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Abstract Let N be a non-Archimedean-ordered field extension of the real numbers that is real closed
and Cauchy complete in the topology induced by the order, and whose Hahn group is Archimedean. In
this paper, we first review the properties of weakly locally uniformly differentiable (WLUD) functions, k
times weakly locally uniformly differentiable (WLUDk) functions and WLUD∞ functions at a point or
on an open subset of N . Then, we show under what conditions a WLUD∞ function at a point x0 ∈ N is
analytic in an interval around x0, that is, it has a convergent Taylor series at any point in that interval.
We generalize the concepts of WLUDk and WLUD∞ to functions from Nn to N , for any n ∈ N. Then,
we formulate conditions under which a WLUD∞ function at a point x0 ∈ Nn is analytic at that point.
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1. Introduction

Let N be a non-Archimedean-ordered field extension of R that is real closed and complete
in the order topology and whose Hahn group SN is Archimedean, i.e. (isomorphic to)
a subgroup of R. Recall that SN is the set of equivalence classes under the relation ∼
defined on N ∗ := N\{0} as follows: For x, y ∈ N ∗, we say that x is of the same order as
y and write x ∼ y if there exist n, m ∈ N such that n|x| > |y| and m|y| > |x|, where | · |
denotes the ordinary absolute value on N : |x| = max {x, −x}. SN is naturally endowed
with an addition via [x] + [y] = [x · y] and an order via [x] < [y] if |y| � |x| (which means
n|y| < |x| for all n ∈ N), both of which are readily checked to be well defined. It follows
that (SN , +, <) is an ordered group, often referred to as the Hahn group or skeleton
group, whose neutral element is [1], the class of 1.
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The theorem of Hahn [3] provides a complete classification of non-Archimedean-ordered
field extensions of R in terms of their skeleton groups. In fact, invoking the axiom of choice,
it is shown that the elements of our field N can be written as (generalized) formal power
series (also called Hahn series) over its skeleton group SN with real coefficients, and the
set of appearing exponents forms a well-ordered subset of SN . That is, for all x ∈ N , we
have that x =

∑
q∈SN aqd

q; with aq ∈ R for all q, d a positive infinitely small element of
N , and the support of x, given by supp(x) := {q ∈ SN : aq �= 0}, forming a well-ordered
subset of SN .

We define for x �= 0 in N , λ(x) = min(supp(x)), which exists since supp(x) is well
ordered. Moreover, we set λ(0) = ∞. Given a non-zero x =

∑
q∈supp(x) aqd

q, then x > 0
if and only if aλ(x) > 0.

The smallest such field N is the Levi-Civita field R, first introduced in [5, 6]. In this
case, SR = Q, and for any element x ∈ R, supp(x) is a left-finite subset of Q, i.e. below
any rational bound r there are only finitely many exponents in the Hahn representation
of x. The Levi-Civita field R is of particular interest because of its practical usefulness.
Since the supports of the elements of R are left-finite, it is possible to represent these
numbers on a computer. Having infinitely small numbers allows for many computational
applications; one such application is the computation of derivatives of real functions
representable on a computer [13, 15], where both the accuracy of formula manipulators
and the speed of classical numerical methods are achieved. For a review of the Levi-Civita
field R, see [11] and references therein.

In the wider context of valuation theory, it is interesting to note that the topology
induced by the order on N is the same as the valuation topology τv introduced via the
non-Archimedean (ultrametric) valuation | · |v : N → R, given by

|x|v =
{

exp (−λ(x)) if x �= 0
0 if x = 0.

It follows, therefore, that the field N is just a special case of the class of fields discussed
in [9]. For a general overview of the algebraic properties of formal power series fields, we
refer to the comprehensive overview by Ribenboim [8], and for an overview of the related
valuation theory the book by Krull [4]. A thorough and complete treatment of ordered
structures can also be found in [7]. A more comprehensive survey of all non-Archimedean
fields can be found in [1].

2. Weak local uniform differentiability and review of recent results

Because of the total disconnectedness of the field N in the order topology, the stan-
dard theorems of real calculus like the intermediate value theorem, the inverse function
theorem, the mean value theorem, the implicit function theorem and Taylor’s theorem
require stronger smoothness criteria of the functions involved in order for the theorems to
hold. In this section, we will present one such criterion: the so-called weak local uniform
differentiability, we will review recent work based on that smoothness criterion and then
present new results.

In [2], we focus our attention on N -valued functions of one variable. We study the
properties of weakly locally uniformly differentiable (WLUD) functions at a point x0 ∈ N
or on an open subset A of N . In particular, we show that WLUD functions are C1, they

https://doi.org/10.1017/S001309152200027X Published online by Cambridge University Press

https://doi.org/10.1017/S001309152200027X


Analyticity of WLUD∞ functions on N and Nn 693

include all polynomial functions, and they are closed under addition, multiplication and
composition. Then, we generalize the definition of weak local uniform differentiability
to any order. In particular, we study the properties of WLUD2 functions at a point
x0 ∈ N or on an open subset A of N ; and we show that WLUD2 functions are C2, they
include all polynomial functions, and they are closed under addition, multiplication and
composition. Finally, we formulate and prove an inverse function theorem as well as a
local intermediate value theorem and a local mean value theorem for these functions.

Here, we only recall the main definitions and results (without proofs) in [2] and refer
the reader to that paper for the details.

Definition 1. Let A ⊆ N be open, let f : A → N , and let x0 ∈ A be given. We say
that f is WLUD at x0 if f is differentiable in a neighbourhood Ω of x0 in A and if for
every ε > 0 in N there exists δ > 0 in N such that (x0 − δ, x0 + δ) ⊂ Ω, and for every
x, y ∈ (x0 − δ, x0 + δ) we have that |f(y) − f(x) − f ′(x)(y − x)| ≤ ε |y − x|. Moreover,
we say that f is WLUD on A if f is WLUD at every point in A.

We extend the WLUD concept to higher orders of differentiability and we define
WLUDk as follows.

Definition 2. Let A ⊆ N be open, let f : A → N , let x0 ∈ A, and let k ∈ N be given.
We say that f is WLUDk at x0 if f is k times differentiable in a neighbourhood Ω of x0

in A and if for every ε > 0 in N there exists δ > 0 in N such that (x0 − δ, x0 + δ) ⊂ Ω,
and for every x, y ∈ (x0 − δ, x0 + δ) we have that

∣∣∣∣∣∣f(y) −
k∑

j=0

f (j)(x)
j!

(y − x)j

∣∣∣∣∣∣ ≤ ε |y − x|k .

Moreover, we say that f is WLUDk on A if f is WLUDk at every point in A. Finally,
we say that f is WLUD∞ at x0 (respectively, on A) if f is WLUDk at x0 (respectively,
on A) for every k ∈ N.

Theorem 1 (Inverse Function Theorem). Let A ⊆ N be open, let f : A → N be
WLUD on A, and let x0 ∈ A be such that f ′(x0) �= 0. Then, there exists a neighbourhood
Ω of x0 in A such that

(1) f |Ω is one-to-one;

(2) f(Ω) is open and

(3) f−1 exists and is WLUD on f(Ω) with (f−1)′ = 1/(f ′ ◦ f−1).

Theorem 2 (Local Intermediate Value Theorem). Let A ⊆ N be open, let f :
A → N be WLUD on A, and let x0 ∈ A be such that f ′(x0) �= 0. Then, there exists a
neighbourhood Ω of x0 in A such that for any a < b in f(Ω) and for any c ∈ (a, b), there
is an x ∈ (min

{
f (−1)(a), f (−1)(b)

}
, max

{
f (−1)(a), f (−1)(b)

}
) such that f(x) = c.
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Theorem 3 (Local Mean Value Theorem). Let A ⊆ N be open, let f : A → N be
WLUD2 on A, and let x0 ∈ A be such that f ′′(x0) �= 0. Then, there exists a neighbourhood
Ω of x0 in A such that f has the mean value property on Ω. That is, for every a, b ∈ Ω
with a < b, there exists c ∈ (a, b) such that

f ′(c) =
f(b) − f(a)

b − a
.

In [12], we formulate and prove a Taylor theorem with remainder for WLUDk functions
from N to N . Then, we extend the concept of WLUD to functions from Nn to Nm with
m, n ∈ N and study the properties of those functions as we did for functions from N to
N . Then, we formulate and prove the inverse function theorem for WLUD functions from
Nn to Nn and the implicit function theorem for WLUD functions from Nn to Nm with
m < n in N.

As in the real case, the proof of Taylor’s theorem with remainder uses the mean value
theorem. However, in the non-Archimedean setting, stronger conditions on the function
are needed than in the real case for the formulation of the theorem.

Theorem 4 (Taylor’s Theorem with Remainder). Let A ⊆ N be open, let k ∈ N

be given, and let f : A → N be WLUDk+2 on A. Assume further that f (j) is WLUD2 on
A for 0 ≤ j ≤ k. Then, for every x ∈ A, there exists a neighbourhood U of x in A such
that, for any y ∈ U , there exists c ∈ [min{y, x}, max{y, x}] such that

f(y) =
k∑

j=0

f (j)(x)
j!

(y − x)j +
f (k+1)(c)
(k + 1)!

(y − x)k+1. (1)

Before we define weak local uniform differentiability for functions from Nn to Nm and
then state the inverse function theorem and the implicit function theorem, we introduce
the following notation.

Notation 1. Let A ⊂ Nn be open, let x0 ∈ A be given, and let f : A → Nm be such
that all the first-order partial derivatives of f at x0 exist. Then, Df(x0) denotes the
linear map from Nn to Nm defined by the m × n Jacobian matrix of f at x0:

⎛
⎜⎜⎜⎝

f1
1(x0) f1

2(x0) . . . f1
n(x0)

f2
1(x0) f2

2(x0) . . . f2
n(x0)

...
...

. . .
...

fm
1 (x0) fm

2 (x0) . . . fm
n (x0)

⎞
⎟⎟⎟⎠

with f i
j(x0) = ∂fi

∂xj
(x0) for 1 ≤ i ≤ m and 1 ≤ j ≤ n. Moreover, if m = n then the

determinant of the n × n matrix Df(x0) is denoted by Jf(x0).

Definition 3 (WLUD). Let A ⊂ Nn be open, let f : A → Nm, and let x0 ∈ A be
given. Then, we say that f is WLUD at x0 if f is differentiable in a neighbourhood
Ω of x0 in A and if for every ε > 0 in N there exists δ > 0 in N such that Bδ(x0) :=
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{t ∈ N : |t − x0| < δ} ⊂ Ω, and for all x, y ∈ Bδ(x0) we have that

|f(y) − f(x) − Df(x)(y − x)| ≤ ε|y − x|.

Moreover, we say that f is WLUD on A if f is WLUD at every point in A.

We show in [12] that if f is WLUD at x0 (respectively on A) then f is C1 at x0

(respectively, on A). Thus, the class of WLUD functions at a point x0 (respectively, on
an open set A) is a subset of the class of C1 functions at x0 (respectively, on A). However,
this is still large enough to include all polynomial functions. We also show in [12] that
if f , g are WLUD at x0 (respectively, on A) and if α ∈ N then f + αg and f · g are
WLUD at x0 (respectively, on A). Moreover, we show that if f : A → Nm is WLUD
at x0 ∈ A (respectively, on A) and if g : C → N p is WLUD at f(x0) ∈ C (respectively,
on C), where A is an open subset of Nn, C an open subset of Nm and f(A) ⊆ C, then
g ◦ f is WLUD at x0 (respectively, on A).

Theorem 5 (Inverse Function Theorem). Let A ⊂ Nn be open, let f : A → Nn

be WLUD on A and let t0 ∈ A be such that Jf(t0) �= 0. Then, there is a neighbourhood
Ω of t0 such that:

(1) f |Ω is one-to-one;

(2) f(Ω) is open and

(3) the inverse g of f |Ω is WLUD on f(Ω); and Dg(x) = [Df(t)]−1 for t ∈ Ω and
x = f(t).

As in the real case, the inverse function theorem is used to prove the implicit function
theorem. But before we state the implicit function theorem, we introduce the following
notation.

Notation 2. Let A ⊆ Nn be open and let Φ : A → Nm be WLUD on A. For
t = (t1, ..., tn−m, tn−m+1, ..., tn) ∈ A, let

t̂ = (t1, . . . , tn−m) and J̃Φ(t) = det
(

∂(Φ1, . . . ,Φm)
∂(tn−m+1, . . . , tn)

)
.

Theorem 6 (Implicit Function Theorem). Let Φ : A → Nm be WLUD on
A, where A ⊆ Nn is open and 1 ≤ m < n. Let t0 ∈ A be such that Φ(t0) = 0 and
J̃Φ(t0) �= 0. Then, there exist a neighbourhood U of t0, a neighbourhood R of t̂0 and
φ : R → Nm that is WLUD on R such that

J̃Φ(t) �= 0 for all t ∈ U,

and

{t ∈ U : Φ(t) = 0} = {(t̂,φ(t̂)) : t̂ ∈ R}.
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3. New results

This paper is a continuation of the work done in [2, 12]. In the following section, we
will generalize in Definition 5 and Definition 6 the concepts of WLUDk and WLUD∞

to functions from Nn to N ; and we will formulate (in Theorem 8 and Theorem 9 and
their proofs) conditions under which a WLUD∞ N -valued function at a point x0 ∈ N or
a WLUD∞ N -valued function at a point x0 ∈ Nn will be analytic at that point.

Theorem 7. Let A ⊆ N be open, let x0 ∈ A, and let f : A → N be WLUD∞ at x0.
For each k ∈ N, let δk > 0 in N correspond to ε = 1 in Definition 2. Assume that

lim sup
j→∞

(
−λ
(
f (j)(x0)

)
j

)
< ∞ and lim sup

k→∞
λ (δk) < ∞.

Then, there exists a neighbourhood U of x0 in A such that, for any x, y ∈ U , we have
that

f(y) =
∞∑

j=0

f (j) (x)
j!

(y − x)j
.

That is, the Taylor series
∞∑

j=0

f(j)(x)
j! (y − x)j converges in N to f(y); and hence f is

analytic in U .

Proof. First, we note that

lim sup
j→∞

(
−λ(f (j)(x0))

j
) < ∞ ⇐⇒ lim sup

j→∞
exp

(−λ(f (j)(x0))
j

)
< ∞

⇐⇒ lim sup
j→∞

j

√
exp(−λ(f (j)(x0))) < ∞

⇐⇒ 1

lim sup
j→∞

j
√

exp(−λ(f (j)(x0)))
> 0

⇐⇒ 1

lim sup
j→∞

j
√

|f (j)(x0)|v
> 0

⇐⇒ 1

lim sup
j→∞

j
√

|f (j)(x0)/j!|v
> 0.

Thus, the Taylor series
∞∑

j=0

f(j)(x0)
j! (x − x0)j of f at x0 has a positive radius of

convergence [9]

R :=
1

lim sup
j→∞

j
√

|f (j)(x0)/j!|v
=

1

lim sup
j→∞

j
√

|f (j)(x0)|v
> 0.

https://doi.org/10.1017/S001309152200027X Published online by Cambridge University Press

https://doi.org/10.1017/S001309152200027X


Analyticity of WLUD∞ functions on N and Nn 697

Let

λ0 = lim sup
j→∞

(
−λ
(
f (j)(x0)

)
j

)
.

Then, λ0 ∈ R and λ0 < ∞. Then, for all x ∈ N satisfying λ(x − x0) > λ0, we have that

|x − x0|v =
{

exp(−λ(x − x0)) if x �= x0

0 if x = x0

< exp(−λ0) =
1

exp(λ0)

=
1

exp(lim sup
j→∞

(−λ(f (j)(x0))/j))

=
1

lim sup
j→∞

exp(−λ(f (j)(x0))/j)

=
1

lim sup
j→∞

j
√

|f (j)(x0)|v
= R.

Thus, for all x ∈ N satisfying λ(x − x0) > λ0, we have that |x − x0|v < R and, by [9,

p. 59],
∞∑

j=0

f(j)(x0)
j! (x − x0)j converges in (N , τv); that is, it converges with respect to

both the ultrametric absolute value | · |v and the ordinary absolute value | · |.
For all k ∈ N, we have that (x0 − δk, x0 + δk) ⊂ A, f is k times differentiable on

(x0 − δk, x0 + δk), and∣∣∣∣∣∣f(x) −
k∑

j=0

f (j) (x0)
j!

(x − x0)
j

∣∣∣∣∣∣ ≤ |x − x0|k for all x ∈ (x0 − δk, x0 + δk).

Since lim sup
k→∞

λ(δk) < ∞, there exists t > 0 in Q such that lim sup
k→∞

λ(δk) < t < ∞. Thus,

there exists N ∈ N such that

λ(δk) < t for all k > N. (2)

Let δ > 0 in N be such that λ(δ) > max{λ0, t, 0}; this is possible since max{λ0, t, 0} <
∞. It follows from (2) that λ(δ) > λ(δk) and hence 0 < δ � δk for all k > N . Thus,
(x0 − δ, x0 + δ) ⊂ A, f is infinitely often differentiable on (x0 − δ, x0 + δ), and∣∣∣∣∣∣f(x) −

k∑
j=0

f (j)(x0)
j!

(x − x0)j

∣∣∣∣∣∣ ≤ |x − x0|k ∀ x ∈ (x0 − δ, x0 + δ) and ∀ k > N. (3)

Moreover, for all x ∈ (x0 − δ, x0 + δ), we have that λ(x − x0) ≥ λ(δ) > λ0 and hence
∞∑

j=0

f(j)(x0)
j! (x − x0)j converges in N . Let U = (x0 − δ, x0 + δ).
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First, we show that

f(x) =
∞∑

j=0

f (j) (x0)
j!

(x − x0)
j for all x ∈ U.

Let x ∈ U be given. Taking the limit in (3) as k → ∞, we get:

0 ≤ lim
k→∞

∣∣∣∣∣∣f(x) −
k∑

j=0

f (j) (x0)
j!

(x − x0)
j

∣∣∣∣∣∣ ≤ lim
k→∞

|x − x0|k ,

from which we obtain

0 ≤
∣∣∣∣∣∣f(x) − lim

k→∞

k∑
j=0

f (j) (x0)
j!

(x − x0)
j

∣∣∣∣∣∣ ≤ lim
k→∞

|x − x0|k .

Since λ(x − x0) ≥ λ(δ) > 0, we obtain that lim
k→∞

|x − x0|k = 0. It follows that

0 ≤
∣∣∣∣∣∣f(x) −

∞∑
j=0

f (j) (x0)
j!

(x − x0)
j

∣∣∣∣∣∣ ≤ 0

from which we infer that f(x) =
∞∑

j=0

f(j)(x0)
j! (x − x0)j or, equivalently,

f(x) =
∞∑

l=0

f (l)(x0)
l!

(x − x0)l. (4)

Since the convergence of the Taylor series above is in the order (valuation) topology, we
will show that the derivatives of f at x to any order are obtained by differentiating the
power series in Equation (4) term by term. That is, for all j ∈ N,

f (j)(x) =
∞∑
l=j

l(l − 1) . . . (l − j + 1)
f (l)(x0)

l!
(x − x0)l−j . (5)

First, note that since λ(l(l − 1) . . . (l − j + 1)) = 0, it follows that
∑∞

l=j l(l − 1) . . .

(l − j + 1) f(l)(x0)
l! (x − x0)l−j converges in N for all j ∈ N. Using induction on j, it suffices
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to show that

f ′(x) =
∞∑

l=1

l
f (l) (x0)

l!
(x − x0)

l−1 =
∞∑

l=1

f (l) (x0)
(l − 1)!

(x − x0)
l−1

.

Let h ∈ N be such that x + h ∈ U . We will show that

lim
h→0

{
f(x + h) − f(x)

h

}
=

∞∑
l=1

f (l) (x0)
(l − 1)!

(x − x0)
l−1

.

Thus,

lim
h→0

{
f(x + h) − f(x)

h

}
= lim

h→0

{ ∞∑
l=0

f (l)(x0)
l!

(x + h − x0)l − (x − x0)l

h

}

= lim
h→0

{ ∞∑
l=1

f (l)(x0)
l!

(x + h − x0)l − (x − x0)l

h

}

= lim
h→0

{ ∞∑
l=1

f (l)(x0)
l!

[(x + h − x0)l−1

+ (x + h − x0)l−2(x − x0) + · · · + (x − x0)l−1]

}

=
∞∑

l=1

f (l)(x0)
l!

[l(x − x0)l−1]

=
∞∑

l=1

f (l)(x0)
(l − 1)!

(x − x0)l−1.

Now, let y ∈ U be given. Then

f(y) =
∞∑

l=0

f (l)(x0)
l!

(y − x0)l

=
∞∑

l=0

f (l)(x0)
l!

[(y − x) + (x − x0)]l

=
∞∑

l=0

l∑
j=0

f (l)(x0)
l!

(
l
j

)
(y − x)j(x − x0)l−j

=
∞∑

l=0

l∑
j=0

l(l − 1) . . . (l − j + 1)
j!

f (l)(x0)
l!

(x − x0)l−j(y − x)j .
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Since convergence in the order topology (valuation topology) entails absolute convergence,
we can interchange the order of the summations in the last equality [10, 14]. We get:

f(y) =
∞∑

j=0

1
j!

⎡
⎣ ∞∑

l=j

l(l − 1) . . . (l − j + 1)
f (l)(x0)

l!
(x − x0)l−j

⎤
⎦ (y − x)j

=
∞∑

j=0

f (j)(x)
j!

(y − x)j

where we made use of Equation (5) in the last step. �

Replacing m by 1 in Definition 3, then the m × n matrix Df(x) is replaced by the
gradient of f at x: ∇f(x), and we readily obtain the definition of a WLUD N -valued
function at a point x0 or on an open subset A of Nn.

Definition 4. Let A ⊂ Nn be open, let f : A → N , and let x0 ∈ A be given. Then,
we say that f is WLUD at x0 if f is differentiable in a neighbourhood Ω of x0 in A
and if for every ε > 0 in N there exists δ > 0 in N such that Bδ(x0) ⊂ Ω, and for all
x, y ∈ Bδ(x0) we have that

|f(y) − f(x) − ∇f(x) · (y − x)| ≤ ε|y − x|.
Moreover, we say that f is WLUD on A if f is WLUD at every point in A.

Using Definition 2 and Definition 4, the natural way to define k times weak local
uniform differentiability (WLUDk) at a point x0 or on an open subset A of Nn is as
follows.

Definition 5. Let A ⊂ Nn be open, let f : A → N , and let x0 ∈ A be given. Then,
we say that f is WLUDk at x0 if f is k-times differentiable in a neighbourhood Ω of x0

in A and if for every ε > 0 in N there exists δ > 0 in N such that Bδ(x0) ⊂ Ω, and for
all ξ, η ∈ Bδ(x0) we have that∣∣∣∣∣∣f(η) − f(ξ) −

k∑
j=1

1
j!

[(η − ξ) · ∇]j f(ξ)

∣∣∣∣∣∣ ≤ ε|η − ξ|k,

where

[(η − ξ) · ∇]jf(ξ) = [(η1 − ξ1)
∂

∂x1
+ · · · + (ηn − ξn)

∂

∂xn
]jf(x)

∣∣∣∣
x=ξ

=
n∑

l1,...,lj=1

(
∂jf(x)

∂xl1
· · · ∂xlj

∣∣∣∣∣
x=ξ

j∏
m=1

(ηlm − ξlm)).

Moreover, we say that f is WLUDk on A if f is WLUDk at every point in A.
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Definition 6. Let A ⊂ Nn be open, let f : A → N , and let x0 ∈ A be given. Then,
we say that f is WLUD∞ at x0 if f is WLUDk at x0 for every k ∈ N. Moreover, we say
that f is WLUD∞ on A if f is WLUD∞ at every point in A.

Now, we are ready to state and prove the analogue of Theorem 8 for functions of n
variables.

Theorem 8. Let A ⊆ Nn be open, let x0 ∈ A, and let f : A → N be WLUD∞ at x0.
For each k ∈ N, let δk > 0 in N correspond to ε = 1 in Definition 5. Assume that

lim sup
j → ∞
l1 = 1, . . . , n

.

.

.
lj = 1, . . . , n

⎛
⎜⎜⎜⎜⎝
−λ

(
∂jf(x)

∂xl1
···∂xlj

∣∣∣∣
x=x0

)

j

⎞
⎟⎟⎟⎟⎠ < ∞

and lim sup
k→∞

λ(δk) < ∞.

Then, there exists a neighbourhood U of x0 in A such that, for any η ∈ U, we have that

f(η) = f(x0) +
∞∑

j=1

1
j!

[(η − x0) · ∇]j f(x0).

Proof. Let

λ0 = lim sup
j → ∞
l1 = 1, . . . , n

.

.

.
lj = 1, . . . , n

⎛
⎜⎜⎜⎜⎝
−λ

(
∂jf(x)

∂xl1
···∂xlj

∣∣∣∣
x=x0

)

j

⎞
⎟⎟⎟⎟⎠ .

Then, λ0 ∈ R and λ0 < ∞.
For all k ∈ N, we have that Bδk

(x0) ⊂ A, f is k times differentiable on Bδk
(x0), and∣∣∣∣∣∣f(η) − f(x0) −

k∑
j=1

1
j!

[(η − x0) · ∇]j f(x0)

∣∣∣∣∣∣ ≤ |η − x0|k for all η ∈ Bδk
(x0).

Since lim sup
k→∞

λ(δk) < ∞, there exists t > 0 in Q such that lim sup
k→∞

λ(δk) < t < ∞. Thus,

there exists N ∈ N such that

λ(δk) < t for all k > N. (6)

Let δ > 0 in N be such that λ(δ) > max{λ0, t, 0}. It follows from (6) that λ(δ) > λ(δk)
and hence 0 < δ � δk for all k > N . Thus, Bδ(x0) ⊂ A, f is infinitely often differentiable
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on Bδ(x0), and∣∣∣∣∣∣f(η) − f(x0) −
k∑

j=1

1
j!

[(η − x0) · ∇]jf(x0)

∣∣∣∣∣∣ ≤ |η − x0|k ∀η ∈ Bδ(x0) and ∀k > N.

(7)
Let U = Bδ(x0); and let η ∈ U be given. Then, we have that λ(|η − x0|) ≥ λ(δ) > λ0.

We will show first that
∑∞

j=1
1
j! [(η − x0) · ∇]jf(x0) converges in N . Since λ(|η − x0|) >

λ0, there exists q > 0 in Q such that λ(|η − x0|) − q > λ0. Hence, there exists M ∈ N

such that

λ(|η − x0|) − q >

−λ

(
∂jf(x)

∂xl1
···∂xlj

∣∣∣∣
x=x0

)

j

for all j > M and for l1 = 1, . . . , n, l2 = 1, . . . , n, . . . , lj = 1, . . . , n. It follows that

λ

(
∂jf(x)

∂xl1
· · · ∂xlj

∣∣∣∣∣
x=x0

j∏
m=1

(ηlm − x0,lm)

)
≥ λ

(
∂jf(x)

∂xl1
· · · ∂xlj

∣∣∣∣∣
x=x0

|η − x0|j
)

= λ

(
∂jf(x)

∂xl1
· · · ∂xlj

∣∣∣∣∣
x=x0

)
+ jλ(|η − x0|)

> jq

for all j > M and for l1 = 1, . . . , n, l2 = 1, . . . , n, . . . , lj = 1, . . . , n. Thus,

λ([(η − x0) · ∇]jf(x0)) = λ

⎛
⎝ n∑

l1,...,lj=1

(
∂jf(x)

∂xl1
· · · ∂xlj

∣∣∣∣∣
x=x0

j∏
m=1

(ηlm − x0,lm)

)⎞⎠
> jq

for all j > M ; and hence

lim
j→∞

λ

(
1
j!

[(η − x0) · ∇]jf(x0)
)

= lim
j→∞

λ([(η − x0) · ∇]jf(x0))

≥ q lim
j→∞

j = ∞.

Thus,

lim
j→∞

(
1
j!

[(η − x0) · ∇]j f(x0)
)

= 0

and hence
∑∞

j=1
1
j! [(η − x0) · ∇]jf(x0) converges in N ; that is,

lim
k→∞

k∑
j=1

1
j!

[(η − x0) · ∇]j f(x0) exists in N .
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Taking the limit in (7) as k → ∞, we get:

0 ≤ lim
k→∞

∣∣∣∣∣∣f(η) − f(x0) −
k∑

j=1

1
j!

[(η − x0) · ∇]j f(x0)

∣∣∣∣∣∣ ≤ lim
k→∞

|η − x0|k,

from which we obtain

0 ≤
∣∣∣∣∣∣f(η) − f(x0) − lim

k→∞

k∑
j=1

1
j!

[(η − x0) · ∇]j f(x0)

∣∣∣∣∣∣ ≤ lim
k→∞

|η − x0|k.

Since λ(|η − x0|) ≥ λ(δ) > 0, we obtain that lim
k→∞

|η − x0|k = 0. It follows that

0 ≤
∣∣∣∣∣∣f(η) − f(x0) −

∞∑
j=1

1
j!

[(η − x0) · ∇]j f(x0)

∣∣∣∣∣∣ ≤ 0

from which we infer that

f(η) = f(x0) +
∞∑

j=1

1
j!

[(η − x0) · ∇]j f(x0).
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1. A. Barŕıa Comicheo and K. Shamseddine, Summary on non-Archimedean valued
fields, Contemp. Math. 704 (2018), 1–36.

2. G. Bookatz and K. Shamseddine, Calculus on a non-Archimedean field extension of
the real numbers: inverse function theorem, intermediate value theorem and mean value
theorem, Contemp. Math. 704 (2018), 49–67.

3. H. Hahn, Über die nichtarchimedischen Größensysteme, Sitzungsbericht der Wiener
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