GALACTIC BA ENRICHMENT FROM TP-AGB STARS

C. M. RAITERI¹, M. BUSSO¹, F. MATTEUCCI², R. GALLINO³

¹ Osservatorio Astronomico di Torino, 10025 Pino Torinese, Italy

² ESO, Karl-Schwarzschild-Str.2, D-8046 Garching bei München, Germany

and

³ Istituto di Fisica Generale, Università di Torino, Via P.Giuria 1, 10125 Torino, Italy

The production of the bulk of barium has long been ascribed to the main component of the s-process, whose astrophysical site has been envisaged in the convective He shell of Thermally Pulsing Asymptotic Giant Branch (TP-AGB) stars of low mass $(1-3 M_{\odot})$; see Käppeler et al. 1990). The main neutron source is the ${}^{13}C(\alpha, n){}^{16}O$ reaction, operating at the thermal energy of kT = 12 keV. We have calculated neutron captures in such environment with an updated nuclear physics, adopting the neutron capture cross sections of Beer, Voß, & Winters (1992) together with their temperature-dependence. Stellar models producing a mean neutron exposure of $\tau_0 \simeq 0.30 \text{ mb}^{-1}$ are able to reproduce the solar distribution of the sabundances satisfactorly, but the Ba isotopes show some overproduction. Such a strong indication suggests a revision of the Ba cross sections (see Gallino, Raiteri, & Busso 1992). Once that a suitable choice of $\sigma_{n,\gamma}(Ba)$ is made, it is found that a r-contribution to solar Ba of the order of 10% can be expected.

We also investigated the production of Ba in stellar models of different neutron exposures, corresponding to stars of various metallicities. A constant amount of the ¹³C neutron source was assumed. The results of our calculations are shown in Table I: the overabundances of the Ba isotopes are given with respect to the initial (solar-scaled) ones. From these numbers the Ba yields from TP-AGB stars can be derived; by inserting them into a detailed model for the chemical evolution of the Galaxy (Matteucci & François 1989), we can predict the behaviour of barium as a function of metallicity. The results, that must be compared with the observation of [Ba/Fe] vs. [Fe/H], will be presented in a forthcoming paper.

[Fe/H]	-1.3	-0.82	-0.51	-0.35	-0.22	-0.12	-0.05	0.0
¹³⁴ Ba	6.75e3	3.98e3	1.72e3	9.15e2	4.88e2	$2.73\mathrm{e}2$	$1.60\mathrm{e}2$	1.14e2
¹³⁵ Ba	$1.73\mathrm{e}3$	9.91e2	$4.04\mathrm{e}2$	$2.07\mathrm{e}2$	$1.07\mathrm{e}2$	5.86e1	$3.35\mathrm{el}$	$2.36\mathrm{e}1$
¹³⁶ Ba	$7.29\mathrm{e}3$	$4.19\mathrm{e}3$	$1.74\mathrm{e}3$	8.96e2	$4.65\mathrm{e}2$	$2.54\mathrm{e}2$	$1.45\mathrm{e}2$	1.02e2
¹³⁷ Ba	$6.24\mathrm{e}3$	2.51e3	$9.28\mathrm{e}2$	$4.59\mathrm{e}2$	2.31e2	$1.24\mathrm{e}2$	7.01e1	4.91e1
¹³⁸ Ba	1.25e4	$5.30\mathrm{e}3$	1.80e3	$8.21\mathrm{e}2$	$3.83\mathrm{e}2$	$1.92\mathrm{e}2$	1.02e2	$6.90\mathrm{e}1$
$ au_0(\mathrm{mb}^{-1})$	1.19	0.47	0.29	0.23	0.19	0.17	0.15	0.14

TABLE I

References

Beer, H., Voß, F., & Winters, R.R. 1992, ApJS, 80, 403 Gallino, R., Raiteri, C.M., & Busso, M. 1992, ApJ, (submitted) Käppeler, F., Gallino, R., Busso, M., Picchio, G., & Raiteri, C.M. 1990, ApJ, 354, 630 Matteucci, F. & François, P. 1989, MNRAS, 239, 885