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Branched Covers of Tangles in Three-balls

Makiko Ishiwata, Jézef H. Przytycki and Akira Yasuhara

Abstract. We give an algorithm for a surgery description of a p-fold cyclic branched cover of B3
branched along a tangle. We generalize constructions of Montesinos and Akbulut-Kirby.

Tangles were first studied by Conway [4]. They were particularly useful for analyz-
ing prime and hyperbolic knots. A branched cover of the three-ball branched along
a tangle (succinctly a branched cover of a tangle) is an indispensable tool for under-
standing tangles. Hence it is important to give practical presentations of branched
covers of tangles. Recall that a p-fold cyclic branched cover of a link or tangle (ori-
ented for p > 2) is uniquely defined by an epimorphism of the fundamental group of
the complement onto Z,, which sends meridians to 1. A p-fold branched cover of an
n-tangle is a three-manifold, the boundary of which is a connected surface of genus
(n—1)(p — 1). Such a manifold can be obtained from the genus (n — 1)(p — 1) han-
dlebody by a surgery. We provide an algorithm for a surgery description of a p-fold
cyclic branched cover of B* branched along a tangle. The construction generalizes
that of Montesinos [9] and Akbulut and Kirby [1]. It is strikingly simple in the case
of a two-fold branched cover. We also discuss the related Heegaard decomposition of
a p-fold branched cover of an n-tangle.

1 Surgery Descriptions

A tangle is a one-manifold properly embedded in a three-ball. An n-tangle is a tangle
with 2n boundary points. Let T be an n-tangle and Ty a trivial n-tangle diagram'
(Figure 1). Let Dy U --- U D, be a disjoint union of disks bounded by T, and let
by, ..., by, be mutually disjoint disks in B> such that b; N Uj D; = 9b; N T are two
disjoint arcs in 9b;(i = 1,...,m) (see Figure 2). We denote by Q(Ty; {Dy,...,D,},
{by,...,bn}) the tangle Ty U |J; Ob; — int(Ty N |J; Ob;) and call it a disk-band rep-
resentation of a tangle. A disk-band representation is called bicollared if the surface
U,bivy j bj is orientable. We will see that any n-tangle has a bicollared disk-band
representation (Proposition 5).

A framed link is a disjoint union of embedded annuli in a three-manifold. Framed
links in $* can be identified with links whose each component is assigned an integer.
Such links are also called framed links. Let M be a three-manifold and £ a framed link
in M. We denote by (L, M) the manifold obtained from M by the surgery along L
[10].

ITangles are considered up to ambient isotopy but in practice we will often use the word tangle for a
tangle diagram or an actual embedding of a one-manifold.
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Figure 1 Figure 2

The case of two-fold branched covers is easy to visualize so we will formulate it
first.

Theorem 1 Let Q(To;{D;,...,D,},{b1,...,bn}) be a disk-band representation of
an n-tangle T in B>, Let p: Hy — B® be the two-fold branched cover of B> by a genus
n — 1 handlebody Hy branched along T,. Then the two-fold branched cover of B?
branched along T has a surgery description X ( o1 (U, bi), HO) (see Figure 3).

D,

QTo;{D1,...,Dn},{b1,...,bm}) (o~ (U; bi), Ho)

Figure 3

Proof Let X be B> — \U; Di compactified with two copies, Dii, of D; (i=1,2,...,n)
(Figure 4). Let X; and X, be two copies of X, and let ka C X} denote copies of Dii
(i=1,2,...,nk=1,2) (Figure 5). Then Hj is obtained from X; UX; by identifying
D;, with D;; (¢ € {—,+}). Letbj; = ¢ '(bj) N Xk and let Y be Hy — U bik
compactified with two copies bfk of bjrin Xi(j = 1,2,...,m,k = 1,2). Here, +
or — sides of D; ; and b; ; are not necessarily compatible. We note, and it is the key
observation of the construction, that the two-fold branched cover H of B? branched
along T is obtained from Y by identifying b5, with b} ; (¢ € {—,+}). Note that each

bj,Ub;,Ub; Ub}, isa torus. Letc; be the core of the annulus b, Ub; ,. The manifold
obtained from Y by identifying b5, with bj_f is homeomorphic to the one obtained
from Y by attaching tori D} x S' (j = 1,2,...,m) so that D} = ¢;. Hence H
is homeomorphic to the manifold with the surgery description 3 (~*(U; b)), Ho) -

|
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Figure 4 Figure 5

Example 2 (a) The two-fold branched cover M (T) branched along a tangle T,
in Figure 6 is the Seifert manifold with the base a disk and two special fibers of type
(2,1) and (2, —1). Furthermore M®(T}) is a twisted I-bundle over the Klein bottle
(for example see [7]). In particular, 7 (M®(T})) = (a,b| aba™'b = 1).

Figure 6

(b) If we glue together two copies of T as in Figure 7, we get Borromean rings L.
Thus our previous computation shows that the two-fold branched cover M? (L) of S
branched along L is a “switched” double of the twisted I-bundle over the Klein bottle
(see Figure 8 for a surgery description). The fundamental group m; (M(z)(L)) =
(x,a | x*ax*a="', a®xa’x~') is a three-manifold group which is torsion-free but not
left orderable [11].

(c) If we take the double of the tangle T}, we obtain the link in Figure 9. The two-
fold branched cover of $*> branched along this link is the double of twisted I-bundle
over Klein bottle. A surgery description of this manifold is shown in Figure 10. Thus
this manifold is the Seifert manifold with the base S? and four special fibers of type
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Figure 8

Figure 11 Figure 12

(2,1),(2,1),(2,—1) and (2, —1). This manifold also has another Seifert fibration,
which is a circle bundle over the Klein bottle.

Example 2(a) was motivated by the fact that the tangle T; yields a virtual La-
grangian of index 2 in the symplectic space of the Fox Z-colorings of the boundary
of our tangle [5].

More generally we have:

Example 3 Consider a tangle T, in Figure 11, called a pretzel tangle of type
(a1, 4y, ...,4a,), where each a; is an integer indicating the number of half-twists (i =
1,2,...,n). The two-fold branched cover M®(T,) branched along the tangle T, is a
Seifert fibered manifold with the base a disk and # special fibers of type (a1, 1), (a2, 1),
..., (an, 1) (Figure 12).

Theorem 1 can be generalized to a p-fold cyclic branched cover assuming that
an n-tangle is oriented whose disk-band representation is bicollared, where p is any
positive integer greater than 2. We proceed as follows:

Let T = Q(To;{Ds,...,D,},{b1,...,bn}) beabicollared disk-band representa-
tion of an n-tangle. Then | J; D;U{J; b; has a bicollar neighborhood (J; D;UUJ; b;) %

[—1,1]. Let X = B* — ((U; D;) x [-1,1]) and D;* = (D; x [£1,0]) N OX. Let
Xk be a copy of X and ka C 0Xj a copy ofDii(k = 1,2,...,p). Then the p-fold
cyclic branched cover ¢: Hy — B? branched along T is obtained from X; U - - - U X,
by identifying D/, with D (k= 1,...,p), where k is considered modulo p. Let

bji_k = ¢~ !(bj x {£1}) N X. Note that each b U b} 441 is an annulus in Hy for any
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Figure 13

j and k. Then we obtain the p-fold cyclic branched cover of B* branched along T in
a similar way as in Theorem 1.

Theorem 4 Let Q(To;{D1,...,Dn},{b1,...,bn}) be a bicollared disk-band repre-
sentation of an n-tangle T in B>. Then E(U?;l(u;:ll(b;k U b;kﬂ)) ,Ho) is the
p-fold cyclic branched cover of B* branched along T.

Note that we do not use the annuli b;-:pﬂ U b;l (j = 1,2,...,m) in the the-
orem above. In fact the cores of these annuli bound mutually disjoint 2-disks in

> ( Ui (U (b5, U b)) s Ho) :

Proof Let Y = Hy —J; ¢~ '(b; x [-1,1]), Vj%k = ¢~ '(b; x [£1,0]) N X; and

fk = ka NY(= 8ka N 9Y). Note that Lp’l(bj x [—1,1]) is a genus p — 1
handlebody. Then the p-fold cyclic branched cover of B* branched along T is home-
omorphic to a manifold H that is obtained from Y’ by identifying 3} with B (k=
1,..., p), where k is taken modulo p. Moreover H is homeomorphic to a manifold
obtained from Hy, — Uj e~ 1(b; x [-1,1]) U Uj(VjT1 U V;P U (b x {0})) by
identifying 6;,( and b; ; with ﬁ;kH and bjr (j=1,...,mk=1,...,p—1) re-
spectively, where bjx = ¢~ '(b; x {0}) N X;. Note that ﬁ;k Ubji U ,B;kﬂ Ubji
is a torus. By an argument similar to that in the proof of Theorem 1, we have the
required result. u

Example5 LetT = Q(Ty;{D}, {b1,b,}) be atangle as in Figure 13(a) and ¢: Hy —
B? the three-fold cyclic branched cover of B® branched along T,. Note that Hy is a
three-ball and ¢ ~!(b, U b,) is as shown in Figure 13(b). By Theorem 4, the three-
fold cyclic branched cover of B* branched along T is obtained from Hy by the surgery
along a framed link in Figure 13(c). Note that Figure 13(c) is ambient isotopic to
Figure 14(a). Since the figure eight knot has a tangle decomposition into T and a
trivial 1-tangle, the three-fold cyclic branched cover M ©3)(4,) of §* branched along
the figure eight knot has a surgery description shown in Figure 14(a). The framed
link in Figure 14(a) can be deformed into the link in Figure 14(b) by an ambient
isotopy and a second Kirby move. The link in Figure 14(b) is ambient isotopic to the
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Figure 14

link in Figure 8. Hence M‘®(4,) is homeomorphic to the two-fold branched cover of
$* branched along the Borromean rings [8, 6] (cf. Example 2(b)).

Proposition 6 Any n-tangle (B>, T) has a (bicollared) disk-band representation.

Proof We attach a trivial n-tangle T; to the n-tangle T by a homeomorphism
@: d(B, Ty) — O(B, T). We obtain a link L = Ty U T in a three-sphere B U@ B with
a diagram D(T, U T) as in Figure 15. We may assume that the diagram D(T, U T) is
connected. We color, in checkerboard fashion, the regions of the plane cut by the dia-
gram D(T, U T) and choose n points {v;, v5, ..., v, } as in Figure 16. Since D(T, U T)
is connected, there is a spine G of the black surface with the vertex set V(G) con-
taining {vi, v, . .., v, }. Deforming G on the surface by edge contractions, we have a
new spine H with V(H) = {v,v,,...,v,}. By retracting the black regions into the
neighborhood of H and restricting to B®, we have a required surface. For an example,
see Figure 17.

When we use the Seifert algorithm instead of checkerboard coloring, we always
obtain a bicollared disk-band representation. ]

Figure 15 Figure 16

2 Heegaard Decompositions

In addition to the surgery presentation, it is also useful to have another presentation
of a p-fold cyclic branched cover. Our construction leads straightforwardly to a Hee-
gaard decomposition, that is a decomposition into a compression body (2, 3] and a
handlebody, of a p-fold cyclic branched cover.
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Let F be a connected surface in B* bounded by an n-tangle T and n arcs in 9B°.
The surface F is defined to be free if the exterior of F is homeomorphic to (S, X
I) U (1-handles), where S, is an n-punctured sphere and the all attaching points of
the 1-handles are contained in S,, x {0}. As we observed before, any connected sur-
face has disk-band decomposition. A disk-band representation 2(To; {Dy, ..., D,},
{b1,...,bum}) is defined to be free if the surface [J; D; U |J; b; is free. It is obvious
that any disk-band representations constructed as in the proof of Proposition 6 are
free. So any n-tangle has a free disk-band representation.

First we consider the case of two-fold branched covers. The following algorithm
gives a Heegaard decomposition of M?(T). Start from a free disk-band representa-
tion of T. Then we have a surgery description ¥ (' (U, b;), Ho) of M'?(T) (Fig-
ure 3). Letay, ay, . . ., ag,—, be the 2m—mn arcs which are the connected components
of Ty — U j b; contained in the interior of B? (Figure 18). Then the complement of
gofl(Ui bi|J, au) is a compression body. Then M®@(T) is obtained from the com-
pression body by gluing the handlebody as follows: (i) adding meridian disks of the
arcs, and (ii) filling the rest according to the surgery description. For the tangle T
in Example 2, a Heegaard decomposition of M?(T)) is given in Figure 19.

b
o b, an
Heegaard decomposition of M @)
Figure 18 Figure 19

A similar method gives a Heegaard decomposition of a p-fold cyclic branched
cover. Our construction is a modification of the construction in the proof of Theo-
rem 4. The handlebody part of the decomposition is obtained from the handlebodies
Uj ¢~ '(bj x [—1,1]) by connecting them using 2m — n “tubes” along ¢~ (T;). We
get genus mp — n + 1 handlebody.

https://doi.org/10.4153/CMB-2003-037-6 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2003-037-6

Branched Covers of Tangles in Three-balls 363

From the observation above it follows that:

Theorem 7 Let QY(To; {D1,...,Du},{b1,...,bu}) bea free bicollared disk-band rep-
resentation of an n-tangle T in B>, Let ¢: Hy — B? be the p-fold cyclic branched cover
of branched along Ty. Let a1, 0z, . . ., Qpm—n be the 2m — n arcs which are the connected
components of Tp — Uj bj contained in the interior of B. Then the following holds.

(a) The complement W = Hy — ¢! (U] b; x [-1,1]Ul; N(ozl)) is a compression
body, where N(«) is the tubular neighborhood of o in B.

(b) The p-fold cyclic branched cover of B> branched along T has a Heegaard decompo-
sition into the compression body W and a genus mp — n + 1 handlebody.

(c) The gluing map is given by the curvescjx (j = 1,2,...,mk=1,2,...,p — 1)
andmy (I = 1,2,...,2m — n) in OW, where c; is the core of the annulus b}ik U

b;kﬂ in Theorem 4 and my is the meridian curve of p ! (N(al)) . [ |

In the theorem above, the assumption that a disk-band representation is bicol-
lared is not necessary in the case that p = 2. The curves ¢jx (j = 1,2,...,mk =
1,2,....,p—1),m (I = 1,2,...,2m — n) are essential, mp — n + 1 of them are
nonseparating and m — 1 curves, the my s, are separating.

Remark 8 Since the surfaces given in the proof of Proposition 6 are connected and
free, we can use them to find Heegaard decompositions of branched cyclic covers. Let
¢ denote the crossing number of a connected diagram D(T, U T), b the number of
the black regions and s the number of the Seifert circles of D(Ty U T). Then we have
a Heegaard decomposition of M@ (T) (resp. MP)(T)) of the genus n + 2c — 2b + 1
(resp. p(n+c—s) —n+1).
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