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Abstract

In this paper we will characterize the spectrum of a hyponormal operator and the joint spectrum
of a doubly commuting n -tuple of strongly hyponormal operators on a uniformly smooth space.
We also describe some applications of these results.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 47 A 12.

1. Introduction

Let X be a complex Banach space. We denote by X* the dual space of X
and by B(X) the space of all bounded linear operators on X. When xeX
with Hxll = 1, we put D(x) = {/ e X*: \\f\\ = f(x) = 1} . Let us set

jc = {(X,f)eXxXt: Il/H = f{x) = \\x\\ = 1}.

The numerical range V{T) of TeB(X) is denned by

= {f(Tx):(x,f)en}.

If V(T) c M, then T is called hermitian. An operator T e B(X) is called
hyponormal if there are hermitian operators H and K such that T = H+iK
and C = i{HK - KH) > 0, meaning that V(C) c R+ = {a e K: a > 0} . A
Hyponormal operator T = H+iK is called strongly hyponormal if H2 and
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[2] Hyponormal operators 151

K2 are hermitian. If T is (strongly) hyponormal, then so is T-X for every
A G C. For an operator T = H + iK, we denote the operator H-iK by T.

REMARK. There is an hermitian operator H such that H2 is not hermi-
tian. However, if H is hermitian, then

V(H2)c{z€C: Rez>0}.

Hence, if T is a strongly hyponormal operator, then

V(TT) C R+.

For an operator T G B(X), the spectrum, the approximate point spectrum,
the point spectrum, the kernel and the dual operator of T are denoted by
a(T), an{T), ap{T), Ker(r) and T*, respectively. The following facts are
well-known:

(1) coo(T) c V{T), where co E and E are the convex hull and the
closure of E, respectively;

(2) V{T)C V(T*)cV(T).
Hence if T is hermitian and positive, then T* is hermitian and positive,
respectively. And if T is (strongly) hyponormal, then so is T*. We set, for

p[t) = sup{^(||x + y|| + ||x - y||) - 1: ||JC|| = 1, ||y|| < *}•

A Banach space X is called uniformly smooth if

*-^- -»0 as t —> 0.

A Banach space X is called smooth if the set Dix) is a singleton for each
x G X with ||x|| = 1. The following facts are well-known:

(1) X is uniformly smooth if and only if X* is uniformly convex;
(2) if X is uniformly smooth, then X is smooth.

See Beauzamy [3] for details.

2. The spectrum of a hyponormal operator

LEMMA 1. Let X be uniformly smooth. Let T = H + iK be a hyponormal
operator on X. If TT is not invertible, then TT is not invertible.

PROOF. Let C = iiHK - KH) > 0 . Since then (772* = H*2 + K*2 + C*
is not invertible and 0 belongs to the boundary of ai(TT)*), there exists a
sequence {fn} of unit vectors in X* such that

(H*2 + K*V« + c 7 n - o .
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Choose a sequence {xn} of unit vectors in X such that (xn, fn) € n. Since
then Rexn{{Ht2 + K*2)fn) > 0, xn{C*fn) > 0 and X* is uniformly convex,
by [16, Theorem 2.5] it follows that C* fn -> 0 . Therefore we have

Hence (TT)* = H*2 + K*2 - C* is not invertible and therefore TT is not
invertible either.

THEOREM 2. Let X be uniformly smooth. Let T — H + iK be a hyponor-
mal operator on X. Then a(T) = an(T*).

PROOF. It is clear that <?n(T*) c a(T). Since T - k is hyponormal for
every X e C, we need only prove that if 0 € a{T), then 0 e ^ ( T * ) .
Hence by Lemma 1 we may assume that TT is not invertible. Then there
exists a sequence {fn} of unit vecotrs in X* such that T*T* fn —* 0 . Since
X* is uniformly convex and T* is a hyponormal operator on X, by [16,
Theorem 2.7] it follows that H*T*fn -> 0 and K*T*fn -> 0. Hence we
have T*2fn —• 0. By the spectral mapping theorem for the approximate
point spectrum it follows that 0 e on{T*).

THEOREM 3. Let X be uniformly smooth. Let T = H + iK be a strongly
hyponormal operator on X. Ifa + ibe a(T), then a e a{H) and b e a{K).

PROOF. Since T - k is hyponormal for every A 6 C, we need only prove
that if 0 e a(T) then 0 e a{H). There exists a e R such that 0 + ia is in
the boundary of a{T). Hence there exists a sequence {xn} of unit vectors
in X such that (T - ia)xn —> 0 . Therefore, we have

(7- - ia) • (T - ia)xn = (It + (K - a)z + C)xn - 0,

where c = i(HK - KH) > 0 . Since T is strongly hyponormal, H2 +
(K -a)2 + C is hermitian. By [15, Theorem 3.11], it follows that

where fn e D(xn). Since X* is uniformly convex and H2*, {K - a)2* and
C* are all positive, we have H2* fn -+ 0. Hence we have 0 e a{H).

Next since iT = K + i(-H) is strongly hyponormal and b-iae a(-iT),
that b e a (K) can be proved analogously.
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COROLLARY 4. Let X be uniformly smooth. Let T = H+iK be a strongly
hyponormal operator on X. Then Re a{T) = a{H) and Im a{T) = a{K).

A proof follows easily from Theorem 3 above and [9, Theorem 1].

3. The joint spectrum for strongly hyponormal operators

Let T = (T{, ... , Tn) be a commuting n-tuple of operators on a Banach
space X. We denote the (Taylor) joint spectrum of T by <r(T). We refer the
reader to Taylor [20] for the definition of <r(T). For a commuting n-tuple
T = (Tx, ... , Tn) of operators, the j oint approximate point spectrum and the
joint point spectrum of T are denoted by ox(T) and op(T), respectively.

For a commuting n-tuple T = (T{, ... , Tn) such that T. = Hj + iKj
(j = 1 , . . . , n) , a point z = ( z , , . . . , zB) e C" is in the complete star
spectrum ffM(T) of T if there is some partition {jl, ... , jk} U {/,,..., lm}
- {1, . . . , n} such that

k m

5 3 (T - z ){T - z ) + £ ( 7 ) - z, )(T, - z , )

is not invertible.
For a commuting n-tuple T = {Tx,... , Tn) of hyponormal operators, T

is called a doubly commuting n-tuple if Tft. = T Ti for every i ^ j . It
is easy to see that T is a doubly commuting n-tuple if and only if Hi and
Ki commute with Hj and Kj for every i ^ j . In [10], we showed the
following theorem. The assumption of the uniform convexity in the theorem
is not needed.

THEOREM A [10, THEOREM 5]. Let T = ( T , , . . . , Tn) be a doubly com-
muting n-tuple of hyponormal operators on X. Then o(T) c ocs(T).

LEMMA 5. Let X be uniformly smooth. Let T = {TX,... ,Tn) bea doubly
commuting n-tuple of strongly hyponormal operators on X. If Y^l=\ TtTt +
YH=k+\ Ti^i is not invertible, then £"= 1 TlTi is not invertible.

PROOF. By the assumption, X)j=i Ti^* + X)Lfc+i T*T* is not invertible.
Let S = (TjT,, . . . , TkTk, Tk+lTk+x,..., TnTn). Then S is a commuting
n-tuple of operators with positive spectra. By the spectral mapping theorem
for the. joint approximate point spectrum, it follows that there
exists (al, ... , an) € ^(S*) such that al + ••• + an = 0, where
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S* = {T;TX, ••• , rkrk,Tk+xrk+l,...,TX)- Since Tt is strongly hy-
ponormal, it follows that at, > 0, for / = 1, 2, . . . , n . Therefore we have
(0, ... ,0) € an(S*). Hence there exists a sequence {fj} of unit vectors in
X* such that

T*T*fj -+ 0 and T*T*fj ^ 0 for i = 1, . . . , k and / = k + 1, . . . , n.

Let C, = i(HiKk - K^) > 0 for i=l, ... ,k. Then since

and X* is uniformly convex, by the method of the proof of Lemma 1 we
have that C*fi, -> 0 , for i - \ , ... ,k. Hence we have that

T*T!fj^° for i = l , . . . , « .

Therefore, J2"=i Tk^i i s n o t invertible.

THEOREM 6. Let X be uniformly smooth. Let T = (T,, . . . , Tn) be a
doubly commuting n-tuple of strongly hyponormal operators on X.

Then

where T* = (7^ , . . . , T*n).
PROOF. Since <r(T) = CT(T*) , it is clear that

By using Lemma 5 and Theorem A, we may assume that Yl"=i TtTt is not
invertible. Hence we have

Since 0 is in the boundary of <J(%2"=1 T*T*), by the proof of Lemma 5 there
exists a sequence {fk} of unit vectors in X* such that

TtT*fk^0 f o r / = 1 , 2 , . . . , / ! .

Since X* is uniformly convex and every T* is a hyponormal operator on
X*, we have

( T ' f f . ^ O ( / = 1 , 2 , . . . , « ) .

Hence we have 0 e ^ ( T * 2 ) , where T*2 = (T*2, ... , T*2). By the spectral
mapping theorem for the joint approximate point spectrum, it follows that

https://doi.org/10.1017/S1446788700032626 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700032626


[6] Hyponormal operators 155

Since T - z = (T{ - zx, ... , Tn - zn) is a doubly commuting w-tuple of
strongly hyponormal operators, Theorem A and Lemma 5 imply that er(T) c
<7,.(T) c (7_(T*). This complets the proof.

4. Applications

In the following we shall represent a construction of de Barra ([1] and [2])
embedding a Banach space in a larger space X°. Then the mapping T —• T°
is an isometric isomorphism of B(X) onto a closed subalgebra of B(X°).
Let Lim be a fixed Banach limit on the space of all bounded sequences of
complex numbers with the norm ||{An}|| = sup{|AJ: « e N } . Let X be the
space of all bounded sequences {xn} of X. Let N be the subspace of X
consisting of all bounded sequences {xn} with Lim||xn||2 = 0. The space
X° is defined as the completion of the quotient space X/N with respect to
the norm ||{xn} + JV|| = (Lim | | .xJ2)1 / 2 . Then the following results hold for
T e B(X):

<7(r) = <7(r°), an{T) = an{T°) = ap{T°) and coV(T) = V(T°).

Hence, if T is (strongly) hyponormal, then so is T°. Moreover, it follows
for T = ( r , , . . . , Tn) that on(T) = <rp(T°), where T° = (7?, . . . , 7?)

In this section we shall need the following result.

THEOREM B [2, THEOREM 2.7]. X is uniformly convex if and only if X°
is uniformly convex.

THEOREM 7. Let X be uniformly smooth. Let T = Tx,... , Tn) be a
doubly commuting n-tuple of strongly hyponormal operators on X such that
Tj = H + iKj C / = l , . . . , « ) . If (A, + * > , , . . . , kn + ifin) E ( j ( T ) , then
(Xlt...,Xn)€a(H) and {fix ,...,/in) € ( T ( K ) , where H = (H1,...,Hfl)
andK=(Kl,...,Kn).

PROOF. First, we shall prove that if 0 G CT(T) , then 0 e a (H), by the
method of induction. For n = 1, it is true from Theorem 3. We assume that
the theorem holds for such ( « - l)-tuples. Since 0 e er(T), Theorem 6 implies
that 0ean{T), where T = {T*, ... ,T*). Consider the larger space X*°
of X* and the representation T -»• 7"° in the sense of de Barra. Then X*°
is uniformly convex and 0 e <xp(T*°), where T*° = (T*°,..., T*°).

Let Y = {/ e X*°: T*°f = 0} . Then Y is a non-zero (uniformly con-
vex) subspace of X*° and there exists a non-zero vector g in Y such
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that T*°g = 0 (j = 1, . . . , n - 1). Since T*° is a doubly commuting
n-tuple, Y is invariant for all H*° and K*° (j = 1 , . . . , n - 1). Let
S = (T*f*Y,..., T*°_llY). Since then 0 G <xp(S), it follows that 0 G CT(S*) ,
where S* = ((T*fY)*,... , (T*°l]Y)*). Since Y* is uniformly smooth and
S* is a doubly commuting (n - l)-tuple of strongly hyponormal operators,
by the assumption of induction it follows that 0 e CT(H'*) = cr(H'), where
H' = (77*° ,... ,H*°_l{ ) . By [6, Theorem 2.1], it follows that

let Z = { /€ X*°: H*°f=0 for ; = 1 , . . . , n - 1} . Since then Y n Z J
{0} and Z is invariant for H*° and /sT*°, by the same calculation as above it
follows that there exists non-zero vector h G Z such that H*°h = 0. Hence
we have 0 G <xp(H*°). Since ^(H*0) = on(H") = (T(H*) = er(H), we have
0 G <r(H). Since T - Z = (T, - z , , . . . , Tn - zn) is a doubly commuting
n-tuple of strongly hyponormal operators for every z e C" , it holds that if
(A, + i/tl,...,XH + inn) e ff(T), then ( A , , . . . , kn) e a(H).

Next since —/T = ( - I T J , . . . , —iTn) is a double commuting n-tuple of
strongly hyponormal operators and (fil - iXl,... , fin- ikn) e o(-fT), we
see that (fil, ... , nn) e <r(K) can be proved analogously.

THEOREM C [8, THEOREM 6]. Let X be uniformly convex. Let T =
(T,, . . . , Tn) be a doubly commuting n-tuple of hyponormal operators on
X such that 7} = Hj + iKj (j = 1, . . . , n). Let H = (H{, ... , Hn) and
K = (K{, . . . , Kn). If (A,, . . . , kn) G <r(H) then there exist {nx,...,nn)e
R" and a sequence {xk} of unit vectors in X such that

(Hj - lj)xk -» 0 and (Kj - Hj)xk -* 0, j = l,...,n,

that is, (A, + * > , , . . . , Xn + inn) G ff(T).
An analogous result holds for er(K).

THEOREM 8. Let X be uniformly smooth. Let T = (T{, . . . , Tn) be a
doubly commuting n-tuple of hyponormal operators on X such that T. =
Hj+iKj (j = 1, . . . , n) . LetH = (Hl,... , Hn) and K = (tf,, . . . , * J . / /
(A1, . . . , kn) G er(H) rnen fnere exists (n{, ... , fin) G K" such that ( / i , , . . . ,
/«,,) G a(K) anrf (A, + i> , , . . . , kn + i/in) e a{T).

An analogous result holds for <r(K).

PROOF. Since H is a commuting n-tuple of hennitian operators, by [6,
Theorem 2.1] it follows that

<x(H) = <T(H*) = o(H*).
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Let T* = (T*,... ,T*n). Then T* is a double commuting n-tuple of hy-
ponormal operators on the uniformly convex space X*. By Theorem C we
have that there exist (n\, ... , fi'n) GRn and a sequence {gk} of unit vectors
in X* such that

(tf-Xj)gk->0 and ( - * ; - 4 ) ^ - 0 for; = l , . . . , « .

Hence let Hj = -fij (j = 1 , ... , n). Then this ft = (fii, ... , nn) is an
element as required.

The proof for the case of <r(K) follows analogously.

COROLLARY 9. Let X be uniformly smooth. Let T = (T{, ... , Tn) be
a doubly commuting n-tuple of strongly hyponormal operators on X such
that Tj = Hj + iKj (j = 1, . . . , n). Then CT(H) = {Rez: z 6 <r(T)} and
(j(K) = {Im z: z e a (T)}, where H = ( # , , . . . , Hn), K = {K{,... , Kn),
Re z = (Re z, , . . . , Re zn) and Im z = (Im z, I m z J .

A proof follows from Theorems 7 and 8.
For a commuting n-tuple T = (Tx, ... ,Tn) of operators, the joint nu-

merical range F(T) of T is denned by

F(T) = {(/(r,x), ... , / ( 7 » ) : (x, f) E n}.

Then the following two theorems hold.

THEOREM D [19, COROLLARY 2.3]. Let T = (Tx,..., Tn) be a commuting
n-tuple of operators. Then co <r(T) c F(T).

THEOREM E [6, THEOREM 2]. Let X be uniformly smooth. Let T be a
hyponormal operator on X. Then co o{T) = V(T).

THEOREM 10. Let X be uniformly smooth. Let T = {Tx,..., Tn) be a
doubly commuting n-typle of hyponormal operators on X. Then co <r(T) =
F(T). Moreover, if T = (T,, . . . , Tn) is a doubly commuting n-tuple of
strongly hyponormal operators on X, then co oSl*) — F(T).

PROOF. By Theorem D, we can assume that co <r(T) ^ F(T). Suppose
that (a{, ... , an) e F(T) - co <r(T). Then there exists a linear functional 4>
on C" and a real number r such that

Re 4>{z) < r < Re </>(a) (z e co <r(T)).
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Let (j>(z) = tlzl H H^zn (z = ( Z j , . . . , zn) e C"). By applying the spectral
mapping theorem to the linear functional <f>, it follows that

Re z < r < Re <£(a) I z G cr

Therefore, we have that

Since X)"=1 ^ , is a hyponormal operator, this yields a contradiction to The-
orem E.
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