Probiotics – do they have a role in the pig industry?

M. Kenny1, H. Smidt2, E. Mengheri3 and B. Miller1†

1Division of Food Animal Sciences, Department of Clinical Veterinary Sciences, University of Bristol, Lower Langford, North Somerset, BS40 5DU, UK; 2Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, The Netherlands; 3INRAN, Via Ardeatina 546, Roma 00178, Italy

(Received 5 March 2009; Accepted 28 July 2010; First published online 14 October 2010)

The delivery of certain living microorganisms in food has long been suggested as having positive health effects in humans. This practice has extended into food animal production, with a variety of microorganisms being used; lactic acid bacteria, various Bacillus species and the yeast Saccharomyces cerevisiae have been particularly used in the pig industry. The increased interest in probiotics is essentially due to the problem of microbial resistance to antibiotics and following the ban of the use of antibiotics in animal production, probiotics being considered an alternative means to reduce pathogen infection and improve animal health especially around the time of weaning. However, there is still a need to clarify the probiotic effectiveness in pigs, and the underlying mechanisms. When assessing the efficacy of probiotics one must consider the particular strain of organism being used and the production stage of the pigs being treated. The reproducible delivery of probiotics in industrial pig production is problematic as maintenance of viability is key to their beneficial activity, but difficult to achieve with commonly used feed processing technologies. One specific context where probiotics organisms may be reliably delivered is in systems utilising fermented liquid feeds. Liquid feed may be fermented by the activity of wild lactic acid bacteria or may be stimulated using specific isolates as ‘starters’; the latter system has advantages in terms of reproducibility and speed of fermentation. The farm context in which the organism is used is likely to be critical; the use of probiotics is more likely to result in measurable economic gains in animals living in sub-optimal conditions rather than in those reared in the highest welfare and husbandry conditions. The establishment of a beneficial lactic acid bacteria population at birth may lead to healthier animals, this may be most effectively achieved by treating sows, which provide an amplification step and flood the neonatal pigs’ environment with desirable bacterial strains. In contrast, it may be sufficient to provide a supportive, protective microbiota around the time of weaning as this is a time of major crisis with instability and loss of certain bacterial populations.

Keywords: pig, probiotic, performance, health

Implications

This review provides the scientific background to the use of probiotics in the pig industry to control bacterial gut infection. Given the European Union ban on the use of prophylactic antibiotics, this approach could have a significant positive effect upon the economic viability of pig producers.

Introduction

The concept of probiotics, defined as ‘live microorganisms which, when administered in adequate amounts, confer a health benefit on the host’ (FAO/WHO, 2001), was first noted by Metchnikov in his book ‘The Prolongation of Life’ in 1908. He ascribed the noted longevity of certain Bulgarian peasants to their high consumption of milk products fermented with lactic acid bacteria (probably Lactobacillus delbrueckii sub-species bulgaricus). The mechanism by which this happened was supposed to be via modification of the community of bacteria present in the colon; Metchnikov postulated that many human ills were due to the overgrowth of undesirable colonic bacteria.

A large amount of work on the efficacy of probiotics in human disease has been carried out (for recent reviews see Marchesi and Shanahan, 2007; Doron et al., 2008; Parkes et al., 2009; Collado et al., 2009; Lomax and Calder, 2009). Certain aspects of this work can be applied to the pig, particularly mechanistic studies looking at the interaction of probiotics with host mucosal surfaces or pathogenic bacteria (Madsen et al., 2001; Roselli et al., 2007). However, this ‘human model’ does not give many insights into the efficacy of probiotics in terms of production parameters in the pig industry.

In this review, we will describe key aspects of the biological interactions between various mammals and probiotics...
with particular emphasis on possible underlying mechanisms. We will then review the literature on the use of probiotics in pigs, including information with respect to the most effective time of application. We will also discuss the use of fermented liquid feed in the pig industry as a means of delivering probiotic organisms. The delivery of probiotics to pigs is problematic due to the harsh processes used in feed processing and the inherent fragility of bacteria; technological aspects of delivery that may address these problems will be discussed.

Gut bacteria and health

Most of the health benefits ascribed to the administration of probiotics are linked to modulation of either host or bacterial factors in the gastrointestinal tract. It is thus appropriate to spend some time here considering the significance of bacteria to the host’s well-being. The gastrointestinal tracts of humans and pigs are colonised by a wide array of bacteria, yeasts and viruses (Sears, 2005). In humans, the number of bacterial cells outnumbers the cells composing the host’s body by 10-fold. This bacterial component of the host, particularly the bacteria of the gut, may be seen as an extra, indispensable organ, which contributes an array of gene products not native to the host, such as a plethora of specific glycosidases (Kim et al., 2007; Klaenhammer et al., 2008). Animals raised in the absence of bacteria show profound retardation in the developmental adult gut morphology and immune function (Nanthakumar et al., 2003; Wagner, 2008).

The endogenous microbiota provides critical support to the host in areas such as vitamin and co-factor production, usage of otherwise indigestible feed ingredients, detoxification of food components, coating the gut with a benign microbiota to physically exclude pathogens, production of natural antibiotics and antifungals, maintenance of gut barrier function and promotion of anti-inflammatory response (Madsen et al., 2001; Hooper et al., 2002; Ouwehand et al., 2002; Roselli et al., 2007). A novel role in regulating fat storage has been recently ascribed to microbiota by recent studies, a promotion of monosaccharides absorption from the gut resulting in induction of de novo hepatic lipogenesis has been shown by comparing germ-free mice with conventionalised mice (Bäckhed et al., 2004). Furthermore, an increased capacity to harvest energy from the diet has been observed by comparing gut microbiota of obese and lean mice (Tumabaugh et al., 2006).

Gut microbiota plays a critical role in ‘educating’ the neonatal gut immune system to generate functional adult systems for recognising pathogens and dealing with novel food antigens (Calder et al., 2006; Williams et al., 2006; Boivirant et al., 2008).

Early-life experience of the environment is critical in programming, or ‘imprinting’ the range of microbial biotypes which will accompany the host for their subsequent life (Zoetendal et al., 2001; Favier et al., 2002). The similarity of bacterial microbiota’s varies between individuals on the basis of genetic relatedness and environmental experience (Mueller et al., 2006). A complex microbiota (many different biotypes) may confer advantages to the hosts by allowing rapid adaptation to environmental changes (Marchesi and Shanahan, 2007). The importance of early-life exposure on subsequent development of a rich, diverse microbiota is shown in studies comparing the microbiota of children normally delivered and those delivered by caesarean section; the latter children had markedly less complex microbiota (Gronlund et al., 1999; Biasucci et al., 2008). Children born and raised in relatively clean environments have been shown to have higher rates of atopy in later life, possibly reflecting the importance of bacterial diversity in the development of a competent, efficient immune system, this connection between over-clean environments and subsequent immunological dysfunction is referred to as ‘The Hygiene Hypothesis’ (Strachan, 1989).

However, although most studies indicate an association of gut microbiota composition with atopic disease, the specific harmful or protective microbes have not yet been identified (Penders et al., 2007). Recent results have highlighted the need to enlarge the concept of the hygiene hypothesis, and these aspects are well discussed in a recent review by Isolauri et al. (2009). According to these authors, three aspects should be considered in the re-evaluation of the hygiene hypothesis: the importance of gut microbiota composition in consolidation of healthy immune responsiveness; the new knowledge of immunomodulatory and suppressive immune responses extending the original ‘T helper 1/T helper 2’ paradigm; the role of host-microbe interaction in the development of not only atopic disease but also of other inflammatory diseases, including obesity.

It is unlikely that newborn pigs would be suffering from a deficit of microbial complexity in their environment under natural conditions. It is important to note that their endogenous microbiota is largely established at this time (Konstantinov et al., 2006; Thanantong et al., 2006). However, it is possible that piglets born into regularly sterilised farrowing accommodation may acquire a substantially different microbiota from the substrate than they would in an outdoor farrowing situation. This has indeed been shown in recent studies in pigs raised in different high v. low hygiene environments, which showed that such differences significantly affect not only intestinal microbiota composition but also the mucosal innate immune function in neonates, as well as in adult animals (Mulder et al., 2009; Inman et al., 2010).

Increasingly, research is taking place to look at bacterial ‘imprinting’ in early life. In an ideal world, the piglet should pick up a protective gut microbiota at birth which would improve nutrient availability by providing vitamins, short chain fatty acids or aminoacids (Cheeson, 1994; Metges, 2000; Resta, 2009), while protecting against environmentally acquired pathogens by direct and indirect (stimulation of the host immune system) means (Ouwehand et al., 2002; Bailey, 2009). This may be the most important ‘window’ for establishing a potentially beneficial bacterial community, in order to set up life-long, stable associations between the host and microbe.

Do probiotics work? – an overview

Anecdotally, probiotics have been thought to be useful in the treatment of numerous gastrointestinal disturbances in
However, the institution of relatively inexpensive husbandry industry was, indeed, hit by the reduction in antimicrobial cover. More complex than this intuitive picture. In Sweden, the pig hardiness in these life stages. In fact, the situation seems to be expected to lead to increased mortality or decreased beneficial bacteria is energy lost to the animal, and farmer, in terms of growth and efficient feed conversion. It is in these components to the animal, or in terms of mounting an immune response to the bacteria. The effects of subclinical infections with pathogens are likely to be important with respect to production parameters, as energy spent fighting non-beneficial bacteria is energy lost to the animal, and farmer, in terms of growth and efficient feed conversion. It is in these compromised, but not overtly ill, animals that probiotics or other interventions to reduce the load of damaging bacteria may be most useful. To this end, it is interesting to note that a recent study showed a positive effect of probiotic treatment of E. coli F4 infected weaned piglets with L. sobrius not only on pathogen levels, but also on average daily weight gain (Konstantinov et al., 2008).

Cheeson (1994) identified a number of factors that may be expected to change with alterations to the intestinal bacterial microbiota in pigs, including an increase in the proportion of the amino acid pool that is available to other tissues (e.g. skeletal muscle), a reduction of endogenous nitrogen losses and a corresponding increase in apparent nitrogen digestibility and absorption. In fact, metabolic requirement is met not only by the diet but also by amino acids provided by the gastrointestinal microbiota, and from 1% to 20% of plasma, urinary and body lysine of the host has been calculated to derive from intestinal microbial sources (Metges, 2000).

Probiotics may also affect the absorption/secretion activity of intestine in pigs A slightly higher L-glutamine transport and increased ion secretion was observed in Bacillus cereus or Enterococcus faecium treated pigs, at 28 days of age (Lodemann et al., 2006; Lodemann et al., 2008). In a study carried out in pigs to screen lactic acid bacteria producing active dietary enzymes, such as amylase, lipase, phytase and protease, Lactobacillus sp. PSC101 was selected as a strong probiotic candidate due to its resistance to both acid and bile and production of dietary enzymes promoting animal growth.
(Kim et al., 2007). A previous study in germ-free mice using the organism *Bacteroides thetaiotamicron* has shown that introduction of the bacteria is critical for induction of critical glycolytic enzymes in the enterocytes (Bry et al., 1996). Considering all these data, it follows that in immature animals there is a scope for enhancing positive interactions between host and microorganisms in the gut. It has now also been generally accepted that gut microbiota has to be considered a pivotal factor in shaping the host’s metabolism, where differences in microbiota composition have strong effects on overall energy yield from the diet, and thus body weight (for a recent review, see (Vrieze et al., 2010)). In the strict definition of the word ‘probiotic’, pre-emptive administration of bacterial strains capable of stimulating the widest possible range of food substrate degrading enzymes in the young pigs’ gut would be desirable as a means of maximising the efficiency of food assimilation.

In *ex vivo* or *in vitro* models, it has been shown that incubation of intestinal cells with various *Lactobacillus* species protect against pathogen-induced disruption of membrane barrier. This appears to be a multi-factorial process involving both induction of mucus secretion from goblet cells (Mack et al., 1999; Caballero-Franco et al., 2007) and maintenance of the tight cell junctions between cells (Madsen et al., 2001; Roselli et al., 2007; Putala et al., 2008). This function may be most important in countering the effects of pathogens, which often exert gastrointestinal effects by weakening the junctions between cells allowing for translocation of the pathogens and activation of inflammatory signals or establishment of local inflammatory lesions. Studies on protective activity of probiotics on membrane barrier of pigs are rare.

Other than the described mechanisms, probiotics may provide defence to the cells through induction of anti-inflammatory cytokines, and reduction of pro-inflammatory cytokines, from enterocytes and intestinal immune cells recruited to sites of inflammation by probiotics (O’Hara et al., 2006; Walsh et al., 2008; Wang et al., 2009). Cytokines are also involved in the maintenance of barrier integrity induced by probiotics (Roselli et al., 2007). However, the exact mechanisms of probiotic protection are still largely unknown.

One system that is an attractive target by which probiotics may exercise strong influence is the innate immune system. The intestine has a range of non-specific anti-bacterial weapons that are constitutively produced by enterocytes or specialist cell types. Of particular interest are the defensins, pore-forming antimicrobial peptides produced by Paneth cells and other cells included neutrophils and macrophages; these molecules act as antimicrobials by directly inhibiting pathogen growth, as well as potentiating branches of the innate, humoral and cell-mediated immune system (Linde et al., 2008). Defensin induction seems to be a common and important mechanism of probiotic treatment (Mondel et al., 2008). In *vitro* work has shown that a commonly used probiotics cocktail VSL#3, containing four *Lactobacillus* species, three *Bifidobacterium* species and one *Streptococcus* is a powerful inducer of β-defensin synthesis. The mechanism appears to be via nuclear factor (NF)-κB and activator protein-1 (AP1) intermediates, which is interesting as probiotics are intuitively regarded as being anti-inflammatory (Schlee et al., 2008). In a recent *in vivo* study, cells of *L. plantarum* WCF51 were given to healthy volunteers, and their effect on duodenal gene expression was investigated, showing cellular pathways and mucosal gene expression patterns correlating with the establishment of immune tolerance in healthy adults (van Baarlen et al., 2009).

The toll-like receptors (TLR) are regarded as one of the gut’s primary means of detecting and initiating responses to microbial molecular markers. Ligation of TLR initiates a signalling cascade that results in the activation of the transcription factor NF-κB and subsequent up-regulation of co-stimulatory molecules as well as inflammatory cytokines and chemokines (Kumar et al., 2009). Thirteen mammalian TLRs have been identified so far, and they are expressed in diverse cell types including gut epithelial cells, B cells, mast cells, dendritic cell, macrophages, neutrophils and T regulatory (Treg) cells (Sutmuller et al., 2006), the ubiquitous nature of TLR mRNA expression in pigs is also emerging (Shimosato et al., 2005; Tohno et al., 2005; Thomas et al., 2006). There is currently much research focussed on how these sensors are able to distinguish between commensal and pathogenic bacteria, which bear the same microbial patterns, in such a way that the appropriate ‘danger’ signals can be generated to pathogens but not inappropriately to benign organisms. Evidence that TLR signalling, especially TLR9, is implicated in the protective effects of probiotics on various models of colitis has been reported in recent studies (Rachmilewitz et al., 2004). *B. longum* and *L. plantarum* were shown to improve colitis by inhibiting inflammatory cytokine expression via TLR-4-linked NF-κB activation and by inhibiting intestinal bacterial glycosaminoglycan degradation (Lee et al., 2009). Studies on pigs reported that supplementation with *B. animalis* affected the expression of TLR-2 in the lymph nodes when fructo-oligosaccharides were added to the diet (Trevisi et al., 2008). In addition, tumour necrosis factor-α was positively correlated with TLR-2 and negatively correlated with bifidobacteria DNA. A recent study highlighted a diverse innate and adaptive immune responses induced by *L. acidophilus* and *L. reuteri* v. rotavirus infection in gnotobiotic pigs (Wen et al., 2009).

The ability of probiotics to influence the adaptive immune system of pigs has been described in several studies. There have been a number of studies looking at the effects of probiotics on serum and faecal immunoglobulin concentrations. A recent study has found that *E. faecium* treatment enhanced the course of infection in weaning piglets challenged with *Salmonella enterica* Typhimurium, however, the probiotic treatment resulted in greater production of specific antibodies against *Salmonella* (Szabo et al., 2009).

In a study, in which pregnant sows were given either *B. cereus* or *E. faecium* significant decreases were seen in the serum IgG levels of the piglets post-weaning, perhaps reflecting the increased stability of the gut wall, with a concomitant reduction in translocation of bacteria from the gut into the systemic circulation (Scharek et al., 2007).
Interestingly, increased levels of faecal IgA were seen in the group given B. cereus compared to the E. faecium group and the other controls.

Similar increases in faecal IgA, following probiotic treatment, has been observed in human infants (Fukushima et al., 1998; Rinne et al., 2005). These studies have been aimed at using probiotics to ameliorate the symptoms of food allergy. It is postulated that mucosal IgA may ‘mop up’ potentially harmful food antigens preventing them from causing inflammatory consequences leading to pathology. It is worth noting in all cases mentioned that the specificity of the IgA molecules has not been determined. It should be noted also that a role for probiotics in accelerating or amplifying the process of immunological tolerance to food antigens has been proposed (Savilahti et al., 2008).

The effect of probiotics on immune cells is less clear. The distribution of intestinal immune cells (granulocytes, mast cells, CD4+, CD8+, CD25+, IgA+ lymphocytes) and the mucosal expression of cytokines (IFN-γ, TGF-β, IL-10) of young pigs were not changed by E. coli Nissle administration (Duncker et al., 2006). On the other hand, L. acidophilus and L. reuteri were able to down-regulate the rotavirus induced activation/recruitment of monocytes/macrophages and CD14 expression in the intestine of neonatal gnotobiotic pigs, thereby limiting inflammation (Zhang et al., 2008). More intriguing was the response to L. fermentum in weaned pigs, that induced an increase in the pro-inflammatory cytokines IFN-γ and TNF-α, in the ileum, and an increase in the percentage of CD4+ lymphocyte subset in blood (Wang et al., 2009).

Action of probiotics on other bacteria

Bacteria form complex associations within the ecosystem of the gut. The different organisms modulate their environment in ways that facilitate the growth of certain microbes while inhibiting the growth of others. The aim of therapeutic probiotics is to facilitate the growth of one or more organisms which inhibit the growth of potentially deleterious organisms (Servin, 2004).

The most closely studied group of organisms in this respect is the Lactobacillus genus. The reduction in pH mentioned earlier, a consequence of their preferred fermentative metabolism, is recognised as important in reducing the growth rates of potential pathogens, particularly enterobacteria such as Salmonella and E. coli. It is worth noting that unionised lactic acid is an effective, non-specific permeabiliser of Gram-negative cell membranes (Alakomi et al., 2000). More specifically, lactobacilli in general elaborate a range of peptide-based molecules generically referred to as ‘bacteriocins’ (Cotter et al., 2005). Colicins are generally most effective against closely related, Gram-positive organisms. However, there have been numerous reports of lactobacilli and bifidobacteria inhibiting the growth of Gram-negative bacteria by a mechanism(s) that do not involve pH reduction or volatile fatty acid production (e.g. Coconnier-Polter et al., 2005; Fayol-Messaoudi et al., 2005).

In addition to actively inhibiting the growth of potential pathogens a general mode of action for probiotics is their ability to competitively exclude access of pathogens to the luminal surface of the gut epithelial cells. This may be due to direct competition for specific receptors or by steric hindrance where the bulk of the probiotic organisms on the cell surface prevent access of pathogens to their cognate receptors (e.g. Jin and Zhao, 2000; Roselli et al., 2007).

Fermented liquid feeds

Since lactobacilli have direct and indirect actions against spoilage and pathogenic bacteria, as well as potential health-promoting effects, they are attractive candidates as additives to feed stuffs. Fermentation of liquid pig feed by LABs occurs naturally on farms but the organisms responsible and the extent of the fermentation is uncontrolled. The literature on the efficacy of fermented liquid feeds (FLF) indicates that they are generally positive in terms of reducing pathogen load in feed and environment (van der Wolf et al., 2001; van Winsen et al., 2002), improving growth/production parameters (Kyriakis et al., 1999), and reducing carriage of pathogens in pigs fed on FLF compared to conventionally fed animals (Boesen et al., 2004). However, there is consistent production of research studies showing that the gains associated with feeding FLF are marginal, at best (e.g. Lawlor et al., 2002; Canibe and Jensen, 2003; Canibe et al., 2007). The lack of consistency between experimental designs make direct comparisons, and logical interpretation, of the many studies difficult (Plumed-Ferrer and von Wright, 2009). The primary difficulty is that the wide range of organisms used to cause fermentation obviously do not all have the same fermentation characteristics; add to this the different feed substrates (whole feed or just cereal components) and different starter concentration, duration of fermentation and temperature; it becomes evident that a clear picture would be a surprise rather than an expectation!

One of the repeated claims against the use of FLF is that there is a reduction in the available lysine (a growth limiting nutrient for pigs) in fermented compared to unfermented feed (P. Brookes, personal communication). It appears that early in the course of natural fermentations Enterobacteriaceae grow and utilise significant amounts of lysine before the LABs can produce sufficient lactate (with a subsequent drop in pH). Where LABs are inoculated in sterile feed there is only a very slight drop in available lysine supporting the contention that the enterobacterial bloom, rather than LAB growth, is responsible for the lysine depletion (Niven et al., 2006). This highlights the need for controlled, highly reproducible fermentations where relatively large quantities of highly active LAB cultures are used to initiate fermentations (Plumed-Ferrer and von Wright, 2009). In a well-controlled fermentations LAB numbers can reach 10^10 CFU/ml. The criticism of many clinical trials of probiotics in humans is that insufficient numbers of viable organisms are delivered; this would not be the case in pigs eating exclusively fermented feed.
In field experiments the effect of an *L. plantarum* fermented diet on *Salmonella* carriage and shedding was equivocal, although the total *Enterobacteriaceae* population was reduced (van Winsen et al., 2002). Under more controlled laboratory conditions we have shown a clear reduction in *Salmonella* carriage in FLF-fed animals where a different strain of *L. plantarum* was employed and lactate levels of 200 to 250 mM and a pH of <4 were consistently maintained (Kenny et al., awaiting publication) with no difference in food conversion ratio between the FLF and control groups. On the farm fermentations, using a defined medium have shown that a stable, high lactate, low yeast fermentation can be achieved using an *L. plantarum* starter (Plumed-Ferrer et al., 2005).

In conclusion, the assessment of the efficacy of FLF is even more problematic than that for probiotics in general. The careful choice of fermentation organism, feed substrate and pig lifecycle stage, coupled with a relatively complex and expensive agrotechnical fermentation and delivery system are necessary for this method of probiotic delivery to achieve its potential.

Direct fed microbials

The challenge of delivering viable beneficial microbes to swine (and other target species) has exercised the pharmaceutical and agricultural feed industry for many years. The human probiotic field has been embarrassed on several occasions by exposés clearly demonstrating that the quantity, type and quality of organisms in commercial preparations was wildly different to that described on the packaging (Huys et al., 2006; Marcobal et al., 2008). For optimal use in a farm setting, any microbial feed additives should be cost-effective, stable to moisture (or portion packed) and temperature. These criteria are difficult to meet reliably for most bacteria, however, bifidobacteria in particular have short shelf lives if not maintained carefully. Nevertheless, a number of commercial preparations are available to pig farmers and have been tested relatively rigorously. The most critical periods in which the probiotics have been tested are the period around farrowing, the first week of life and the post-weaning period.

In biological terms, the easiest microbes to manipulate are those that produce spores; spores are extremely robust and stable yet non-replicating under normal storage conditions. In addition, many *Bacillus* species produce antibiotics called bacitracins, which are effective against many Gram-positive organisms. Several spore-forming species of the genus *Bacillus* (*B. subtilis*, *B. licheniformis* and *B. cereus* var *toyoi*) have been used in the pig industry. Interestingly, these organisms are not usually part of the indigenous porcine gut microbiota; they are however common soil bacteria, which are likely to be transient passengers through the guts of most outdoor reared pigs.

Treatment of sows and their litters with feed supplemented with *B. cereus* var *Toyoi* reduced carriage of pathogenic *E. coli* strains and resulted in altered absolute numbers and distributions of immune cells in the piglets (Scharek et al., 2007). Piglets from the group given the microbial supplement had a reduced incidence of diarrhoea and liquid faeces; they also had higher average daily gains and feed:gain ratios (Taras et al., 2005). Another study describes a large-scale study (nearly 22 000 piglets) comparing the production characteristics when sows were fed the same diet with either a proprietary mix of *B. licheniformis* and *B. subtilis* or a standard mixture of anti-microbial growth promoters (Kritis and Morrison, 2005). The cost of producing each kilogram of pork and all other production parameters were statistically the same showing that the probiotic supplementation was effective at replacing the non-specific chemical inhibition traditionally used in the pig industry.

It is becoming clear that the gut microbiota of animals, including humans, is critically determined at the very earliest stages after birth (‘microbial imprinting’; Favier et al., 2002; Konstantinov et al., 2006). Organisms that are abundant in the piglet’s environment at this time have a high chance of forming a permanent association with the piglet’s intestinal mucosa (true ‘colonisation’). It may transpire that this is the most efficient time to deliver probiotics to ensure the establishment of life-long health benefits and to produce a robust microbiota, resistant to adverse ecological shifts at times like weaning. The most efficient way to deliver probiotics to piglets may be to dose sows before and during farrowing so that she, and her environment, is saturated with desirable organisms in a form whereby the piglet can acquire them as part of its natural development.

Conclusion

The use of live bacterial cultures in the pig industry, whether to improve resistance to specific pathogens or to non-specifically enhance pig health, is likely to continue and expand as economic pressures to improve production parameters and public resistance to the use of ‘chemicals’ in meat production increase. The general public is familiar with the concept of probiotics (‘friendly bacteria’) and would welcome their use in sustainable animal production strategies.

There is an increasing body of well-designed in *vitro* and in *vivo* studies, which suggest that certain microbial supplements are useful in protecting particularly young pigs from intestinal infections around weaning. This period, and other stressful mixing events during their lives, is probably important as the point at which pigs pick up important zoonotic pathogens, such as *S. enterica*, but also *Streptococcus suis* (Su et al., 2008). It is likely that appropriate probiotic treatments: whether as direct fed microbials or fermented liquid feed will be useful in reducing the burden of pig pathogens.

The challenge before the feed additive industry is to identify organisms, which reliably enhance pig health, at a defined stage in the production process, and to formulate the viable organisms in a way that maintains their viability in the hostile farm environment. The use of single types of bacteria in the pig industry is likely to be superseded by logically constructed mixtures of different organisms. Mixtures of organisms are already available commercially, but detailed comparisons of these mixtures with other treatments are difficult to find.
Acknowledgements

This report was written as a result of collaborations supported by the EU Framework Program 6 – funded project: Feed for Pig Health (FOOD-CT-2004-506144) and partly by the FP7 project INTERPLAY (KBBE-227549).

References

