTM i5-2500 CPU at 3.30 GHz with 7.7 GB of RAM Running Ubuntu. Memory
use was limited to 4 GB, time to 5000 sec. IDP3 was ran with standard options.
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these earlier results, we unraveled that the large performance gap was due to

our grounding being three times the size of the SAT encoding. This was caused

by the introduction of unneeded auxiliary predicates (so-called Tseitins) during

the grounding. The problem was repaired in a new version of the grounder. As

mentioned before, our detailed analysis also revealed subtle bugs in the dedicated

preprocessing which generates the SAT encodings for DFASAT. Thus, using an IDP

implementation of a hard problem such as DFA learning and comparing it with a

fast competition winning SAT translation was not only useful for improving IDP

but also for improving the competition winner.

It is very encouraging to observe that the performance of a tiny and comprehen-

sible predicate logic model comes very close to that of an ingeniously tuned SAT

encoding that is a key component of a competition winner.

6 Conclusions

In this paper, we presented the IDP3 system from a user’s perspective. We introduced

the various components of an FO(·)IDP3 model and illustrated their use in a model for

the shortest path problem. We also showed models for some problems encountered

by researchers in data mining and machine learning. In the first problem from

stemmatology, FO(·)IDP3 models proved to be of invaluable help for researchers

trying to cope with stemma that go beyond tree structures (Andrews et al. 2012). We

obtained a model that not only correctly handles arbitrary directed acyclic graphs

but also achieved better performance than the original (incomplete) procedural code.

In the second problem, about phylogenetic trees, FO(·)IDP3 models helped researchers

to explore approximate solutions for an NP-hard problem (Labarre and Verwer to

appear). The third problem that we modeled is the classical problem of learning

a DFA. We compared an FO(·)IDP3 model with the state-of-the-art SAT encoding

of the problem. Here we found that the performance of an IDP3 solution comes

pretty close to that of a highly tuned SAT encoding. These applications illustrate

that FO(·)IDP3 models are a valuable alternative for dedicated procedural code when

novel data needs to be analyzed and explored. Interestingly, in both problems,

where we compared with an existing solution (stemmatology and DFA learning),

we uncovered some bugs in those solutions. It is fair to add that we also uncovered

some cases where the grounder of the IDP3 system performed a suboptimal job. In

the minimum common supergraph application we found that it deals poorly with

multiple occurrences of the same term in a formula; in the DFA application we

found that it introduced unneeded auxiliary symbols. While the latter problem has

already been solved, the former is, at the time of writing, still on the to-do list of

the implementation team.

Our work is a further indication that the IDP3 system is coming of age. It was

already known from the ASP-competitions that it compares pretty well with ASP

systems in terms of performance (Denecker et al. 2009; Calimeri et al. 2011). In

contrast to ASP, which relies on the stable semantics (Gelfond and Lifschitz 1988),

it is based on the first-order logic. The informal semantics of FO’s connectives and

the novel language constructs is clear and easy to understand. This probably makes
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it easier for newcomers to start modeling. For example, the authors of the minimum

common supergraph problem (Labarre and Verwer to appear) were neither familiar

with Prolog nor with FO(·)IDP3 and hardly needed any help from the IDP team. The

core of an FO(·)IDP3 model consists on the one hand of formulas in the first-order

logic, which act as constraints, and on the other hand of definitions, which are close

to the rules of traditional logic programs. Given interpretations for open predicates

(the predicates that are not defined in the theory), the definitions determine a unique

model through the well-founded semantics (Van Gelder et al. 1991). The search

results in an interpretation of the open predicates and hence a model of the theory

that is consistent with the constraints. What distinguishes FO(·) from traditional

logic programming is the use of non-Herbrand interpretations, and correspondingly

the lack of constructor functions. This often leads to a simpler data representation

and gives rise to elegant model formulations. On the other hand, there are cases

where rich data structures that arise in the Herbrand interpretations (compound

terms, lists, trees, . . . ) are useful too and these currently cannot easily be modeled

in IDP3. Another distinction is that the IDP framework offers other forms of

inference, most notably model expansion and model minimization. A feature of the

IDP3 system is the integration of procedures in FO(·)IDP3 models (De Pooter et al.

2011) and the clean separation between declarative and procedural components. As

we illustrated in the stemmatology application, this allows a user to develop a whole

workflow in an FO(·)IDP3 model.

The logic of FO(·)IDP3 extends predicate logic with inductive definitions, types,

arithmetic, aggregates and partial functions. Of these, inductive definition is the

most fundamental one. The basis of the language is predicate logic. In fact, in

many applications, the extensions only serve for making models more readable. For

example, the aggregates (in the form of quantifications ? < 2) in the shortest path

problem are directly translatable to FO and the (non-recursive) definition in the

minimum common supergraph problem is equivalent with its completion. Hence,

three out of the four problems that we describe in this text are in fact solved with

pure predicate logic models.

Our work on applications taught us also a few things about good models. In all

problems that we solved in this paper, a class of objects is separated in equivalence

classes. (In the shortest path problem there is the class of edges participating in the

path, and the class of other edges.) It is tempting to represent these equivalence

classes by the transitive closure of some relation. However, the transitive closure of

a binary relation is expensive. It gives rise to large groundings and this, together

with the cost of checking for unfounded sets, results in poor performance. Binary

transitive closures arise naturally during modeling, but they are better avoided in the

IDP3 system. In the shortest path problem our first solution had a binary transitive

reaches relation. It required some creative tinkering and awareness that binary

transitive closures are harmful to make the switch to the solution we presented.

Replacing it with the unary reachable relation had a major impact on efficiency.

Also, our first solution to the stemmatology problem had a transitive closure. Here

transitive closure could be avoided altogether. It was a major step forward in

efficiency to replace it by a coloring function for the nodes in the stemma graph.
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The other two problems also use functions (label and colorOf respectively) whose

range defines membership in an equivalence class.

The preference of a unary transitive relation over a binary one is an illustration

of another general principle: less variables is better in rules and constraints. One

should try to break up complex rules and constraints in simpler ones requiring less

variables and explore whether one can do with predicates and functions having less

arguments. Another important point is that one should not be satisfied with the first

correct model. Often, major improvements are possible, as we illustrated in several

of our applications.

The IDP3 system is an evolving research system and further improvements are on

the way. A lot of ongoing work aims at making the performance less dependent on

clever modeling. One recent feature is symmetry breaking. Predicate-level symmetry

detection and dynamic symmetry breaking (during search) automatically exploit

symmetries present in the problem (Devriendt et al. 2012) (symmetry is present in

the DFA problem: permuting the colors gives another solution; however it was

broken in an ad hoc way in the SAT encoding and hence also in the input structure

of our instances). One recent feature is to avoid complete proposionalization during

grounding, on one hand by keeping function terms in the grounding (De Cat et al.

2013), and, on the other hand through lazy, demand-driven grounding during search

(De Cat et al. 2012, 2014). Another feature is the detection of functional dependencies

and their use to reduce the arity of predicates (De Cat and Bruynooghe 2013).
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Caroline Macé and Tara Andrews introduced some of the authors to stemmatology

and provided the data sets; Tara also explained the working of the procedural code.

This work was supported by Research Foundation – Flanders (FWO-Vlaanderen)

and the Research Council of KU Leuven (GOA/08/008 and GOA 13/010).

References

Andrews, T., Blockeel, H., Bogaerts, B., Bruynooghe, M., Denecker, M., De Pooter,
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