Branched Covers of Tangles in Three-balls

Makiko Ishiwata, Józef H. Przytycki and Akira Yasuhara

Abstract

We give an algorithm for a surgery description of a p-fold cyclic branched cover of B^{3}

 branched along a tangle. We generalize constructions of Montesinos and Akbulut-Kirby.Tangles were first studied by Conway [4]. They were particularly useful for analyzing prime and hyperbolic knots. A branched cover of the three-ball branched along a tangle (succinctly a branched cover of a tangle) is an indispensable tool for understanding tangles. Hence it is important to give practical presentations of branched covers of tangles. Recall that a p-fold cyclic branched cover of a link or tangle (oriented for $p>2$) is uniquely defined by an epimorphism of the fundamental group of the complement onto Z_{p} which sends meridians to 1 . A p-fold branched cover of an n-tangle is a three-manifold, the boundary of which is a connected surface of genus $(n-1)(p-1)$. Such a manifold can be obtained from the genus $(n-1)(p-1)$ handlebody by a surgery. We provide an algorithm for a surgery description of a p-fold cyclic branched cover of B^{3} branched along a tangle. The construction generalizes that of Montesinos [9] and Akbulut and Kirby [1]. It is strikingly simple in the case of a two-fold branched cover. We also discuss the related Heegaard decomposition of a p-fold branched cover of an n-tangle.

1 Surgery Descriptions

A tangle is a one-manifold properly embedded in a three-ball. An n-tangle is a tangle with $2 n$ boundary points. Let T be an n-tangle and T_{0} a trivial n-tangle diagram ${ }^{1}$ (Figure 1). Let $D_{1} \cup \cdots \cup D_{n}$ be a disjoint union of disks bounded by T_{0} and let b_{1}, \ldots, b_{m} be mutually disjoint disks in B^{3} such that $b_{i} \cap \bigcup_{j} D_{j}=\partial b_{i} \cap T_{0}$ are two disjoint arcs in $\partial b_{i}(i=1, \ldots, m)$ (see Figure 2). We denote by $\Omega\left(T_{0} ;\left\{D_{1}, \ldots, D_{n}\right\}\right.$, $\left.\left\{b_{1}, \ldots, b_{m}\right\}\right)$ the tangle $T_{0} \cup \bigcup_{i} \partial b_{i}-\operatorname{int}\left(T_{0} \cap \bigcup_{i} \partial b_{i}\right)$ and call it a disk-band representation of a tangle. A disk-band representation is called bicollared if the surface $\bigcup_{i} D_{i} \cup \bigcup_{j} b_{j}$ is orientable. We will see that any n-tangle has a bicollared disk-band representation (Proposition 5).

A framed link is a disjoint union of embedded annuli in a three-manifold. Framed links in S^{3} can be identified with links whose each component is assigned an integer. Such links are also called framed links. Let M be a three-manifold and \mathcal{L} a framed link in M. We denote by $\Sigma(\mathcal{L}, M)$ the manifold obtained from M by the surgery along \mathcal{L} [10].

[^0]

Figure 1

Figure 2

The case of two-fold branched covers is easy to visualize so we will formulate it first.

Theorem 1 Let $\Omega\left(T_{0} ;\left\{D_{1}, \ldots, D_{n}\right\},\left\{b_{1}, \ldots, b_{m}\right\}\right)$ be a disk-band representation of an n-tangle T in B^{3}. Let $\varphi: H_{0} \rightarrow B^{3}$ be the two-fold branched cover of B^{3} by a genus $n-1$ handlebody H_{0} branched along T_{0}. Then the two-fold branched cover of B^{3} branched along T has a surgery description $\Sigma\left(\varphi^{-1}\left(\bigcup_{i} b_{i}\right), H_{0}\right)$ (see Figure 3).

Figure 3

Proof Let X be $B^{3}-\bigcup_{i} D_{i}$ compactified with two copies, $D_{i}^{ \pm}$, of $D_{i}(i=1,2, \ldots, n)$ (Figure 4). Let X_{1} and X_{2} be two copies of X, and let $D_{i, k}^{ \pm} \subset X_{k}$ denote copies of $D_{i}^{ \pm}$ ($i=1,2, \ldots, n, k=1,2$) (Figure 5). Then H_{0} is obtained from $X_{1} \cup X_{2}$ by identifying $D_{i, 1}^{\varepsilon}$ with $D_{i, 2}^{-\varepsilon}(\varepsilon \in\{-,+\})$. Let $b_{j, k}=\varphi^{-1}\left(b_{j}\right) \cap X_{k}$ and let Y be $H_{0}-\bigcup_{j, k} b_{j, k}$ compactified with two copies $b_{j, k}^{ \pm}$of $b_{j, k}$ in $X_{k}(j=1,2, \ldots, m, k=1,2)$. Here, + or - sides of $D_{i, k}$ and $b_{j, k}$ are not necessarily compatible. We note, and it is the key observation of the construction, that the two-fold branched cover H of B^{3} branched along T is obtained from Y by identifying $b_{j, 1}^{\varepsilon}$ with $b_{j, 2}^{-\varepsilon}(\varepsilon \in\{-,+\})$. Note that each $b_{j, 1}^{+} \cup b_{j, 2}^{-} \cup b_{j, 1}^{-} \cup b_{j, 2}^{+}$is a torus. Let c_{j} be the core of the annulus $b_{j, 1}^{+} \cup b_{j, 2}^{-}$. The manifold obtained from Y by identifying $b_{j, 1}^{\varepsilon}$ with $b_{j, 2}^{-\varepsilon}$ is homeomorphic to the one obtained from Y by attaching tori $D_{j}^{2} \times S^{1}(j=1,2, \ldots, m)$ so that $\partial D_{j}^{2}=c_{j}$. Hence H is homeomorphic to the manifold with the surgery description $\Sigma\left(\varphi^{-1}\left(\bigcup_{j} b_{j}\right), H_{0}\right)$.

Figure 4

Figure 5

Example 2 (a) The two-fold branched cover $M^{(2)}\left(T_{1}\right)$ branched along a tangle T_{1} in Figure 6 is the Seifert manifold with the base a disk and two special fibers of type $(2,1)$ and $(2,-1)$. Furthermore $M^{(2)}\left(T_{1}\right)$ is a twisted I-bundle over the Klein bottle (for example see [7]). In particular, $\pi_{1}\left(M^{(2)}\left(T_{1}\right)\right)=\left\langle a, b \mid a b a^{-1} b=1\right\rangle$.

Figure 6
(b) If we glue together two copies of T_{1} as in Figure 7, we get Borromean rings L. Thus our previous computation shows that the two-fold branched cover $M^{(2)}(L)$ of S^{3} branched along L is a "switched" double of the twisted I-bundle over the Klein bottle (see Figure 8 for a surgery description). The fundamental group $\pi_{1}\left(M^{(2)}(L)\right)=$ $\left\langle x, a \mid x^{2} a x^{2} a^{-1}, a^{2} x a^{2} x^{-1}\right\rangle$ is a three-manifold group which is torsion-free but not left orderable [11].
(c) If we take the double of the tangle T_{1}, we obtain the link in Figure 9. The twofold branched cover of S^{3} branched along this link is the double of twisted I-bundle over Klein bottle. A surgery description of this manifold is shown in Figure 10. Thus this manifold is the Seifert manifold with the base S^{2} and four special fibers of type

Figure 11

Figure 12
$(2,1),(2,1),(2,-1)$ and $(2,-1)$. This manifold also has another Seifert fibration, which is a circle bundle over the Klein bottle.

Example 2(a) was motivated by the fact that the tangle T_{1} yields a virtual Lagrangian of index 2 in the symplectic space of the Fox \mathbf{Z}-colorings of the boundary of our tangle [5].

More generally we have:
Example 3 Consider a tangle T_{2} in Figure 11, called a pretzel tangle of type $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$, where each a_{i} is an integer indicating the number of half-twists ($i=$ $1,2, \ldots, n)$. The two-fold branched cover $M^{(2)}\left(T_{2}\right)$ branched along the tangle T_{2} is a Seifert fibered manifold with the base a disk and n special fibers of type $\left(a_{1}, 1\right),\left(a_{2}, 1\right)$, $\ldots,\left(a_{n}, 1\right)$ (Figure 12).

Theorem 1 can be generalized to a p-fold cyclic branched cover assuming that an n-tangle is oriented whose disk-band representation is bicollared, where p is any positive integer greater than 2 . We proceed as follows:

Let $T=\Omega\left(T_{0} ;\left\{D_{1}, \ldots, D_{n}\right\},\left\{b_{1}, \ldots, b_{m}\right\}\right)$ be a bicollared disk-band representation of an n-tangle. Then $\bigcup_{i} D_{i} \cup \bigcup_{j} b_{j}$ has a bicollar neighborhood $\left(\bigcup_{i} D_{i} \cup \bigcup_{j} b_{j}\right) \times$ $[-1,1]$. Let $X=\overline{B^{3}-\left(\left(\bigcup_{i} D_{i}\right) \times[-1,1]\right)}$ and $D_{i}^{ \pm}=\left(D_{i} \times[\pm 1,0]\right) \cap \partial X$. Let X_{k} be a copy of X and $D_{i, k}^{ \pm} \subset \partial X_{k}$ a copy of $D_{i}^{ \pm}(k=1,2, \ldots, p)$. Then the p-fold cyclic branched cover $\varphi: H_{0} \rightarrow B^{3}$ branched along T_{0} is obtained from $X_{1} \cup \cdots \cup X_{p}$ by identifying $D_{i, k}^{+}$with $D_{i, k+1}^{-}(k=1, \ldots, p)$, where k is considered modulo p. Let $b_{j, k}^{ \pm}=\varphi^{-1}\left(b_{j} \times\{ \pm 1\}\right) \cap X_{k}$. Note that each $b_{j, k}^{+} \cup b_{j, k+1}^{-}$is an annulus in H_{0} for any

Figure 13
j and k. Then we obtain the p-fold cyclic branched cover of B^{3} branched along T in a similar way as in Theorem 1.

Theorem 4 Let $\Omega\left(T_{0} ;\left\{D_{1}, \ldots, D_{n}\right\},\left\{b_{1}, \ldots, b_{m}\right\}\right)$ be a bicollared disk-band representation of an n-tangle T in B^{3}. Then $\Sigma\left(\bigcup_{j=1}^{m}\left(\bigcup_{k=1}^{p-1}\left(b_{j, k}^{+} \cup b_{j, k+1}^{-}\right)\right), H_{0}\right)$ is the p-fold cyclic branched cover of B^{3} branched along T.

Note that we do not use the annuli $b_{j, p+1}^{+} \cup b_{j, 1}^{-}(j=1,2, \ldots, m)$ in the theorem above. In fact the cores of these annuli bound mutually disjoint 2-disks in $\Sigma\left(\bigcup_{j=1}^{m}\left(\bigcup_{k=1}^{p-1}\left(b_{j, k}^{+} \cup b_{j, k+1}^{-}\right)\right), H_{0}\right)$.

Proof Let $Y=\overline{H_{0}-\bigcup_{j} \varphi^{-1}\left(b_{j} \times[-1,1]\right)}, V_{j, k}^{ \pm}=\varphi^{-1}\left(b_{j} \times[\pm 1,0]\right) \cap X_{k}$ and $\beta_{j, k}^{ \pm}=V_{j, k}^{ \pm} \cap Y\left(=\partial V_{j, k}^{ \pm} \cap \partial Y\right)$. Note that $\varphi^{-1}\left(b_{j} \times[-1,1]\right)$ is a genus $p-1$ handlebody. Then the p-fold cyclic branched cover of B^{3} branched along T is homeomorphic to a manifold H that is obtained from Y by identifying $\beta_{j, k}^{+}$with $\beta_{j, k+1}^{-}(k=$ $1, \ldots, p$), where k is taken modulo p. Moreover H is homeomorphic to a manifold obtained from $\overline{H_{0}-\bigcup_{j} \varphi^{-1}\left(b_{j} \times[-1,1]\right)} \cup \bigcup_{j}\left(V_{j, 1}^{-} \cup V_{j, p}^{+} \cup \varphi^{-1}\left(b_{j} \times\{0\}\right)\right)$ by identifying $\beta_{j, k}^{+}$and $b_{j, k}$ with $\beta_{j, k+1}^{-}$and $b_{j, k+1}(j=1, \ldots, m, k=1, \ldots, p-1)$ respectively, where $b_{j, k}=\varphi^{-1}\left(b_{j} \times\{0\}\right) \cap X_{k}$. Note that $\beta_{j, k}^{+} \cup b_{j, k} \cup \beta_{j, k+1}^{-} \cup b_{j, k+1}$ is a torus. By an argument similar to that in the proof of Theorem 1, we have the required result.

Example 5 Let $T=\Omega\left(T_{0} ;\{D\},\left\{b_{1}, b_{2}\right\}\right)$ be a tangle as in Figure 13(a) and $\varphi: H_{0} \rightarrow$ B^{3} the three-fold cyclic branched cover of B^{3} branched along T_{0}. Note that H_{0} is a three-ball and $\varphi^{-1}\left(b_{1} \cup b_{2}\right)$ is as shown in Figure 13(b). By Theorem 4, the threefold cyclic branched cover of B^{3} branched along T is obtained from H_{0} by the surgery along a framed link in Figure 13(c). Note that Figure 13(c) is ambient isotopic to Figure 14(a). Since the figure eight knot has a tangle decomposition into T and a trivial 1-tangle, the three-fold cyclic branched cover $M^{(3)}\left(4_{1}\right)$ of S^{3} branched along the figure eight knot has a surgery description shown in Figure 14(a). The framed link in Figure 14(a) can be deformed into the link in Figure 14(b) by an ambient isotopy and a second Kirby move. The link in Figure 14(b) is ambient isotopic to the

Figure 14
link in Figure 8. Hence $M^{(3)}\left(4_{1}\right)$ is homeomorphic to the two-fold branched cover of S^{3} branched along the Borromean rings $[8,6]$ (cf. Example 2(b)).
Proposition 6 Any n-tangle $\left(B^{3}, T\right)$ has a (bicollared) disk-band representation.

Proof We attach a trivial n-tangle T_{0} to the n-tangle T by a homeomorphism $\varphi: \partial\left(B, T_{0}\right) \rightarrow \partial(B, T)$. We obtain a link $L=T_{0} \cup T$ in a three-sphere $B \bigcup_{\varphi} B$ with a diagram $D\left(T_{0} \cup T\right)$ as in Figure 15. We may assume that the diagram $D\left(T_{0} \cup T\right)$ is connected. We color, in checkerboard fashion, the regions of the plane cut by the dia$\operatorname{gram} D\left(T_{0} \cup T\right)$ and choose n points $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ as in Figure 16. Since $D\left(T_{0} \cup T\right)$ is connected, there is a spine G of the black surface with the vertex set $V(G)$ containing $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Deforming G on the surface by edge contractions, we have a new spine H with $V(H)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. By retracting the black regions into the neighborhood of H and restricting to B^{3}, we have a required surface. For an example, see Figure 17.

When we use the Seifert algorithm instead of checkerboard coloring, we always obtain a bicollared disk-band representation.

Figure 15

Figure 16

2 Heegaard Decompositions

In addition to the surgery presentation, it is also useful to have another presentation of a p-fold cyclic branched cover. Our construction leads straightforwardly to a Heegaard decomposition, that is a decomposition into a compression body $[2,3]$ and a handlebody, of a p-fold cyclic branched cover.

Figure 17

Let F be a connected surface in B^{3} bounded by an n-tangle T and n arcs in ∂B^{3}. The surface F is defined to be free if the exterior of F is homeomorphic to ($S_{n} \times$ $I) \cup$ (1-handles), where S_{n} is an n-punctured sphere and the all attaching points of the 1-handles are contained in $S_{n} \times\{0\}$. As we observed before, any connected surface has disk-band decomposition. A disk-band representation $\Omega\left(T_{0} ;\left\{D_{1}, \ldots, D_{n}\right\}\right.$, $\left.\left\{b_{1}, \ldots, b_{m}\right\}\right)$ is defined to be free if the surface $\bigcup_{i} D_{i} \cup \bigcup_{j} b_{j}$ is free. It is obvious that any disk-band representations constructed as in the proof of Proposition 6 are free. So any n-tangle has a free disk-band representation.

First we consider the case of two-fold branched covers. The following algorithm gives a Heegaard decomposition of $M^{(2)}(T)$. Start from a free disk-band representation of T. Then we have a surgery description $\Sigma\left(\varphi^{-1}\left(\bigcup_{i} b_{i}\right), H_{0}\right)$ of $M^{(2)}(T)$ (Figure 3). Let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{2 m-n}$ be the $2 m-n$ arcs which are the connected components of $T_{0}-\bigcup_{j} b_{j}$ contained in the interior of B^{3} (Figure 18). Then the complement of $\varphi^{-1}\left(\bigcup_{i} b_{i} \bigcup_{l} \alpha_{l}\right)$ is a compression body. Then $M^{(2)}(T)$ is obtained from the compression body by gluing the handlebody as follows: (i) adding meridian disks of the arcs, and (ii) filling the rest according to the surgery description. For the tangle T_{1} in Example 2, a Heegaard decomposition of $M^{(2)}\left(T_{1}\right)$ is given in Figure 19.

Figure 18

Heegaard decomposition of $M^{(2)}\left(T_{1}\right)$

Figure 19
A similar method gives a Heegaard decomposition of a p-fold cyclic branched cover. Our construction is a modification of the construction in the proof of Theorem 4. The handlebody part of the decomposition is obtained from the handlebodies $\bigcup_{j} \varphi^{-1}\left(b_{j} \times[-1,1]\right)$ by connecting them using $2 m-n$ "tubes" along $\varphi^{-1}\left(T_{0}\right)$. We get genus $m p-n+1$ handlebody.

From the observation above it follows that:

Theorem 7 Let $\Omega\left(T_{0} ;\left\{D_{1}, \ldots, D_{n}\right\},\left\{b_{1}, \ldots, b_{m}\right\}\right)$ be a free, bicollared disk-band representation of an n-tangle T in B^{3}. Let $\varphi: H_{0} \rightarrow B^{3}$ be the p-fold cyclic branched cover of branched along T_{0}. Let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{2 m-n}$ be the $2 m-n$ arcs which are the connected components of $T_{0}-\bigcup_{j} b_{j}$ contained in the interior of B^{3}. Then the following holds.
(a) The complement $W=\overline{H_{0}-\varphi^{-1}\left(\bigcup_{j} b_{j} \times[-1,1] \cup \bigcup_{l} N\left(\alpha_{l}\right)\right)}$ is a compression body, where $N\left(\alpha_{l}\right)$ is the tubular neighborhood of α_{l} in B^{3}.
(b) The p-fold cyclic branched cover of B^{3} branched along T has a Heegaard decomposition into the compression body W and a genus $m p-n+1$ handlebody.
(c) The gluing map is given by the curves $c_{j, k}(j=1,2, \ldots, m, k=1,2, \ldots, p-1)$ and $m_{l}(l=1,2, \ldots, 2 m-n)$ in ∂W, where $c_{j, k}$ is the core of the annulus $b_{j, k}^{+} \cup$ $b_{j, k+1}^{-}$in Theorem 4 and m_{l} is the meridian curve of $\varphi^{-1}\left(N\left(\alpha_{l}\right)\right)$.

In the theorem above, the assumption that a disk-band representation is bicollared is not necessary in the case that $p=2$. The curves $c_{j, k}(j=1,2, \ldots, m, k=$ $1,2, \ldots, p-1), m_{l}(l=1,2, \ldots, 2 m-n)$ are essential, $m p-n+1$ of them are nonseparating and $m-1$ curves, the $m_{l} \mathrm{~s}$, are separating.

Remark 8 Since the surfaces given in the proof of Proposition 6 are connected and free, we can use them to find Heegaard decompositions of branched cyclic covers. Let c denote the crossing number of a connected diagram $D\left(T_{0} \cup T\right), b$ the number of the black regions and s the number of the Seifert circles of $D\left(T_{0} \cup T\right)$. Then we have a Heegaard decomposition of $M^{(2)}(T)$ (resp. $M^{(p)}(T)$) of the genus $n+2 c-2 b+1$ (resp. $p(n+c-s)-n+1)$.

References

[1] S. Akbulut and R. Kirby, Branched covers of surfaces in 4-manifolds. Math. Ann. 252(1980), 111-131.
[2] F. Bonahon and J. P. Otal, Scindements de Heegaard des espaces lenticulaires. Ann. Sci. École Norm. Sup. 16(1983), 451-466.
[3] A. J. Casson and C. McA. Gordon, Reducing Heegaard splittings. Topology Appl. 27(1987), 275-283.
[4] J. H. Conway, An enumeration of knots and links and some of their related properties. Computational problems in Abstract Algebra, Proc. Conf. Oxford 1967, Pergamon Press, (1970), 329-358.
[5] J. Dymara, T. Januszkiewicz, J. H. Przytycki, Symplectic structure on Colorings, Lagrangian tangles and Tits buildings. May, 2001, preprint.
[6] H. Hilden, M. T. Lozano and J. M. Montesinos-Amilibia, The arithmeticity of the figure eight knot orbifolds. Topology, 1990, Columbus, OH, 1990, 169-183, Ohio State Univ. Math. Res. Inst. Publ. 1, de Gruyter, Berlin, 1992.
[7] W. Jaco, Lectures on three manifold topology. Conference Board of Math. 43, Amer. Math. Soc., (1980).
[8] J. M. Montesinos, Variedades de Seifert que son recubridadores ciclicos ramificados de dos hojas. Bol. Soc. Mat. Mexicana 18(1973), 1-32.
[9] Surgery on links and double branched covers of S^{3}. Knots, groups and 3-manifolds, Ann. Math. Studies, Princeton Univ. Press. 84(1975), 227-259.
[10] V. V. Prasolov and A. B. Sossinsky, Knots, links, braids and 3-manifolds. Amer. Math. Soc. (1997).
[11] D. Rolfsen, Maps between 3-manifolds with nonzero degree: a new obstruction. In: Proceedings of New Techniques in Topological Quantum Field Theory, NATO Advanced Research Workshop, August 2001, Canada, in preparation.

Department of Mathematics
Tokyo Woman's Christian University
Zempukuji 2-6-1, Suginamiku
Tokyo 167-8585
Japan
e-mail: mako@twcu.ac.jp
Department of Mathematics
Tokyo Gakugei University
Nukuikita 4-1-1, Koganei
Tokyo 184-8501
Japan
e-mail: yasuhara@u-gakugei.ac.jp

[^1]Department of Mathematics
The George Washington University
Washington, DC 20052
USA
e-mail: przytyck@gwu.edu

[^0]: ${ }^{1}$ Tangles are considered up to ambient isotopy but in practice we will often use the word tangle for a tangle diagram or an actual embedding of a one-manifold.

 Received by the editors September 15, 2001.
 AMS subject classification: Primary: 57 M 25 ; secondary: 57 M 12 .
 Keywords: tangle, branched cover, surgery, Heegaard decomposition.
 (C)Canadian Mathematical Society 2003.

[^1]: e-mail: zasuharau-gakusi:ac.jp

