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Recently, several papers have investigated conditions under which the range of a vector-
valued measure is a compact convex set (see e.g. [1], [2], [3]). It therefore seems of interest
to characterise the extremal points of the range in such cases.

Let # be a o-algebra of subsets of a set S and let E be a separated topological vector
space. Let m:.# — E be a vector-valued measure such that, for each Xe ./,

RX)={m(Y): Yed, Y= X}

is convex. The range of m is the set R = R(S).

In the following, it is assumed that any subset of S considered is an element of 4. The
complement of a subset X of S will be denoted by X', and the set of extremal points of a
convex subset 4 of E will be denoted by Ext(A4).

THEOREM 1. m(X)e Ext(R) if and only if
R(X)NR(X") = Ext(R(X))nExt (R(X")) = {0}.

THeOREM 2. m(X)eExt(R) if and only if m(X) = m(Y) implies that m(XnZ) =m(YnZ)
for each Ze H.

Both these results are suggested by the Hahn decomposition theorem for scalar valued
measures. Their proofs are divided into several stages.

LemMA 1. If X € Y and m(X) e Ext(R(Y)), then m(Y\X)e Ext (R(Y)).
Proof. Suppose that there exist W, Z < Y such that m(Y\X) = im(W)+4im(Z). Then
m(X) = m(Y)-m(¥Y\X) = ${m(Y)-m(W)} + }{m(Y)~m(Z)}
= im(Y\W)+im(¥\Z).

Since m(X)eExt(R(Y)), it follows that m(Y\W) =m(Y\Z), so that m(W)=m(Z), i.e.,
m(Y\X) e Ext(R(Y)).

LemMA 2. If X< Y and m(Z)eExt(R(Y)), Z < Y, then m(XnZ)e Ext (R(X)).

Proof. Suppose that there exist W, W, < X such that m(XnZ) = im(W ) +im(W,).
Then
m(Z) = m(XnZ)+m(Z\X)

= ${m(W )+ m(Z\X)} + ${m(W;) +m(Z\X)}
= m(W,U(Z\X))+im(W,0(Z\X)).

Since W,u(Z\X) and W,u(Z\X) are contained in Y, it follows that m(W,u(Z\X)) =
m(W,u(Z\X)), which leads as in Lemma 1 to the conclusion that m(XnZ)e Ext (R(X)).
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LeMMA 3. Let A and B be convex subsets of E. Let z€ A+ B and suppose that

(i) there exist a unique x€ A and a unique y€ B such that z = x+y,
(ii) xeExt(4), ye Ext(B).

Then z€ Ext(A+ B).

Proof. Suppose that z =4(x, +y,)+3(x,+y,), where x,, x,€4 and y,,y,€B. Then
z = 3(x, +x;)+4(y, +y,) and, since 4 and B are convex, 1(x, +x,)e 4 and 4(y, +y,)eB. It
now follows from (i) that x = 4(x, + x,) and y = 4(y, +y,) and then from (ii} that x, = x,

and y; = y,. Thus x, +y, = x,+y,, which gives the required resuit.

Proof of Theorem 1. If m(X)eExt(R), so also does m(X’) by Lemma 1.

0=m(XnX")=m(X'nX)eExt(R(X))NExt(R(X")) by Lemma 2.
Suppose that W X, Z< X' and m(W) =m(Z) (*). Then

m(X) = ${m(X)+m(Z)} +}{m(X)—m(W)} = Im(XLZ)+imX\W),

Thus

so that m(XUZ) = m(X\W), since m(X)eExt(R). Thus m(Z)= —m(W), which combined
with (*) shows that m(W) =m(Z) =0, i.e.,, R(X)nR(X') = {0}. Combining these results,

we have
{0} = Ext(R(X))NExt(R(X")) = R(X)nR(X") = {0},

which establishes the necessity of the condition.

Conversely, suppose that R(X)nR(X') = Ext(R(X))nExt(R(X")) = {0}. Since m(®) =
O0eExt(R(X)), m(X)eExt(R(X)) by Lemma 1. Now R(S)= R(X)+R(X’). Choose any

We X, Z< X' such that m(X) =m(W)+m(Z). Then
m(X\W) = m(X)-m(W) = m(Z),

and, since m(X\W)e R(X) and m(Z)e R(X"), it follows that m(Z) = 0 (¢ Ext(R(X"))) and

m(W) =m(X). Thus, by Lemma 3, m(X)eExt(R).

LemMma 4. OeExt(R(X))ifand only if Z< Y < X and m(Y) = O imply that m(Z) = 0.

Proof. Suppose that Zc Y X and m(Y)=0. Then 0 =m(Y)=m(Z)+m(¥Y\Z) =

im(Z)+4im(Y\Z), and, if 0 Ext (R(X)), it follows that m(Z) = 0.

Conversely, suppose that the given condition is satisfied, and that 0 = im(W,)+im(W,),

where W,, W, € X. Then
0 = H{m(W,n W) +m(W\W,)} + 4 {m(W, W)+ m(W,\W,)}
=m(W,nW)+3m(W\W,) +im(W,\W})
=m(W nW,)+m(W)

for some W< (W,\W,)u(W,\W,), since R(W \W,)u(W,\W,)) is convex.

0 = m((W,nW,)uW), which, by hypothesis, implies that m(W,nW,) = 0. Hence
0 = im(W,\W,) +im(W,\ W) = tm((W,\ W, )u(W,\ W),
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and, as before, this implies that m(W,\W,) = m(W,\W,)=0. Thus finally, m(W#,) =
m(W,) =0, i.e. 0 Ext(R(X)).

Proof of Theorem 2. Suppose that m(X)e Ext(R) and m(Y) = m(X). Then m(X) =
im(XnY)+4m(Yu(X\Y)), which implies that m(YU(X\Y)) = m{(X), so that m(X\Y) = 0.
Similarly m(Y\X) = 0.

Now, by Lemmas 2 and 1, 0 is an extremal point of both R(X) and R(Y). Hence

mXnZ)=m(Xn¥YnZ)+m((X\Y)NZ) =m(XnYnZ)
and
m(YNZ)=m(XnYnZ)+m((Y\X)NZ) =m(XnYnZ)

by Lemma 4. This establishes the necessity of the condition.

Now suppose that the given condition is satisfied. If Z< X and m(Z) =0, then
m(X)=m(X\Z), and, if WeZ, m(XnW')=m(X\Z)nW')=m(X\Z)=m(X). Thus
m(W)=m(X)-m(X\W)=0. It now follows from Lemma 4 that 0e Ext (R(X)).

Also, if m(X') = m(Y), m(X) = m(Y’), so that

mX'nZ)=m(Z)-m(XnZ)=m(Z)-m(Y'nZ) =m(¥YnZ);
i.e., X' has the same property as X, so that as before 0e Ext(R(X")). The result will follow
by Theorem 1 if it is now shown that R(X)nR(X’) = {0}.

Suppose that Wec X, Z< X’ and m(W)=m(Z). Then m(X)=mX\W)+m(W) =
m((X\W)uZ), so that, by hypothesis, '

0 =m(XnZ)=m({(X\W)uZ)nZ)=m(Z).

This completes the proof.
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