
BULL. AUSTRAL. MATH. SOC. I 6 A 0 8 , I 6 A 4 0

VOL. 19 ( 1 9 7 8 ) , 9 7 - 1 1 5 .

Semisimple rings of quotients

Julius M. Zelmanowitz

Necessary and sufficient conditions on an arbitrary Gabriel

filter of left ideals of a ring R are determined in order that

the ring of quotients of R with respect to the filter be semi-

simple artinian. Special instances include generalizations of

earlier work on classical rings of quotients and maximal rings of

quotients.

Introduction

There have been several interesting results which determine when a

ring of quotients of a ring is semisimple artinian. For the classical ring

of quotients Q with respect to the set of regular elements of a ring R ,

Levy proved in [5] that Q is semisimple artinian if and only if torsion-

free divisible i?-modules are injective. In [7], Sandomierski

characterized rings with a semisimple artinian maximal quotient ring as

being nonsingular and finite dimensional. More generally, for the ring of

quotients with respect to a Gabriel topology, some progress has been made

in [/] and [6] for the case of torsion-free rings. Hereditary rings with

semisimple artinian rings of quotients are studied in [3].

The purpose of this article is the determination of when the ring of

quotients with respect to an arbitrary Gabriel topology is semisimple

artinian. This is accomplished in §2. In §3 and §4, respectively, the

above-cited results of Sandomierski and Levy are shown to be special cases

of the main theorem, and are extended to allow for the possibility of

torsion. In §5, injective ideals of a ring of quotients are examined;

this permits one to learn when the ring of quotients is simple. Some

related observations are presented in §6.
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1 .

Since the notation and language of torsion theories are not quite

standardized, we will first indicate the usages of this article. Two basic

references for the rudiments of the subject are [2] and [S].

By a module we mean a left i?-module over some ring R . Actually, in

all that follows R need not have an identity element, provided that one

insists that all modules on which R acts trivially are torsion, and that

one makes slight modifications in definitions and statements of theorems

(such as replacing R by it" J . For simplicity however, we assume that R

contains an identity element. For subsets N and N' of a module M , we

set (N : N') = {r € R \ rN' c N] .

Throughout this paper F will denote a Gabriel topology of left

ideals of R with 0 f: F . That is, F satisfies

(i) J € F and a € R implies (I : a) € F , and

(ii) (J : a) i F for all a € I € F implies that J f F .

Such an F is necessarily a filter. We let

T{M) = T¥(M) = {m 6 M \ (0 : m) € F} ,

the T-torsion submodule of a module M . A module is F-torsion if

T¥{M) = M , and F-torsion-free if Tj-(M) = 0 . A submodule N of M is

F-dense in M if M/N is F-torsion, and N is F-eZosed in M if Af/tf

is F-torsion-free. We also set N° equal to the submodule defined by

N°/N = T(M/N) ; N° is an F-closed submodule of M , called the

t-closure of N . The class of F-torsion modules is closed under

submodules, homomorphism, extension and direct sums; while the class of

F-torsion-free modules is closed under isomorphism, submodules, extension,

injective hulls and direct products. When no confusion can arise, we will

delete the prefix "F-" from the preceding terms, and speak simply of

torsion modules, dense submodules, and so on.

A module M is T-injective if every f Z homD(J, M) with I € F
n

can be extended to an element of hom_(/?, M) ; equivalently, T(M/M) = 0

where M denotes the i?-injective hull of M . Every module has an
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f-injective hull f(M) obtained as f(M)/M = T[M/M) ; note that M is

dense in f(M) , and f(M) is closed in M . One defines Mr , the module

of quotients of Af with respect to F , as F[M/T(M)) ; Mr is torsion-

free and F-injective. Rr = F(i?/T(i?)) forms a ring called the ring of

quotients of R with respect to F ; and the multiplication on Rr

extends its i?-module structure. The assignment M •*• Mr yields a left

exact functor from i?-modules to i? .--modules.

As it is our intention to make this article reasonably self-contained,

we now list some elementary and well-known observations that are required

in the sequel.

(1.1). If N c N c N is a trio of submodules and N. is dense
J- £1 J 1s

(respectively, closed) in #•,, for i = 1 , 2 , then N is dense

(respectively, closed) in N .

This is because the torsion (respectively, torsion-free) modules are

closed under extension. //

(1.2). A dense submodule N of a torsion-free module M is

essential in M .

For given 0 # m £ M , (N : m) € F and 0 f {N : m)m c Rm n N . //

(1.3). If I is a left ideal of R and I + T(R) € F then I € F .

To see this note that I is dense in I + T(R) since

I + T(R)/I 9* T(R)/I n T{R) ;

and then apply (l.l). //

(1.4). A closed submodule N of an f-injective module M is

f-injective.

M = F(w) is closed in M , so N is closed in M by (l.l). Hence

N is closed in N c M ; that is, N = F(N) . //

LEMMA 1.5. Set T = {1 | I e F} , a family of left ideals of
R = R/Tf(R) . Then

(i) I (. T if and only if I is F-dense in R ;
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(ii) F is an idempotent filter of left ideals of R ;

(Hi) Tj{R) =0;

(iv) Rj. = R~j .

Proof. (i) follows from (1.3) and is in fact true for any factor ring

of R .

(ii) is also true for every factor ring of R . The proof is routine.

(Hi) If a € Tj(R) , then [Tj-(R) : a) (. F . But Tf(R) is

F-closed in R , so a = 0 .

(iv) We first note that Rr is an f?-module, and that Rr is

T-injective. To see the latter assertion, let I € F and / € homjrfX, /?-.)

be given; we must extend f to an element of hom̂ -fff, RS) . Let i\

denote the canonical epimorphism of R onto R . Then

/ o ?r € hom_(-T, i?p) with -Z" € F . Since .ffp is F-torsion-free and

F-injective, f o n has a unique extension g' € hom_,(i?, R-S] • Now

ker ^' £> 2"p(̂ ?) , so g1' induces a unique homomorphism ^ € hom_[ff, /fp)

with g a T\ = g' . Thus g is an i?-homomorphism and

(g o •n)\J. = g' \j = f o -n , so g extends / .

Since ^T-(^) = 0 , it remains only to prove that R is F-dense in

Rr . But this is evident, and we are done. //

2.

We begin by presenting the main result, for which we require the

following definition. A set S of left ideals of R will be called

oofinally finite if given any I £ S there exists a finitely generated

left ideal J <£ i" with J F-dense in I .

THEOREM 2.1. The following conditions are equivalent:

(1) Rr is semisimple artinian;

(2) R satisfies the ascending chain condition on closed left

ideals, and torsion-free T-injective modules are injective;
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(3) F is cofinally finite, and torsion-free T-injective modules

are injective.

Proof. (l) =» (2). The fact that R satisfies the ascending chain

condition on closed left ideals follows immediately from the observation

that ty~ [Rp£ n~R~)=I fOr any closed left ideal I of R , where ty

denotes the canonical homomorphism of R onto R = R/T{R) . Indeed, for

the same conclusion, it would clearly suffice to have Rr noetherian (see

also [2, p. 136]). To see this formula, in turn, note that

I c ijrX(i?pJ n ~R~) , and that for any x € ijT1 (j?pl n R~] ,

(I : x) = (I : x) E F . Since I is closed we learn that

I = ̂ "-"-(iJp! n R] .

Next, let M be a torsion-free F-injective i?-module. Then M = Mr

is an .ffr-module, as is the i?-injective hull M of M . Since all

flp-modules are injective, M must be an i?p-direct summand of M . But

then necessarily M = M .

(2) °» (3). We prove that the set of all left ideals of R is

cofinally finite. For let I be any nonzero left ideal of R . Choose

0 # a € I . If Ra is dense in I , we are done. If not, (#a,)C j> I ,

where (̂-.J denotes the closure of Ra in R . Choose

0 * a2 € I\[Rax)
c ; then [Ra^0 ^ [Ra^Ra^0 . If Ra + Ra^ is dense

in I , we are done, if not, (Ra +Ra ) j? I , and we may continue this

construction. Since R satisfies the ascending chain condition on closed

left ideals, the construction must terminate. Thus for some integer n

there exists Ra + ... + Ra dense in I .

(3) ** (l). We first show that every finitely generated left ideal of

•ftp is injective. For any x € i?p , we have the exact sequence

0 -• (0 : x)R >—* Rr •* Rrx -+ 0
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where (0 : x)D = {r £ Rr I M = o) . Now Rr i s F-injective, and

(0 : x)n i s closed since Rrx is tors ion-free , so "by (1.1+), (0 : x)„
Rr /- Rr

is F-injective. By our hypothesis then, (0 : x)D is injective. It

follows that Rrx is injective for any x 6 Rr .

Next, consider the exact sequence

t y t
0 -> ker I -»• © Rvx. • T RrX. -*• 0 ,

^ = l ^ = l

where S is the canonical epimorphism. Then as in the previous paragraph,

t
ker Z is closed. Since © RrX . is injective, it follows that ker £

i=l r ^

is torsion-free and F-injective, hence injective. Thus the sequence

t
splits, and £ Rrx. is injective.

Now let J € F "be given. Since F is cofinally finite, there exists

t t t _ _
Y, Ra. E F with £ Ra. c I . Then £ i?n2. c i?pI c i?p with each a

1=1 ^=l r=l
t _

dense submodule of its successor. Hence £ /?r<2. is an injective
i=l t

t _ _
i?-module which i s dense i n Rr . By ( 1 . 2 ) , £ ifpz. = i?pJ = i?p . (Thus

i=l t

F is a •perfect topology, in the sense of [S, p. 231].)

It follows that every i?F-module is torsion-free (for if x is an

element of an i?p-module and Ix = 0 with I £ F , then R^x = R^Ix = 0 ) .

In particular, every left ideal of flp is closed, hence is torsion-free

and F-injective. By hypothesis, then, every left ideal of Rr is

i?-injective. Since i?-injective implies /?p-injective for torsion-free

flp-modules, this completes the proof. //

We remark that, in the preceding theorem, we could replace the

requirement that F is cofinally finite by the stronger hypothesis that F
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be perfect (that is, RJ = Rr for all I f F ) , This was noted in the

course of proving the implication (3) "* (l).

It is now our intention to examine for a moment the hypotheses of

Theorem 2.1 in order to determine their relationship with other familiar

conditions. For instance, F being cofinally finite is a weaker condition

than the ascending chain condition on closed left ideals. Their precise

correlation is now given. We let Cr(R) denote the lattice of closed left

ideals of R .

PROPOSITION 2.2. The following conditions are equivalent:

(i) R satisfies the ascending chain condition on closed left

ideals;

(ii) F and CAR) are cofinally finite;

(iii) the set of all left ideals of R is cofinally finite.

Proof. The equivalence of (i) and (iii) is noted as part of

Proposition XIII.2.h in [S], and we have proved that (i) =» (iii) in

(2) ̂  (3) of the preceding theorem. For the sake of completeness, then, we

will demonstrate that (ii) ** (i).

Let J c J c ... be a sequence of closed left ideals. Set

CO

J = U J. ; we first show that J is closed.

Suppose that J is dense in I c_ R . Let a € J be arbitrary. Then

(J : a) (. F , so by hypothesis there exists J = Ra + ... + Ra. dense in

(J : a) . For each k = 1, ..., t , a,a € J , so there exists an integer

n with l a c J . Since I € F and J is closed, a € J . Thus

J = I and J is closed.

Next, we know by hypothesis that there exists Rb, + ... + Rb dense
1 s

in J . But then there is an integer m with Rb. + ... + Rb c J
1 s — m

This implies that J is dense in J . Since J is closed, J = J

and the sequence is finite. //
As we have seen in (1.2), a dense submodule of a torsion-free module
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is an essential submodule. The converse statement (that is that essential
submodules of torsion-free modules be dense) can be seen to be equivalent
to torsion-free F-injectives being injective. The proof is a simple
variant of the one given for Proposition 2.k in [4], and will therefore not
be presented here.

(2.3). Torsion-free ¥-injeetive modules are injective if and only if
essential submodules of torsion-free nodules are dense.

3.

Throughout this section we let G denote the Goldie topology,

G = { D
J I TJ C TJ where J and {I : a) are essential left ideals of R

n n — n

for every a 6 J] ;

that is, G is the smallest Gabriel topology which contains the set of

essential left ideals of R (see 18, p. 1I48]). G-injective modules are of

course injective, and so Theorem 2.1 specializes as follows.

THEOREM 3.1. For F any Gabriel topology containing G , the

following conditions are equivalent:

(1) i?p is semisimple artinian;

(2) CUR) satisfies the ascending chain condition;

(3) F is cofinally finite;

(h) there is no infinite independent family of F'-torsion-free
left ideals of R .

Since F D G is equivalent to F-injectives being injective, R- is

semisimple ar t inian with F D G if and only if F is cofinally f ini te and

F-injectives are inject ive.

( l ) , (2) , and (3) are equivalent by Theorem 2 .1 . The proof that

(3) °* (*+) °* (2) involves a rather standard argument which appears also in

Proposition XIII .3.1 of [S] , where additional equivalent conditions are

l i s t ed . We wil l therefore omit the proof.

LEMMA 3.2. Assume that torsion-free F-injective modules are
injective. Then T = {essential left ideals of ~R) , the left singular
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ideal of R = R/T{R) is zero, and Rr is the maximal left quotient ring

of R .

Proof. Let J be an essential left ideal of R~ . By (2.3) and

Lemma 1.5 d), J € F . Conversely, I € F implies that I is essential

in R by (1.2). Since Tj{R) = ~0 by Lemma 1.5 (Hi), the right

annihilator of I in R equals zero. This proves that the left singular

ideal of R is zero.

As is well-known, the maximal left quotient ring of a nonsingular ring

is just the injective hull [S, p. 1^91• Now because of the hypothesis and

Lemma 1.5 (iv), Rr must be the maximal left quotient ring of f̂l . //

Combining these results we obtain the following consequence.

COROLLARY 3.3. If R is a finite dimensional ring and F 3 G ; then

Rr is semisimple artinian and is the maximal left quotient ring of

R/Tr{R) .

4.

Another important special case of the main theorem occurs when F is

oofinitely principal; that is, when each left ideal in F contains a

principal left ideal in F .

Recall that when S is a multiplicatively closed subset of a ring

R , a classical left quotient ring of R with respect to S is defined to

be a ring i?<, together with a ring homomorphism ip : R -*• #„ such that

(i) <p(s) is a unit in R^ for each s £ S ;

(ii) every element of #„ has the form (p(s) <f{a) with

s £ S , a (. R ; and

(iii) <p(a) = 0 if and only if sa = 0 for some s € S .

It can be established [8, p. 51] that the classical left quotient ring

of R with respect to S exists if and only if 5 satisfies:

(a) if s i S and a f R , then there exists t (. S and

b € R with ta = bs ; and
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(b) if as = 0 with a € R , s i S , then ta = 0 for some

t € 5 .

Such a multiplicatively closed set S will be called a left denominator

set. For the usual reasons, when R^ exists, it is unique up to

isomorphism over R ; furthermore, F = ( I | I n S £ 0} is then a

cofinitely finite Gabriel topology and i?p = /?„ [&, p. 238].

PROPOSITION 4.1. Assume that F is cofinitely principal and that

F-torsion-free f-injectives are infective. Then Rj- is semisimple

artinian and is the classical left quotient ring of R with respect to

S = {s € R | Rs € F} .

Proof. It is well-known and easy to prove that for a cofinitely

principal Gabriel topology F , S = {s £ R | Rs € F} is a

multiplicatively closed subset of R satisfying (a) [S, p. 237]. To see

that (b) holds, suppose that as = 0 with a € R , s € S . From §2, we

know that F is a perfect topology, so J?,s = Rr where

i" = s + T(R) € R/T(R) . Since i?r is artinian, F is a unit of R^ .

Now as = 0 implies that as = 0 , whence a € Tj-(R) . It follows that

there exists t € S with ta = 0 . Thus we know that R has a classical

left quotient ring with respect to € . //

The preceding proposition extends Theorem 1.7 of [7],

A result due to Levy states that if a ring R has a classical left

quotient ring Q , then Q is semisimple artinian if and only if torsion-

free divisible .ff-modules are injective [5, Theorem 3.3]. In Theorem k.3

we provide a generalization of this to classical left quotient rings with

respect to left denominator sets.

Given any 5 c/? and a module Ji , we call M S-torsion-free if

whenever sm = 0 with s € S and m € M , then m = 0 ; and M is

called S-divisible if s<V = M for each s € S .

LEMMA 4.2. If S is a left denominator set and I is a left ideal

of R then there is a natural isomorphism Rs gL, <p(I) ^i?^p(J) , where cp

denotes the canonical homomorphism of R into i?~ .
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Proof. The isomorphisms Rg ®~ <p(-?) ~* R^p(I) are defined by
V

i=X
x. ®<p[a.) x.<p[a.) and v

t.=l
t.

n n
x. ® <p(a.) ,

v'

where x. € i?Q , a. € J . y is well-defined by the universal mapping
1> & Is

property of tensor products, and the proof is completed by showing that v

is well-defined.

n
To see this, let Y. x.tf>[a.) = 0 with x. € Rq , a. € I . We may

. - Is Is 1s & Is

^=l

choose a common denominator s € S and b.,...,b (. R so that each
n

x. = cp(s)~ (f>[b.) . Then £ cp (fc .)tp(a.) = 0 , and so

<p(s)
n

— y o 12>. I ® <D I a . I

= 0

n
Since f{s) is a unit, £ x. ®<p(a.) = 0 , and V is well-defined. //

1 = 1 % %

THEOREM 4 .3 . Let S be a left denominator set in R . Then Rc is
o

semisimple artinian if and only if S-torsion-free S-divisible R-modules

are infective.

Proof. Set F = { I \ I n 5 + 0} . It is straightforward to check

that a module is F-torsion-free if and only if it is S-torsion-free. We

begin by showing that the F-torsion-free F-injectives are precisely the

S-torsion-free S-divisibles.

Suppose that M is F-torsion-free and F-injective and let s i S ,

m i M be given. Define / € homR(Rs, M) by f(as) = am , a € R . f is

well-defined; for as - 0 implies that there exists t i. S with ta = 0 ,

and so tarn = 0 , whence am = 0 , since 14 is F-torsion-free. Since M

is F-injective there exists g € horn (i?, M) with g\ = f . Now

m = f(.s) = g(s) = sg{l) , and this proves that 14 is S-divisible.
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Converse ly , assume t h a t M i s 5 - t o r s i o n - f r e e and 5 - d i v i s i b l e , and

l e t / € homn(I, M) be given with I f f . Choose s € I n S ; f(s) = m
H

for some m € M . Since M i s 5 - d i v i s i b l e , we may choose n € M with

m = sn . Now def ine g € hom_(i?, M) by g(r) = rn . We claim t h a t

g\-r = f • For given a i l , there e x i s t s t € 5 , b d R with ta = bs .

So

= 2>/(s) - bg(s) = bm - bsn = 0 .

Since M is 5-torsion-free, f(a) = g{a) , and so M is F-injective.

Now assume that 5-torsion-free S-divisible modules are injective.

By Proposition k.l, Rq = R-r is semisimple artinian.

Conversely, assume that R^ is semisimple artinian, and let M be

5-torsion-free and 5-divisible. Then M is an i?«-module. For given

m € M and x = ip(s) <p(a) € Ra with s (. S , a £ R , there exists a

unique element n € M with am = sn ; and defining x*m = n determines

the ff^-module structure of M , as can be readily verified.

Now let f € homD(J, M) be given, with I a left ideal of R . Then

J = ker <p n I = {a 6'J | sa = 0 for some s € 5} is a left ideal, and

f{J) = 0 because M is 5-torsion-free. Hence / induces

/' € hom [<p(I), M) with f ° tf> = f • By Lemma 1+.2,

i?~ (̂  (p(-T) = Rgp(I) , and therefore /' can be extended to

g' f hom_(i?^p(X), /V) . Since RAP(I) is a left ideal of the semisimple

artinian ring #„ , g' can be extended to g € hom (if , A/] . But then

g o q> € hom_(/?, Af) extends / . So _M is injective, and the proof is

complete. //

5.

The next objective is to examine ideals of Rr in the case when

torsion-free F-injectives are injective. Some observations can be made in
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a more general s e t t i n g .

Assume tha t F and G are Gabriel topologies with F c G , Then

Tr(R) c T~(R) ; and we l e t p denote the canonical homomorphism from

R/Tr(R) onto R/TJR) . Consider the diagram

RG
U| \

TQ(R)

]p
R/Tr(R) c i?p

\

Since RQ is F-torsion-free and F-injective there exists a unique

i?-homomorphism q : Rr •*• Rp extending p .

We claim that q is in fact a ring homomorphism. To see this, let r

denote the coset of r € R in R/Tr(R) , and observe that the tf-module

structures of Rr and i?p are defined by r*a = ra , 2»*y = p(r)y for

any r € i ? , a E Rp , y € i ? g . Now let a, & be arbitrary elements of

i?F and set J = {R/T^R) : a) € F . Then for any r € X ,

= 0

since ra € R/Tr{R) and (7 extends p . Since r £ J was arbitrary and

flg is F-torsion-free, i t follows that (7(013) = a(o)^(3) • We summarize

this .

( 5 . 1 ) . If FcG are Gabriel topologies, then there is a unique

R-algebra homomorphism q : Rr •*• R~ which extends the canonical

epimorphism p : R/Tf(R) •* R/TQ(R) . (See IS, p . 210, Exerc ise 1 ] . )

PROPOSITION 5 .2 . Suppose that F-injective ideals of Rr are

R-injective, and let G be a Gabriel topology with FcG. Then R~ is
— 6

isomorphic to a direct summand of Rr under a splitting of the

homomorphism q of (5.1).
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Proof. Let q : R^ -*• Rg be the algebra homomorphism described by

(5-1) • Since i?p is F-torsion-free, kernel q i s F-injective, and so

by hypothesis Rr and kernel q are injective i?-modules. Hence

Rr = kernel q © q[Rr) , from which we have that q [Rr] is inject ive. But

R/TQ(R) cq(R¥) , so necessarily q[Rf) = R . / /

A converse is true as well.

PROPOSITION 5.3. If A is an ideal direct surmand of Rr which is

injective as a left R-module, then A_ is a quotient ring of R with

respect to some Gabriel topology G r> F .

Proof. Choose an ideal :B_ with Rr = A © B . Set
— r — —

T = \JA | honin(M, A) = 0} ; T is a hereditary torsion class containing

the F-torsion modules because Ji is an injective F-torsion-free

i?-module. Let G be the Gabriel topology of left ideals associated to

T ; then G z> F and TQ{R) 2 Tj.(R) . We will show that fig^A .

Let q : Rj; + RQ be the ring homomorphism of (4.1). Since

hom^ (13, A) = 0 , hom^H, A) = 0 . So 13 € T , and hence J3 c kernel q .

If A n ker <? # 0 , then 4 = A n ker q n R/TAR) + 0 , and consequently

Ap = Aq = 0 . Hence A c kernel p = TJR)/T(R) £ T . But then

hom^(/4, A) = 0 , which forces A = 0 , a contradiction. Thus it must be

the case that Â  n ker q = 0 , and so <? | is a monomorphism. Next

q(i?p) = 17(4) is an injective i?-submodule of RQ which contains

R/Tg(R) , and we conclude from this that q(A) = R~ . So A ̂  R~ under

the homomorphism q . II

An ideal T of a ring R is a torsion ideal if there exists a proper

Gabriel topology G with Tg(R) = T . We can now apply the information

above to learn when a semisimple artinian ring of quotients is simple.

THEOREM 5.4. Assume that -ffp is semisimple artinian. Then the
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following conditions are equivalent:

(i) Rr is simple;

(ii) R-r = RQ for every proper Gabriel topology G D F ;

(Hi) T^{R) is a maximal torsion ideal.

Proof. (i) °* (Hi). Suppose that R-r is simple, and say

TAR) 5 TQW f o r s o m e Gabriel topology 6 . Then T = Tp(R) is a non-

zero G-torsion submodule of R = R/Tr{R) . Since Rr is simple,

_ t _ _ _
R r T R r = R v . W r i t e 1 = 7 a . t . g . w i t h a . , &. € R r , t . € T . S e tF F F .*z % % % v v F ' %

t
J = fl [ff : a.) € F . Then for any a 6 J ,

i=l *•

a=a I a.t.&. = J ^ t S . <=RnTRfa T^R) .
^ = l v=l

It follows that 1 <^TQ{R) , and hence "by (1.2), TQ(R) is an essential

left ideal of R . But TJJi) c_ Tg[Rr) , so TQ[RJ:) must be an essential

ideal of Rr . Hence 2Vj(.ffrJ = R-r . By considering again the identity

element of Rr , this forces T~(R) € G , which is impossible unless

0 € G .

(Hi) =* (ii). This is clear from Proposition 5.2.

(ii) °* (i). If Rr is not simple, let A be any proper ideal of

Rr . By Proposition 5.3, there exists a Gabriel topology G D F with

RG=A^RF . II

We conclude this section with the following result, which is actually

a consequence of the material in §2.

THEOREM 5.5. Rr is a division ring if and only if Tr{R) is the

only proper closed left ideal of R .

Proof. Suppose that Rr is a division ring, and that I is a closed
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left ideal of B . If I + T{R) , then R-rl is a nonzero left ideal of

Rr , so Rrl = R-r • But then I is clearly dense in R , so, necessarily,

I = R .

• Conversely, assume that T(R) is the only closed left ideal of R ,

other than R . We first show that a torsion-free F-injective module M

is injective. For let / € hom^I, M) with I a left ideal of R . By

our hypothesis either I c T(R) , in which case f = 0 , or else J € F .

In any event, f can be extended to an element of hom_(i?, M) , and so Ji

is injective.

By Theorem 2.1 (2), R~ is semisimple artinian; and from the

discussion immediately following that theorem, we know that F is perfect.

Let K now be any left ideal of i?_ . Since F is perfect, K is closed

in i?p . It follows that I = i|)~ (K n R) is closed in R , where

\\> : R -*• Rr is the canonical homomorphism. By hypothesis, I = T{R) or

I = R , and from this we can conclude that K = 0 or K = i?_ . Thus R-r

is a division ring. //

6.

In this final section we treat some related facts, which extend

results known for classical rings of quotients. For instance, a ring with

a simple (respectively, semisimple) artinian classical ring of quotients is

prime (respectively, semiprime). More generally, we have the following:

PROPOSITION 6.1. Suppose that i?p is a simple ring (respectively, a

finite direct sum of simple rings), and that every left ideal in F is a

faithful R-module. Then Tj-(R) is a prime (respectively, semiprime)

ideal of R .

Proof. First assume that i?_ is simple, and let AB c TAR) with A

and B left ideals of R . and B ± TAR) . Then B f (J in ~R = R/TAR) ,
F F

_ t _
so RrBRr = Rr by the hypothesis on flc . Write 1 = V p .b .a. with

r r r f .—• %, i/'i
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t
p . , fl. € i ? r , b. € S . L e t J = fl (fl : p . ) € F . Now

i* 1* F ' i i = 1 *• ' V

_ _ * _ _ - - - - -

I = l i e J ( ip . jb .q . c /?&?_ C Bffp . Hence 12 c: .4ffi? = 0 . Since -=I
•z.=i

is faithful, we conclude that A = 0 , proving that Tp(fl) is a prime

ideal.

For the semisimple case, let B be a left ideal of R with

" c Tp(R) , n i l . We may write #,-3?,- = i?j-e with e a central

t _
idempotent of R . As above, write e = £ p.b.q. and let

1 = D (ff : p.) € F . Then el = Je c Hfj- , so that ?I'1eI c fl" = (j .

Since J is faithful, "5"~ e = 0 . But e is an identity element on B ,

so 'S1' = 0 . Continuing in this manner, we eventually learn that

B = 0 , and this proves that TAR) is a semiprime ideal. //

COROLLARY 6.2. If S is a left denominator set such that Rs is a

simple ring (respectively, a direct sum of simple rings), then

T{R) = {a € R | sa = 0 for some s € 5} is a prime (respectively, semi-

prime) ideal.

Let us call a topology F hereditary if every left ideal in F is

protective. Cofinally finite hereditary topologies (which are not

necessarily Gabriel topologies) often consist of finitely generated left

ideals, as we now see.

PROPOSITION 6.3. Assume that T?{R) = 0 and that F is a cofinally

finite hereditary topology. Then every I ( F is finitely generated.

t
Proof. Let J € F be given. Choose J = £ Rx. c J with J € F .

By hypothesis I is projective, so we may choose / € homD(J, R) ,
Ct H

y € I with y = Y, [llfr)y f o r e a c h y € J • Since J is finitely
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generated, / L = 0 for all but finitely many a € A . For simplicity,

let us assume that f \j = ° f o r « t & . 2, . . . , k] . Now for each

a $ {1, 2, ..., k} , fa induces f^ : I/J ->• R and {I/J)f'a is

F-torsion. Since TAR) = 0 , /' = 0 ; that is, / = 0 for each

a £ {l, 2, . .., k) , and it follows that y , y , ..., y, generate I . II

COROLLARY 6.4 IS, p. 260]. A finite dimensional hereditary ring is

noetherian.

Proof. A hereditary ring is nonsingular. So

F = {essential left ideals} forms a Gabriel topology satisfying the

previous proposition. It follows that every left ideal, being a summand of

an essential left ideal, is finitely generated. //
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