THE EXTREMAL POINTS OF THE RANGE OF A VECTOR-VALUED MEASURE

by I. TWEDDLE

(Received 26 March, 1970)

Recently, several papers have investigated conditions under which the range of a vectorvalued measure is a compact convex set (see e.g. [1], [2], [3]). It therefore seems of interest to characterise the extremal points of the range in such cases.

Let \mathcal{M} be a σ -algebra of subsets of a set S and let E be a separated topological vector space. Let $\mathbf{m}: \mathcal{M} \to E$ be a vector-valued measure such that, for each $X \in \mathcal{M}$,

$$R(X) = \{\mathbf{m}(Y) \colon Y \in \mathcal{M}, Y \subseteq X\}$$

is convex. The range of **m** is the set R = R(S).

In the following, it is assumed that any subset of S considered is an element of \mathcal{M} . The complement of a subset X of S will be denoted by X', and the set of extremal points of a convex subset A of E will be denoted by Ext(A).

THEOREM 1. $m(X) \in Ext(R)$ if and only if

$$R(X) \cap R(X') = \operatorname{Ext}(R(X)) \cap \operatorname{Ext}(R(X')) = \{0\}.$$

THEOREM 2. $\mathbf{m}(X) \in \text{Ext}(R)$ if and only if $\mathbf{m}(X) = \mathbf{m}(Y)$ implies that $\mathbf{m}(X \cap Z) = \mathbf{m}(Y \cap Z)$ for each $Z \in \mathcal{M}$.

Both these results are suggested by the Hahn decomposition theorem for scalar valued measures. Their proofs are divided into several stages.

LEMMA 1. If $X \subseteq Y$ and $\mathbf{m}(X) \in \text{Ext}(R(Y))$, then $\mathbf{m}(Y | X) \in \text{Ext}(R(Y))$.

Proof. Suppose that there exist $W, Z \subseteq Y$ such that $\mathbf{m}(Y \setminus X) = \frac{1}{2}\mathbf{m}(W) + \frac{1}{2}\mathbf{m}(Z)$. Then

$$\mathbf{m}(X) = \mathbf{m}(Y) - \mathbf{m}(Y | X) = \frac{1}{2} \{\mathbf{m}(Y) - \mathbf{m}(W)\} + \frac{1}{2} \{\mathbf{m}(Y) - \mathbf{m}(Z)\}$$
$$= \frac{1}{2}\mathbf{m}(Y | W) + \frac{1}{2}\mathbf{m}(Y | Z).$$

Since $\mathbf{m}(X) \in \operatorname{Ext}(R(Y))$, it follows that $\mathbf{m}(Y \setminus W) = \mathbf{m}(Y \setminus Z)$, so that $\mathbf{m}(W) = \mathbf{m}(Z)$, i.e., $\mathbf{m}(Y \setminus X) \in \operatorname{Ext}(R(Y))$.

LEMMA 2. If $X \subseteq Y$ and $\mathbf{m}(Z) \in \operatorname{Ext}(R(Y)), Z \subseteq Y$, then $\mathbf{m}(X \cap Z) \in \operatorname{Ext}(R(X))$.

Proof. Suppose that there exist W_1 , $W_2 \subseteq X$ such that $\mathbf{m}(X \cap Z) = \frac{1}{2}\mathbf{m}(W_1) + \frac{1}{2}\mathbf{m}(W_2)$. Then

$$\mathbf{m}(Z) = \mathbf{m}(X \cap Z) + \mathbf{m}(Z \setminus X)$$

= $\frac{1}{2} \{\mathbf{m}(W_1) + \mathbf{m}(Z \setminus X)\} + \frac{1}{2} \{\mathbf{m}(W_2) + \mathbf{m}(Z \setminus X)\}$
= $\frac{1}{2}\mathbf{m}(W_1 \cup (Z \setminus X)) + \frac{1}{2}\mathbf{m}(W_2 \cup (Z \setminus X)).$

Since $W_1 \cup (Z \setminus X)$ and $W_2 \cup (Z \setminus X)$ are contained in Y, it follows that $\mathbf{m}(W_1 \cup (Z \setminus X)) = \mathbf{m}(W_2 \cup (Z \setminus X))$, which leads as in Lemma 1 to the conclusion that $\mathbf{m}(X \cap Z) \in \text{Ext}(R(X))$.

I. TWEDDLE

LEMMA 3. Let A and B be convex subsets of E. Let $z \in A + B$ and suppose that

- (i) there exist a unique $x \in A$ and a unique $y \in B$ such that z = x + y,
- (ii) $x \in \text{Ext}(A), y \in \text{Ext}(B)$.

Then $z \in \text{Ext}(A+B)$.

Proof. Suppose that $z = \frac{1}{2}(x_1 + y_1) + \frac{1}{2}(x_2 + y_2)$, where $x_1, x_2 \in A$ and $y_1, y_2 \in B$. Then $z = \frac{1}{2}(x_1 + x_2) + \frac{1}{2}(y_1 + y_2)$ and, since A and B are convex, $\frac{1}{2}(x_1 + x_2) \in A$ and $\frac{1}{2}(y_1 + y_2) \in B$. It now follows from (i) that $x = \frac{1}{2}(x_1 + x_2)$ and $y = \frac{1}{2}(y_1 + y_2)$ and then from (ii) that $x_1 = x_2$ and $y_1 = y_2$. Thus $x_1 + y_1 = x_2 + y_2$, which gives the required result.

Proof of Theorem 1. If $m(X) \in Ext(R)$, so also does m(X') by Lemma 1. Thus $0 = m(X \cap X') = m(X' \cap X) \in Ext(R(X)) \cap Ext(R(X'))$ by Lemma 2.

Suppose that $W \subseteq X$, $Z \subseteq X'$ and $\mathbf{m}(W) = \mathbf{m}(Z)$ (*). Then

$$\mathbf{m}(X) = \frac{1}{2} \{\mathbf{m}(X) + \mathbf{m}(Z)\} + \frac{1}{2} \{\mathbf{m}(X) - \mathbf{m}(W)\} = \frac{1}{2} \mathbf{m}(X \cup Z) + \frac{1}{2} \mathbf{m}(X \setminus W),$$

so that $\mathbf{m}(X \cup Z) = \mathbf{m}(X \setminus W)$, since $\mathbf{m}(X) \in \text{Ext}(R)$. Thus $\mathbf{m}(Z) = -\mathbf{m}(W)$, which combined with (*) shows that $\mathbf{m}(W) = \mathbf{m}(Z) = 0$, i.e., $R(X) \cap R(X') = \{0\}$. Combining these results, we have

$$\{0\} \subseteq \operatorname{Ext}(R(X)) \cap \operatorname{Ext}(R(X')) \subseteq R(X) \cap R(X') = \{0\},\$$

which establishes the necessity of the condition.

Conversely, suppose that $R(X) \cap R(X') = \text{Ext}(R(X)) \cap \text{Ext}(R(X')) = \{0\}$. Since $\mathfrak{m}(\emptyset) = 0 \in \text{Ext}(R(X))$, $\mathfrak{m}(X) \in \text{Ext}(R(X))$ by Lemma 1. Now R(S) = R(X) + R(X'). Choose any $W \subseteq X, Z \subseteq X'$ such that $\mathfrak{m}(X) = \mathfrak{m}(W) + \mathfrak{m}(Z)$. Then

$$\mathbf{m}(X \setminus W) = \mathbf{m}(X) - \mathbf{m}(W) = \mathbf{m}(Z),$$

and, since $\mathbf{m}(X \setminus W) \in R(X)$ and $\mathbf{m}(Z) \in R(X')$, it follows that $\mathbf{m}(Z) = 0$ ($\in \operatorname{Ext}(R(X'))$) and $\mathbf{m}(W) = \mathbf{m}(X)$. Thus, by Lemma 3, $\mathbf{m}(X) \in \operatorname{Ext}(R)$.

LEMMA 4. $0 \in \text{Ext}(R(X))$ if and only if $Z \subseteq Y \subseteq X$ and $\mathbf{m}(Y) = 0$ imply that $\mathbf{m}(Z) = 0$.

Proof. Suppose that $Z \subseteq Y \subseteq X$ and $\mathbf{m}(Y) = 0$. Then $0 = \mathbf{m}(Y) = \mathbf{m}(Z) + \mathbf{m}(Y \setminus Z) = \frac{1}{2}\mathbf{m}(Z) + \frac{1}{2}\mathbf{m}(Y \setminus Z)$, and, if $0 \in \text{Ext}(R(X))$, it follows that $\mathbf{m}(Z) = 0$.

Conversely, suppose that the given condition is satisfied, and that $0 = \frac{1}{2}m(W_1) + \frac{1}{2}m(W_2)$, where $W_1, W_2 \subseteq X$. Then

$$0 = \frac{1}{2} \{ \mathbf{m}(W_1 \cap W_2) + \mathbf{m}(W_1 \setminus W_2) \} + \frac{1}{2} \{ \mathbf{m}(W_1 \cap W_2) + \mathbf{m}(W_2 \setminus W_1) \}$$

= $\mathbf{m}(W_1 \cap W_2) + \frac{1}{2}\mathbf{m}(W_1 \setminus W_2) + \frac{1}{2}\mathbf{m}(W_2 \setminus W_1)$
= $\mathbf{m}(W_1 \cap W_2) + \mathbf{m}(W)$

for some $W \subseteq (W_1 \setminus W_2) \cup (W_2 \setminus W_1)$, since $R((W_1 \setminus W_2) \cup (W_2 \setminus W_1))$ is convex. Thus $0 = \mathbf{m}((W_1 \cap W_2) \cup W)$, which, by hypothesis, implies that $\mathbf{m}(W_1 \cap W_2) = 0$. Hence

$$0 = \frac{1}{2}\mathbf{m}(W_1 \setminus W_2) + \frac{1}{2}\mathbf{m}(W_2 \setminus W_1) = \frac{1}{2}\mathbf{m}((W_1 \setminus W_2) \cup (W_2 \setminus W_1)),$$

EXTREMAL POINTS OF THE RANGE OF A VECTOR-VALUED MEASURE 63

and, as before, this implies that $\mathbf{m}(W_1 | W_2) = \mathbf{m}(W_2 | W_1) = 0$. Thus finally, $\mathbf{m}(W_1) = \mathbf{m}(W_2) = 0$, i.e. $0 \in \text{Ext}(R(X))$.

Proof of Theorem 2. Suppose that $\mathbf{m}(X) \in \text{Ext}(R)$ and $\mathbf{m}(Y) = \mathbf{m}(X)$. Then $\mathbf{m}(X) = \frac{1}{2}\mathbf{m}(X \cap Y) + \frac{1}{2}\mathbf{m}(Y \cup (X \setminus Y))$, which implies that $\mathbf{m}(Y \cup (X \setminus Y)) = \mathbf{m}(X)$, so that $\mathbf{m}(X \setminus Y) = 0$. Similarly $\mathbf{m}(Y \setminus X) = 0$.

Now, by Lemmas 2 and 1, 0 is an extremal point of both R(X) and R(Y). Hence

$$\mathbf{m}(X \cap Z) = \mathbf{m}(X \cap Y \cap Z) + \mathbf{m}((X \setminus Y) \cap Z) = \mathbf{m}(X \cap Y \cap Z)$$

and

 $\mathbf{m}(Y \cap Z) = \mathbf{m}(X \cap Y \cap Z) + \mathbf{m}((Y \setminus X) \cap Z) = \mathbf{m}(X \cap Y \cap Z)$

by Lemma 4. This establishes the necessity of the condition.

Now suppose that the given condition is satisfied. If $Z \subseteq X$ and $\mathbf{m}(Z) = 0$, then $\mathbf{m}(X) = \mathbf{m}(X \setminus Z)$, and, if $W \subseteq Z$, $\mathbf{m}(X \cap W') = \mathbf{m}((X \setminus Z) \cap W') = \mathbf{m}(X \setminus Z) = \mathbf{m}(X)$. Thus $\mathbf{m}(W) = \mathbf{m}(X) - \mathbf{m}(X \setminus W) = 0$. It now follows from Lemma 4 that $0 \in \text{Ext}(R(X))$.

Also, if $\mathbf{m}(X') = \mathbf{m}(Y)$, $\mathbf{m}(X) = \mathbf{m}(Y')$, so that

$$\mathbf{m}(X' \cap Z) = \mathbf{m}(Z) - \mathbf{m}(X \cap Z) = \mathbf{m}(Z) - \mathbf{m}(Y' \cap Z) = \mathbf{m}(Y \cap Z);$$

i.e., X' has the same property as X, so that as before $0 \in Ext(R(X'))$. The result will follow by Theorem 1 if it is now shown that $R(X) \cap R(X') = \{0\}$.

Suppose that $W \subseteq X, Z \subseteq X'$ and $\mathbf{m}(W) = \mathbf{m}(Z)$. Then $\mathbf{m}(X) = \mathbf{m}(X \setminus W) + \mathbf{m}(W) = \mathbf{m}((X \setminus W) \cup Z)$, so that, by hypothesis,

$$0 = \mathbf{m}(X \cap Z) = \mathbf{m}(((X \setminus W) \cup Z) \cap Z) = \mathbf{m}(Z).$$

This completes the proof.

REFERENCES

1. J. F. C. Kingman and A. P. Robertson, On a theorem of Lyapunov, J. London Math. Soc. 43 (1968), 347-351.

2. J. Schmets, Sur une généralisation d'une théorème de Lyapounov, Bull. Soc. Royale Liège 35 (1966), 185-194.

3. J. J. Uhl, Jr, The range of a vector-valued measure, Proc. Amer. Math. Soc. 23 (1969), 158-163.

UNIVERSITY OF STIRLING