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Plane Quartic Twists of X(5, 3)

Dedicated to Pilar Bayer on her sixtieth birthday

Julio Fernández, Josep González and Joan-C. Lario

Abstract. Given an odd surjective Galois representation ̺ : GQ → PGL2(F3) and a positive inte-

ger N, there exists a twisted modular curve X(N, 3)̺ defined over Q whose rational points classify the

quadratic Q-curves of degree N realizing ̺. This paper gives a method to provide an explicit plane

quartic model for this curve in the genus-three case N = 5.

1 Introduction

Let p be an odd prime. The so-called Q-curves (non-CM elliptic curves over Q

that are isogenous to all their Galois conjugates) are a source of representations of

the absolute Galois group GQ into PGL2(Fp). We refer to [FLR02, Fer04] for a de-

tailed construction of the odd representation ̺E,p : GQ → PGL2(Fp) arising from the

p-torsion of a Q-curve E. It seems natural to ask for the frequency of such representa-

tions ̺E,p among all odd 2-dimensional projective mod p Galois representations. We

say that a Q-curve E realizes a given representation ̺ : GQ → PGL2(Fp) if ̺E,p = ̺
up to conjugation in PGL2(Fp).

The moduli problem classifying the quadratic Q-curves that realize such a repre-

sentation ̺ is the subject of the Ph.D. thesis of the first author [Fer03]. The problem

splits into different cases depending on the value mod p of the eventual degrees N

for the isogeny from the Q-curve to its Galois conjugate. For N non-square mod p,

the representation ̺ cannot have cyclotomic determinant for it to be realized by

quadratic Q-curves of degree N , and such Q-curves are then given by the rational

points on some twist of a modular curve X(N, p). The aim of this paper is to explain

a method to obtain good models over Q for some of these twisted curves, namely for

those corresponding to the octahedral genus-three case N = 5, p = 3.

In Section 2 we briefly introduce the modular curve X(N, p) and its twists

X(N, p)̺. We refer to [Fer04] for this section. In Section 3 we give a plane

quartic model for X(5, 3) along with an explicit description of the natural map

X(5, 3) → X+(5). An algorithm to produce a plane quartic model for X(5, 3)̺ when-

ever ̺ is surjective is then explained in Section 4, where the input is given by a degree-

four polynomial in Z[X] having the same splitting field as ̺. Finally, in Section 5 we

present an example illustrating that all computations can be carried out by any of the

available standard algebraic manipulation systems. We also compute by hand some

rational points on the resulting quartic model and show that the Chabauty–Coleman

method fails to be of use in this case. The authors expect that some other developing
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techniques to determine the set of all rational points on small genus curves can be

applied to the models provided by the method described in the paper.

2 The Twisted Modular Curve X(N, p)̺

Let N > 1 be an integer prime to p. We denote by X(N, p) the fiber product

over X(1) of the modular curves X0(N) and X(p). We take for X0(N) its canoni-

cal model over Q . As for X(p), we fix the rational model attached to a matrix V in

PGL2(Fp)\PSL2(Fp) of order 2, as a particular case of a general procedure that can be

found in [Lig77, §II.3] and [Maz77, §2]. Its Q-isomorphism class does not depend

on the choice of such a matrix. We denote by W(N, p) the automorphism group

of the covering X(N, p) −→ X+(N), where X+(N) is the quotient of X0(N) by the

Atkin–Lehner involution wN . We recall that the rational points on X+(N) yield the

isomorphism classes of quadratic Q-curves of degree N up to Galois conjugation.

Assume N to be a non-square mod p. The automorphism group W(N, p) is then

canonically isomorphic to PGL2(Fp). If we put w for the involution on X(N, p) cor-

responding through this isomorphism to the above matrix V and identify W(N, p)

with its (inner) automorphism group, the Galois action on W(N, p) is given by the

morphism

ε : GQ −→ F
∗
p/F

∗
p

2 ≃ 〈w〉 →֒ W(N, p)

obtained from the mod p cyclotomic character GQ → F∗
p.

Suppose that we are now given a surjective Galois representation

̺ : GQ −→ PGL2(Fp)

with non-cyclotomic determinant. A Q-curve of degree N realizing ̺ must then be

defined over the quadratic field attached to the Galois character

ε det ̺ : GQ −→ F
∗
p/F

∗
p

2 ≃ {±1}.
For the moduli classification of such Q-curves, we produce a twist of X(N, p) from

a certain element in the cohomology set H1(GQ , W(N, p)). Specifically, we take the

1-cocycle ξ = ̺ε, where we view ̺ as a map onto W(N, p) through the above canon-

ical isomorphism:

̺ : GQ −→ PGL2(Fp)
≃−→ W(N, p).

For the twist of X(N, p) attached to ξ, we fix a rational model X(N, p)̺ along with

an isomorphism

Ψ : X(N, p)̺ −→ X(N, p)

satisfying Ψ = ξσ
σΨ for every σ in GQ . We note that the Q-isomorphism class of

X(N, p)̺ is an invariant of the conjugacy class of ̺. In other words, it only depends

on the splitting field of ̺, since every automorphism of PGL2(Fp) is inner.

Theorem 2.1 There exists a quadratic Q-curve of degree N realizing ̺ if and only if

the set of non-cuspidal non-CM rational points on the curve X(N, p)̺ is nonempty. In

this case, the composition

X(N, p)̺
Ψ−→ X(N, p) −→ X+(N)
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defines a one-to-one correspondence between this set of points and the set of isomorphism

classes of quadratic Q-curves of degree N up to Galois conjugation realizing ̺.

Remark 2.2 The genus of X(N, p) is never two, and the only genus-three case ap-

pears for N = 5 and p = 3.

3 A Plane Quartic Model for X(5, 3)

The automorphism of the complex upper-half plane given by τ 7→ τ/3 induces an

isomorphism

Φ : X(N, 3) −→ X0(9N)

defined over Q , so that Φ∗(Q(X0(9N))) is the function field of the rational model

for X(N, 3) fixed in the previous section. Moreover, the above involution w on

X(N, 3) can be chosen to correspond through Φ to the Atkin–Lehner involution wN

on X0(9N). From now on, we take N = 5 and ease the notation as follows: for a

function x ∈ Q(X0(45)), a regular differential ω ∈ Ω1(X0(45)) or an automorphism

W ∈ Aut(X0(45)), we put x = Φ∗(x), ω = Φ∗(ω), W = Φ−1W Φ for the corre-

sponding function, differential or automorphism on X(5, 3).

3.1 An Equation for X0(45)

The jacobian of X0(45) is Q-isogenous to J0(15)2 × J0(45)new, where J0(15) and

J0(45)new are elliptic curves over Q of conductors 15 and 45, respectively. A basis

for the Q-vector space Ω1
Q (X0(45)) is given by

ω1 = f1(q)
dq

q
, ω2 = f1(q3)

dq

q
, ω3 = f2(q)

dq

q
,

where f1 and f2 are the normalized weight-two newforms of levels 15 and 45, respec-

tively:

f1 = q − q2 − q3 − q4 + q5 + q6 + 3q8 + q9 − q10 − 4q11 + q12

− 2q13 − q15 − q16 + 2q17 + · · ·

f2 = q + q2 − q4 − q5 − 3q8 − q10 + 4q11 − 2q13 − q16 − 2q17 + · · ·

The genus-three curve X0(45) is nonhyperelliptic (see [Ogg74]), so the image of

X0(45) under the canonical embedding is the zero locus of a homogenous polynomial

P in Q[X,Y, Z] of degree 4. Such a polynomial P, unique up to non-zero rational

multiples, satisfies P(ω1, ω2, ω3) = 0 and can be explicitly determined using the first

seventeen Fourier coefficients of each ωi (see [BGGP, §2]). This yields the following

affine equation for X0(45):

(1) x4 − 2x2 y2 + 81y4 − 2x2 − 16xy − 18y2 + 1 = 0,

where x = ω1/ω3 and y = ω2/ω3. In particular, Q(X(5, 3)) = Q(x, y).
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3.2 The Group Aut(X0(45))

The group Aut (X0(45)) is generated by the Atkin–Lehner involutions w5, w9 and the

automorphism S induced by the map τ 7→ τ + 1/3 on the complex upper-half plane

(see [KM88, LN64]). The action of these generators on Ω
1(X0(45)) is displayed in

the following table:

w5 w9 S

ω1 −ω1 3ω2 −1/2ω1 − 3/2ω2 +
√
−3/2ω3

ω2 −ω2 1/3ω1 ω2

ω3 ω3 −ω3

√
−3/2ω1 +

√
−3/2ω2 − 1/2ω3

It can be easily checked from these relations that Aut(X0(45)) has the same or-

der as PGL2(F3), so that Aut(X(5, 3)) = W(5, 3) = 〈w5, w9, S〉 ≃ PGL2(F3).

Let us also note that AutQ (X0(45)) is the subgroup of Atkin–Lehner involutions,

while the automorphism S is defined over the quadratic field Q(
√
−3) and satis-

fies νS = S2 for the non-trivial automorphism ν ∈ Gal(Q(
√
−3)/Q). In partic-

ular, the group 〈w9Sw9〉 is GQ -stable. As a matter of fact, the degree-three cover-

ing X0(45) → X0(45)/〈w9Sw9〉 is the natural projection X0(45) → X0(15), since the

pullback of Ω1
Q (X0(45)/〈w9Sw9〉) is 〈ω1〉.

3.3 The Covering X(5, 3) → X+(5)

Consider the composition X0(45)
π1→ X0(15)

π2→ X0(5)
π3→ X+(5), where π1, π2 and

π3 are the natural projections. We fix for X0(45) the model given by equation (1).

For X0(15), we take the minimal equation

(2) v2 + uv + v = u3 + u2 − 10u − 10

given in [Cre97], where the functions u, v ∈ Q(X0(15)) have a unique pole at the

cusp ∞ with respective multiplicities 2 and 3:

u =
1

q2
+

1

q
+ 1 + 2q + 4q2 + · · · v =

1

q3
+

1

q2
+

2

q
+ 3 + 2q + 5q2 + · · ·

As for the function fields of X0(5) and X+(5), we take the following generators over Q ,

respectively:

G(τ ) =

( η(τ )

η(5τ )

) 6

=
1

q
− 6 + 9q + 10q2 + · · ·

t(τ ) = G(τ ) +
53

G(τ )
=

1

q
− 6 + 134q + 760q2 + · · ·
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where η denotes the Dedekind function on the complex upper-half plane. The field

Q(X0(5)) is generated over Q(X+(5)) by the elliptic modular function j, and the rela-

tion between the functions j and t can be computed by using the procedure described

in [GL98]:

j2 − (t5 + 30t4 − 310t3 − 13700t2 − 38424t + 614000) j + (t2 + 260t + 5380)3
= 0.

The j-invariants of quadratic Q-curves of degree 5 are obtained from this equation

by rational values of the function t .

Through the above isomorphism Φ, the functions G(3τ ) and t(3τ ) can be viewed

inside Q(X(5, 3)), as the following diagram shows:

Q (X(5, 3)) Q (X0(45))
Φ
∗

oo

π∗
1

Φ∗ (Q (X0(15))) Q (X0(15))
≃

oo

π∗
2

M

M

M

M

M

M

M

M

M

M

Q (X0(5)) Q (G(3τ ))
≃

oo Q (X0(5))

π∗
3

Q (X+(5)) Q (t(3τ ))
≃

oo Q (X+(5))

In order to give an explicit description of the extension Q(X(5, 3))/Q(X+(5)) on the

left column of the diagram, we begin by recalling that π1 is in fact the projection

X0(45) → X0(45)/〈w9Sw9〉. We now consider the following functions on X0(45):

U =
(−3 + x + 9y)(3 + x + 9y)

4x2
, V =

9(3 + x2 + 18xy + 81y2)

4x3
.

They are invariant by w9Sw9 and satisfy [Q(X0(45)) : Q(U ,V )] = 3, so they generate

the function field of X0(15) over Q . Using the q-expansions of the above functions u

and v, we obtain the following identities:

u =
Q(U ,V )

2(10 + 2U + 3U 2 − 2V )2
, v =

R(U ,V )

2(10 + 2U + 3U 2 − 2V )3
,

where

Q(U ,V ) = −1300 − 520U − 477U 2 + 19U 3 − 17U 4 + (260 + 52U + 33U 2)V,

R(U ,V ) = 9
(

1000 − 1900U − 630U 2 − 1237U 3 − 39U 4 − 121U 5 + 2U 6
)

+ 9(−200 + 420U + 82U 2 + 131U 3 + 2U 4)V.
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By applying Φ∗ to the resulting expressions of u and v in terms of x, y, that is, by

changing x, y, u, v by x, y, u, v, respectively, in the above relations, we get a descrip-

tion of the subextension Q(X(5, 3))/Φ
∗(Q(X0(15))). All we have to do then is to

give t as a rational function in u and v. As t(τ ) = t(3τ ), this is equivalent to giving

t(3τ ) as a rational function in u and v. Now, G(3τ ) has exactly two poles at the cusps

1/5 and ∞ of X0(15) with multiplicities 1 and 3, respectively. Since the function

H(τ ) =
η(3τ )η(5τ )5

η(τ )η(15τ )5
=

1

q2
+

1

q
+ 2 + 2q + 4q2 + · · ·

lies in Q(X0(15)) and has divisor 2(1/5) − 2(∞), we get H = u + 1. Then, the

function (u + 1)G(3τ ) has a unique pole at ∞ (with multiplicity 5), so it must be a

polynomial in u and v. Using again the q-expansions of u and v, we obtain

G(3τ ) =
uv − u2 − 9u − 8

u + 1
,

hence

(3) t =
189 + 205u + 7u2 + u3 + u4 − 16uv − 3u2v

uv − u2 − 9u − 8
.

4 A Plane Quartic Model for X(5, 3)̺

The background strategy in this section is the same as in Subsection 3.1: a plane

quartic model for X(5, 3)̺ over Q can be theoretically obtained from a basis of the

3-dimensional Q-vector space Ω
1
Q (X(5, 3)̺). So our problem amounts to giving an

explicit enough description of this space.

We recall that ̺ stands for any fixed representation of GQ onto PGL2(F3) with

non-cyclotomic determinant. It is determined by its splitting field L up to conju-

gation in PGL2(F3), and the condition on the determinant amounts to saying that

L does not contain
√
−3. Put K = L(

√
−3) and denote by ν the non-trivial ele-

ment in Gal(K/L). Since PGL2(F3) is isomorphic to the symmetric group S4, we can

take as input data a quartic polynomial f ∈ Z[X] with splitting field L and identify

Gal(L/Q) with S4 by fixing an order of the roots of f . For convenience, we take as

generators for this Galois group the following permutations:

σ1 = (1, 2, 3), σ2 = (1, 2)(3, 4), σ3 = (1, 2).

Consider on Ω1

Q
(X(5, 3)) = Ω1

Q (X(5, 3)) ⊗ Q the Galois action twisted by the

1-cocycle ξ obtained from ̺ as in Section 2. It is defined by

(ω ⊗ γ)σ
ξ := (σωξ−1

σ ) ⊗ σ(γ)

for ω ∈ Ω1
Q (X(5, 3)), γ ∈ Q and σ ∈ GQ . This action factors through Gal(K/Q),

and the regular differentials on X(5, 3)̺ defined over Q can be identified via the iso-

morphism Ψ : X(5, 3)̺ → X(5, 3) with the fixed elements in Ω
1
K(X(5, 3)):

Ω
1
Q

(

X(5, 3)̺

)

=
(

Ω
1
Q(

√
−3)

(X(5, 3)) ⊗ L
) Gal(K/Q)

ξ
.
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Moreover, the twisted action of Gal(K/Q) can be restricted to the 6-dimensional

Q-vector space Ω1
Q(

√
−3)

(X(5, 3)), for which we take the basis

{ω1, ω2, ω3,
√
−3ω1,

√
−3ω2,

√
−3ω3}.

Recall that ω1, ω2, ω3 are the forms in Ω
1
Q (X0(45)) introduced in the previous sec-

tion, while ω1, ω2, ω3 are the corresponding forms in Ω1
Q (X(5, 3)). The action of the

Galois generators σ1, σ2, σ3 and ν on this basis is given by the matrices

s1 =























− 1
2

0 0 0 0 − 3
2

− 3
2

1 0 0 0 − 3
2

0 0 − 1
2

− 3
2

0 0

0 0 1
2

− 1
2

0 0

0 0 1
2

− 3
2

1 0
1
2

0 0 0 0 − 1
2























, s2 =























0 1
3

0 0 0 0

3 0 0 0 0 0

0 0 −1 0 0 0

0 0 0 0 1
3

0

0 0 0 3 0 0

0 0 0 0 0 −1























,

s3 =





















−1 0 0 0 0 0

0 −1 0 0 0 0

0 0 1 0 0 0

0 0 0 −1 0 0

0 0 0 0 −1 0

0 0 0 0 0 1





















, s4 =





















−1 0 0 0 0 0

0 −1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 −1





















,

respectively. This comes from the table in Subsection 3.2 and from the definition

of the 1-cocyle ξ. Indeed, the (conjugacy class of the) representation ̺ translates

into the isomorphism Gal(L/Q) ≃ Aut(X(5, 3)) sending σ1, σ2, σ3 to S
−1

, w9, w5,

respectively.

We must now look for three elements in Ω1
Q(

√
−3)

(X(5, 3)) ⊗ L which are linearly

independent over Q and invariant by the above Galois action. To that end, we follow

the next steps:

Step 1 Compute a basis for the ring of integers OL.

Step 2 Compute the 24 × 24 matrices Σ1, Σ2, Σ3 with entries in Z giving the action

of σ1, σ2, σ3, respectively, on the integral basis of OL.

Step 3 Form the Kronecker products

W1 := s1 ⊗ Σ1, W2 := s2 ⊗ Σ2, W3 := s3 ⊗ Σ3, W4 := s4 ⊗ Σ4,

where Σ4 stands for the identity matrix Id24. Then compute a basis X̺,Y̺, Z̺ for the

3-dimensional vector subspace of Ω1
Q(

√
−3)(X(5,3))

⊗ L corresponding to the subspace
⋂4

i=1 ker(Wi − Id144) of Q144.

Step 4 Compute the 3 × 3 matrix Θ with entries in K giving the basis change

(ω1, ω2, ω3) = (X̺,Y̺, Z̺)Θ.
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Replacing X̺,Y̺, Z̺ by projective variables X,Y, Z, then plugging ω1, ω2, ω3 into the

homogenization of equation (1), and finally factoring out, one gets a plane quartic

equation F(X,Y, Z) = 0 for the twist X(5, 3)̺ over Q .

Remark 4.1 The interest of working with an integral basis of OL, instead of just

using the power-basis attached to a primitive element of the extension L/Q , is due to

the fact that one obtains experimentally better models in the sense of shrinking the

set of bad reduction primes for the twisted curve.

Remark 4.2 It can be easily checked that {σ ∈ Gal(K/Q) | σΨ = Ψ} = 〈νσ3〉.
Thus, the isomorphism Ψ is defined over K〈νσ3〉 and the entries of the above matrix Θ

all belong to this extension of degree 24. We also have

{σ ∈ Gal(K/Q) | σ
ΨΨ

−1 ∈ 〈w9Sw9〉} = 〈νσ3, σ2σ1σ2〉,

which means that the composition

X(5, 3)ρ
Ψ−→ X(5, 3) −→ X(5, 3)/〈w9Sw9〉 ≃ X0(15)

is defined over a number field of degree 8 which is the compositum of the quadratic

field k attached to the character ε det ̺ and the number field L0 generated by the root

of the quartic polynomial f fixed by the permutation σ2σ1σ2.

5 An Explicit Example

All the steps in the previous section can be performed using a software package for

algebraic manipulation such as Pari or Magma. As an example, we consider the

surjective Galois representation ̺ : GQ → PGL2(F3) defined up to conjugation by

the splitting field of the irreducible polynomial

f (X) = X4 − 3X2 + 2X + 3.

Since the discriminant of f equals −33 up to squares, the field k over which the

quadratic Q-curves realizing ̺ must be defined is Q(
√

11) (see Section 2).

Note that if the rank of X0(15)(kL0) is zero, where L0 is the quartic number field

defined by f (cf. Remark 4.2), then we do not need to compute an equation for

X(5, 3)̺. Indeed, in this case the values t ∈ X+(5)(Q) obtained from the torsion

points of X0(15)(kL0) using (3) would provide us with a finite set of candidate

Q-curves E, and then it would suffice to check whether ̺E,3 = ̺ or not for each

of them. In our example, this strategy does not apply, since the rank of X0(15)(k),

which can be computed using Magma v2.11, is one.

The procedure described in the previous section allows us to obtain the following

projective model for X(5, 3)̺:

− 9XY (2X + Y )(9X + 8Y ) + 9(6X3 + 62X2Y + 66XY 2 + 15Y 3)Z

+ 3(27X2 − 104XY − 83Y 2)Z2 − 3(94X + 7Y )Z3 + 191Z4
= 0.
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We have found four rational points on the line at infinity, namely

P1 = [0 : 1 :0], P2 = [1 :0 : 0], P3 = [1 : − 2 : 0], P4 = [8 : − 9 :0].

The j-invariants, up to Galois conjugation, for the corresponding Q-curves of de-

gree 5 realizing ̺ are

j1 =
(

−8
√

11
) 3

(10 + 3
√

11),

j2 =
(

6(110 + 31
√

11)
) 3

(10 + 3
√

11),

j3 =
(

12(10 −
√

11)
) 3

(10 + 3
√

11),

j4 =
(

2(−6878815950 + 2118474913
√

11)/535
) 3

(10 + 3
√

11).

Let us finish by showing that the Chabauty–Coleman method to determine the

set of rational points on a curve of genus at least two cannot be applied to X(5, 3)̺

for the representation ̺ in this example, since the requirement that the rank of the

jacobian J(X(5, 3)̺) be smaller than the genus of the curve is not fulfilled. Indeed,

consider the projection X(5, 3)̺ → X0(15) in Remark 4.2 and the corresponding im-

ages Q1, Q2, Q3, Q4 in X0(15)(kL0) of the above points P1, P2, P3, P4. The morphism

X(5, 3)̺ →֒ J(X(5, 3)̺), P 7→ (P) − (P1)

is defined over Q and produces three rational points in J
(

X(5, 3)̺

)

(Q) whose im-

ages in the elliptic curve J0(15) are Q2−Q1, Q3−Q1 and Q4−Q1. Now, using Magma
again, one can compute the 3×3 matrix obtained by applying the Néron–Tate pairing

〈P, Q〉 =
1

2
(h(P + Q) − h(P) − h(Q))

over the points Q2 − Q1, Q3 − Q1, Q4 − Q1. An approximation for the determinant

of this matrix turns out to be 6.460235. Since it is nonzero, these three points are

linearly independent on J0(15). It follows that the rank of J(X(5, 3)̺)(Q) is at least

three.
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[GL98] J. González and J.-C. Lario, Rational and elliptic parametrizations of Q-curves. J. Number
Theory, 72(1998), no. 1, 13–31.

https://doi.org/10.4153/CMB-2007-021-8 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2007-021-8


Plane Quartic Twists of X(5, 3) 205

[KM88] M. A. Kenku and F. Momose, Automorphism groups of the modular curves X0(N). Compositio
Math. 65(1988), no. 1, 51–80.

[Lig77] G. Ligozat, Courbes modulaires de niveau 11. In: Modular Functions of One Variable. Lecture
Notes in Math. 601, Springer, Berlin, 1977, 149–237.

[LN64] J. Lehner and M. Newman, Weierstrass points of Γ0 (n). Ann. of Math. 79(1964), 360–368.
[Maz77] B. Mazur, Rational points on modular curves. In: Modular Functions of One Variable. Lecture

Notes in Math. 601, Springer, Berlin, 1977, pp. 107–148.
[Ogg74] A. P. Ogg, Hyperelliptic modular curves. Bull. Soc. Math. France 102(1974), 449–462.
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