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Branched Covers of Tangles in Three-balls

Makiko Ishiwata, Józef H. Przytycki and Akira Yasuhara

Abstract. We give an algorithm for a surgery description of a p-fold cyclic branched cover of B3

branched along a tangle. We generalize constructions of Montesinos and Akbulut-Kirby.

Tangles were first studied by Conway [4]. They were particularly useful for analyz-

ing prime and hyperbolic knots. A branched cover of the three-ball branched along
a tangle (succinctly a branched cover of a tangle) is an indispensable tool for under-
standing tangles. Hence it is important to give practical presentations of branched
covers of tangles. Recall that a p-fold cyclic branched cover of a link or tangle (ori-

ented for p > 2) is uniquely defined by an epimorphism of the fundamental group of
the complement onto Zp which sends meridians to 1. A p-fold branched cover of an
n-tangle is a three-manifold, the boundary of which is a connected surface of genus
(n− 1)(p − 1). Such a manifold can be obtained from the genus (n− 1)(p − 1) han-

dlebody by a surgery. We provide an algorithm for a surgery description of a p-fold
cyclic branched cover of B3 branched along a tangle. The construction generalizes
that of Montesinos [9] and Akbulut and Kirby [1]. It is strikingly simple in the case
of a two-fold branched cover. We also discuss the related Heegaard decomposition of

a p-fold branched cover of an n-tangle.

1 Surgery Descriptions

A tangle is a one-manifold properly embedded in a three-ball. An n-tangle is a tangle
with 2n boundary points. Let T be an n-tangle and T0 a trivial n-tangle diagram1

(Figure 1). Let D1 ∪ · · · ∪ Dn be a disjoint union of disks bounded by T0 and let
b1, . . . , bm be mutually disjoint disks in B3 such that bi ∩

⋃

j D j = ∂bi ∩ T0 are two

disjoint arcs in ∂bi(i = 1, . . . , m) (see Figure 2). We denote by Ω(T0; {D1, . . . , Dn},
{b1, . . . , bm}) the tangle T0 ∪

⋃

i ∂bi − int(T0 ∩
⋃

i ∂bi) and call it a disk-band rep-

resentation of a tangle. A disk-band representation is called bicollared if the surface
⋃

i Di ∪
⋃

j b j is orientable. We will see that any n-tangle has a bicollared disk-band
representation (Proposition 5).

A framed link is a disjoint union of embedded annuli in a three-manifold. Framed
links in S3 can be identified with links whose each component is assigned an integer.

Such links are also called framed links. Let M be a three-manifold and L a framed link
in M. We denote by Σ(L, M) the manifold obtained from M by the surgery along L

[10].

1Tangles are considered up to ambient isotopy but in practice we will often use the word tangle for a
tangle diagram or an actual embedding of a one-manifold.
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The case of two-fold branched covers is easy to visualize so we will formulate it
first.

Theorem 1 Let Ω(T0; {D1, . . . , Dn}, {b1, . . . , bm}) be a disk-band representation of

an n-tangle T in B3. Let ϕ : H0 → B3 be the two-fold branched cover of B3 by a genus

n − 1 handlebody H0 branched along T0. Then the two-fold branched cover of B3

branched along T has a surgery description Σ
(

ϕ−1(
⋃

i bi), H0

)

(see Figure 3).
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Proof Let X be B3 −
⋃

i Di compactified with two copies, D±

i , of Di (i = 1, 2, . . . , n)
(Figure 4). Let X1 and X2 be two copies of X, and let D±

i,k ⊂ Xk denote copies of D±

i

(i = 1, 2, . . . , n, k = 1, 2) (Figure 5). Then H0 is obtained from X1∪X2 by identifying
Dε

i,1 with D−ε
i,2 (ε ∈ {−, +}). Let b j,k = ϕ−1(b j) ∩ Xk and let Y be H0 −

⋃

j,k b j,k

compactified with two copies b±j,k of b j,k in Xk( j = 1, 2, . . . , m, k = 1, 2). Here, +
or − sides of Di,k and b j,k are not necessarily compatible. We note, and it is the key
observation of the construction, that the two-fold branched cover H of B3 branched

along T is obtained from Y by identifying bε
j,1 with b−ε

j,2 (ε ∈ {−, +}). Note that each

b+
j,1∪b−j,2∪b−j,1∪b+

j,2 is a torus. Let c j be the core of the annulus b+
j,1∪b−j,2. The manifold

obtained from Y by identifying bε
j,1 with b−ε

j,2 is homeomorphic to the one obtained

from Y by attaching tori D2
j × S1 ( j = 1, 2, . . . , m) so that ∂D2

j = c j . Hence H

is homeomorphic to the manifold with the surgery description Σ
(

ϕ−1(
⋃

j b j), H0

)

.
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Example 2 (a) The two-fold branched cover M(2)(T1) branched along a tangle T1

in Figure 6 is the Seifert manifold with the base a disk and two special fibers of type

(2, 1) and (2,−1). Furthermore M(2)(T1) is a twisted I-bundle over the Klein bottle
(for example see [7]). In particular, π1

(

M(2)(T1)
)

= 〈a, b | aba−1b = 1〉.

M(2)(T1)

T1

D1 D2

b1

b2

Figure 6

(b) If we glue together two copies of T1 as in Figure 7, we get Borromean rings L.
Thus our previous computation shows that the two-fold branched cover M(2)(L) of S3

branched along L is a “switched” double of the twisted I-bundle over the Klein bottle
(see Figure 8 for a surgery description). The fundamental group π1

(

M(2)(L)
)

=

〈x, a | x2ax2a−1, a2xa2x−1〉 is a three-manifold group which is torsion-free but not
left orderable [11].

(c) If we take the double of the tangle T1, we obtain the link in Figure 9. The two-
fold branched cover of S3 branched along this link is the double of twisted I-bundle
over Klein bottle. A surgery description of this manifold is shown in Figure 10. Thus
this manifold is the Seifert manifold with the base S2 and four special fibers of type
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(2, 1), (2, 1), (2,−1) and (2,−1). This manifold also has another Seifert fibration,
which is a circle bundle over the Klein bottle.

Example 2(a) was motivated by the fact that the tangle T1 yields a virtual La-

grangian of index 2 in the symplectic space of the Fox Z-colorings of the boundary
of our tangle [5].

More generally we have:

Example 3 Consider a tangle T2 in Figure 11, called a pretzel tangle of type
(a1, a2, . . . , an), where each ai is an integer indicating the number of half-twists (i =

1, 2, . . . , n). The two-fold branched cover M(2)(T2) branched along the tangle T2 is a
Seifert fibered manifold with the base a disk and n special fibers of type (a1, 1), (a2, 1),
. . . , (an, 1) (Figure 12).

Theorem 1 can be generalized to a p-fold cyclic branched cover assuming that
an n-tangle is oriented whose disk-band representation is bicollared, where p is any
positive integer greater than 2. We proceed as follows:

Let T = Ω(T0; {D1, . . . , Dn}, {b1, . . . , bm}) be a bicollared disk-band representa-

tion of an n-tangle. Then
⋃

i Di∪
⋃

j b j has a bicollar neighborhood (
⋃

i Di∪
⋃

j b j)×

[−1, 1]. Let X = B3 −
(

(
⋃

i Di) × [−1, 1]
)

and Di
±

= (Di × [±1, 0]) ∩ ∂X. Let

Xk be a copy of X and D±

i,k ⊂ ∂Xk a copy of D±

i (k = 1, 2, . . . , p). Then the p-fold

cyclic branched cover ϕ : H0 → B3 branched along T0 is obtained from X1 ∪ · · · ∪Xp

by identifying D+
i,k with D−

i,k+1(k = 1, . . . , p), where k is considered modulo p. Let

b±j,k = ϕ−1(b j × {±1}) ∩ Xk. Note that each b+
j,k ∪ b−j,k+1 is an annulus in H0 for any

https://doi.org/10.4153/CMB-2003-037-6 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2003-037-6


360 Ishiwata, Przytycki and Yasuhara

(a)

D
T

b1

b2

(b) (c)

−2

−2

2

2

Figure 13

j and k. Then we obtain the p-fold cyclic branched cover of B3 branched along T in
a similar way as in Theorem 1.

Theorem 4 Let Ω(T0; {D1, . . . , Dn}, {b1, . . . , bm}) be a bicollared disk-band repre-

sentation of an n-tangle T in B3. Then Σ

(

⋃m
j=1

(
⋃p−1

k=1 (b+
j,k ∪ b−j,k+1)

)

, H0

)

is the

p-fold cyclic branched cover of B3 branched along T.

Note that we do not use the annuli b+
j,p+1 ∪ b−j,1 ( j = 1, 2, . . . , m) in the the-

orem above. In fact the cores of these annuli bound mutually disjoint 2-disks in

Σ

(

⋃m
j=1

(
⋃p−1

k=1 (b+
j,k ∪ b−j,k+1)

)

, H0

)

.

Proof Let Y = H0 −
⋃

j ϕ
−1(b j × [−1, 1]), V±

j,k = ϕ−1(b j × [±1, 0]) ∩ Xk and

β±

j,k = V±

j,k ∩ Y (= ∂V±

j,k ∩ ∂Y ). Note that ϕ−1(b j × [−1, 1]) is a genus p − 1

handlebody. Then the p-fold cyclic branched cover of B3 branched along T is home-
omorphic to a manifold H that is obtained from Y by identifying β+

j,k with β−

j,k+1(k =

1, . . . , p), where k is taken modulo p. Moreover H is homeomorphic to a manifold

obtained from H0 −
⋃

j ϕ
−1(b j × [−1, 1]) ∪

⋃

j

(

V−

j,1 ∪ V +
j,p ∪ ϕ−1(b j × {0})

)

by

identifying β+
j,k and b j,k with β−

j,k+1 and b j,k+1 ( j = 1, . . . , m, k = 1, . . . , p − 1) re-

spectively, where b j,k = ϕ−1(b j × {0}) ∩ Xk. Note that β+
j,k ∪ b j,k ∪ β−

j,k+1 ∪ b j,k+1

is a torus. By an argument similar to that in the proof of Theorem 1, we have the
required result.

Example 5 Let T = Ω(T0; {D}, {b1, b2}) be a tangle as in Figure 13(a) and ϕ : H0 →
B3 the three-fold cyclic branched cover of B3 branched along T0. Note that H0 is a

three-ball and ϕ−1(b1 ∪ b2) is as shown in Figure 13(b). By Theorem 4, the three-
fold cyclic branched cover of B3 branched along T is obtained from H0 by the surgery
along a framed link in Figure 13(c). Note that Figure 13(c) is ambient isotopic to
Figure 14(a). Since the figure eight knot has a tangle decomposition into T and a

trivial 1-tangle, the three-fold cyclic branched cover M(3)(41) of S3 branched along
the figure eight knot has a surgery description shown in Figure 14(a). The framed
link in Figure 14(a) can be deformed into the link in Figure 14(b) by an ambient
isotopy and a second Kirby move. The link in Figure 14(b) is ambient isotopic to the
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link in Figure 8. Hence M(3)(41) is homeomorphic to the two-fold branched cover of
S3 branched along the Borromean rings [8, 6] (cf. Example 2(b)).

Proposition 6 Any n-tangle (B3, T) has a (bicollared) disk-band representation.

Proof We attach a trivial n-tangle T0 to the n-tangle T by a homeomorphism
ϕ : ∂(B, T0) → ∂(B, T). We obtain a link L = T0 ∪ T in a three-sphere B

⋃

ϕ B with
a diagram D(T0 ∪ T) as in Figure 15. We may assume that the diagram D(T0 ∪ T) is
connected. We color, in checkerboard fashion, the regions of the plane cut by the dia-

gram D(T0 ∪T) and choose n points {v1, v2, . . . , vn} as in Figure 16. Since D(T0 ∪T)
is connected, there is a spine G of the black surface with the vertex set V (G) con-
taining {v1, v2, . . . , vn}. Deforming G on the surface by edge contractions, we have a

new spine H with V (H) = {v1, v2, . . . , vn}. By retracting the black regions into the
neighborhood of H and restricting to B3, we have a required surface. For an example,
see Figure 17.

When we use the Seifert algorithm instead of checkerboard coloring, we always

obtain a bicollared disk-band representation.
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2 Heegaard Decompositions

In addition to the surgery presentation, it is also useful to have another presentation
of a p-fold cyclic branched cover. Our construction leads straightforwardly to a Hee-
gaard decomposition, that is a decomposition into a compression body [2, 3] and a
handlebody, of a p-fold cyclic branched cover.
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Let F be a connected surface in B3 bounded by an n-tangle T and n arcs in ∂B3.
The surface F is defined to be free if the exterior of F is homeomorphic to (Sn ×
I) ∪ (1-handles), where Sn is an n-punctured sphere and the all attaching points of
the 1-handles are contained in Sn × {0}. As we observed before, any connected sur-
face has disk-band decomposition. A disk-band representation Ω(T0; {D1, . . . , Dn},
{b1, . . . , bm}) is defined to be free if the surface

⋃

i Di ∪
⋃

j b j is free. It is obvious

that any disk-band representations constructed as in the proof of Proposition 6 are
free. So any n-tangle has a free disk-band representation.

First we consider the case of two-fold branched covers. The following algorithm
gives a Heegaard decomposition of M(2)(T). Start from a free disk-band representa-

tion of T. Then we have a surgery description Σ
(

ϕ−1(
⋃

i bi), H0

)

of M(2)(T) (Fig-
ure 3). Let α1, α2, . . . , α2m−n be the 2m−n arcs which are the connected components
of T0 −

⋃

j b j contained in the interior of B3 (Figure 18). Then the complement of

ϕ−1(
⋃

i bi

⋃

l αl) is a compression body. Then M(2)(T) is obtained from the com-
pression body by gluing the handlebody as follows: (i) adding meridian disks of the

arcs, and (ii) filling the rest according to the surgery description. For the tangle T1

in Example 2, a Heegaard decomposition of M(2)(T1) is given in Figure 19.

D1 D2

b1

b2α1 α2

Heegaard decomposition of M(2)(T1)

Figure 18 Figure 19

A similar method gives a Heegaard decomposition of a p-fold cyclic branched

cover. Our construction is a modification of the construction in the proof of Theo-
rem 4. The handlebody part of the decomposition is obtained from the handlebodies
⋃

j ϕ
−1(b j × [−1, 1]) by connecting them using 2m − n “tubes” along ϕ−1(T0). We

get genus mp − n + 1 handlebody.
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From the observation above it follows that:

Theorem 7 Let Ω(T0; {D1, . . . , Dn}, {b1, . . . , bm}) be a free, bicollared disk-band rep-

resentation of an n-tangle T in B3. Let ϕ : H0 → B3 be the p-fold cyclic branched cover

of branched along T0. Let α1, α2, . . . , α2m−n be the 2m−n arcs which are the connected

components of T0 −
⋃

j b j contained in the interior of B3. Then the following holds.

(a) The complement W = H0 − ϕ−1
(
⋃

j b j × [−1, 1] ∪
⋃

l N(αl)
)

is a compression

body, where N(αl) is the tubular neighborhood of αl in B3.

(b) The p-fold cyclic branched cover of B3 branched along T has a Heegaard decompo-

sition into the compression body W and a genus mp − n + 1 handlebody.

(c) The gluing map is given by the curves c j,k ( j = 1, 2, . . . , m, k = 1, 2, . . . , p − 1)
and ml (l = 1, 2, . . . , 2m − n) in ∂W , where c j,k is the core of the annulus b+

j,k ∪

b−j,k+1 in Theorem 4 and ml is the meridian curve of ϕ−1
(

N(αl)
)

.

In the theorem above, the assumption that a disk-band representation is bicol-
lared is not necessary in the case that p = 2. The curves c j,k ( j = 1, 2, . . . , m, k =

1, 2, . . . , p − 1), ml (l = 1, 2, . . . , 2m − n) are essential, mp − n + 1 of them are

nonseparating and m − 1 curves, the ml s, are separating.

Remark 8 Since the surfaces given in the proof of Proposition 6 are connected and

free, we can use them to find Heegaard decompositions of branched cyclic covers. Let
c denote the crossing number of a connected diagram D(T0 ∪ T), b the number of
the black regions and s the number of the Seifert circles of D(T0 ∪ T). Then we have
a Heegaard decomposition of M(2)(T) (resp. M(p)(T)) of the genus n + 2c − 2b + 1

(resp. p(n + c − s) − n + 1).
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