THE EXTREMAL POINTS OF THE RANGE OF A VECTOR-VALUED MEASURE

by I. TWEDDLE

(Received 26 March, 1970)
Recently, several papers have investigated conditions under which the range of a vectorvalued measure is a compact convex set (see e.g. [1], [2], [3]). It therefore seems of interest to characterise the extremal points of the range in such cases.

Let \mathscr{M} be a σ-algebra of subsets of a set S and let E be a separated topological vector space. Let $\mathrm{m}: \mathscr{M} \rightarrow E$ be a vector-valued measure such that, for each $X \in \mathscr{M}$,

$$
R(X)=\{\mathbf{m}(Y): Y \in \mathscr{M}, Y \subseteq X\}
$$

is convex. The range of m is the set $R=R(S)$.
In the following, it is assumed that any subset of S considered is an element of \mathscr{M}. The complement of a subset X of S will be denoted by X^{\prime}, and the set of extremal points of a convex subset A of E will be denoted by $\operatorname{Ext}(A)$.

Theorem 1. $\mathrm{m}(X) \in \operatorname{Ext}(R)$ if and only if

$$
R(X) \cap R\left(X^{\prime}\right)=\operatorname{Ext}(R(X)) \cap \operatorname{Ext}\left(R\left(X^{\prime}\right)\right)=\{0\}
$$

Theorem 2. $\mathbf{m}(X) \in \operatorname{Ext}(R)$ if and only if $\mathbf{m}(X)=\mathbf{m}(Y)$ implies that $\mathbf{m}(X \cap Z)=\mathbf{m}(Y \cap Z)$ for each $Z \in \mathscr{M}$.

Both these results are suggested by the Hahn decomposition theorem for scalar valued measures. Their proofs are divided into several stages.

Lemma 1. If $X \subseteq Y$ and $\mathbf{m}(X) \in \operatorname{Ext}(R(Y))$, then $\mathrm{m}(Y \backslash X) \in \operatorname{Ext}(R(Y))$.
Proof. Suppose that there exist $W, Z \subseteq Y$ such that $\mathbf{m}(Y \backslash X)=\frac{1}{2} \mathbf{m}(W)+\frac{1}{2} \mathbf{m}(Z)$. Then

$$
\begin{aligned}
\mathbf{m}(X) & =\mathbf{m}(Y)-\mathbf{m}(Y \backslash X)=\frac{1}{2}\{\mathbf{m}(Y)-\mathbf{m}(W)\}+\frac{1}{2}\{\mathbf{m}(Y)-\mathrm{m}(Z)\} \\
& =\frac{1}{2} \mathbf{m}(Y \backslash W)+\frac{1}{2} \mathbf{m}(Y \backslash Z)
\end{aligned}
$$

Since $\mathbf{m}(X) \in \operatorname{Ext}(R(Y))$, it follows that $\mathbf{m}(Y \backslash W)=\mathbf{m}(Y \backslash Z)$, so that $\mathbf{m}(W)=\mathbf{m}(Z)$, i.e., $\mathrm{m}(Y \backslash X) \in \operatorname{Ext}(R(Y))$.

Lemma 2. If $X \subseteq Y$ and $\mathbf{m}(Z) \in \operatorname{Ext}(R(Y)), Z \subseteq Y$, then $\mathbf{m}(X \cap Z) \in \operatorname{Ext}(R(X))$.
Proof. Suppose that there exist $W_{1}, W_{2} \subseteq X$ such that $\mathbf{m}(X \cap Z)=\frac{1}{2} \mathrm{~m}\left(W_{1}\right)+\frac{1}{2} \mathrm{~m}\left(W_{2}\right)$. Then

$$
\begin{aligned}
\mathbf{m}(Z) & =\mathbf{m}(X \cap Z)+\mathbf{m}(Z \backslash X) \\
& =\frac{1}{2}\left\{\mathbf{m}\left(W_{1}\right)+\mathbf{m}(Z \backslash X)\right\}+\frac{1}{2}\left\{\mathbf{m}\left(W_{2}\right)+\mathbf{m}(Z \backslash X)\right\} \\
& =\frac{1}{2} \mathbf{m}\left(W_{1} \cup(Z \backslash X)\right)+\frac{1}{2} \mathbf{m}\left(W_{2} \cup(Z \backslash X)\right) .
\end{aligned}
$$

Since $W_{1} \cup(Z \backslash X)$ and $W_{2} \cup(Z \backslash X)$ are contained in Y, it follows that $m\left(W_{1} \cup(Z \backslash X)\right)=$ $\mathbf{m}\left(W_{2} \cup(Z \backslash X)\right)$, which leads as in Lemma 1 to the conclusion that $\mathbf{m}(X \cap Z) \in \operatorname{Ext}(R(X))$.

Lemma 3. Let A and B be convex subsets of E. Let $z \in A+B$ and suppose that
(i) there exist a unique $x \in A$ and a unique $y \in B$ such that $z=x+y$,
(ii) $x \in \operatorname{Ext}(A), y \in \operatorname{Ext}(B)$.

Then $z \in \operatorname{Ext}(A+B)$.
Proof. Suppose that $z=\frac{1}{2}\left(x_{1}+y_{1}\right)+\frac{1}{2}\left(x_{2}+y_{2}\right)$, where $x_{1}, x_{2} \in A$ and $y_{1}, y_{2} \in B$. Then $z=\frac{1}{2}\left(x_{1}+x_{2}\right)+\frac{1}{2}\left(y_{1}+y_{2}\right)$ and, since A and B are convex, $\frac{1}{2}\left(x_{1}+x_{2}\right) \in A$ and $\frac{1}{2}\left(y_{1}+y_{2}\right) \in B$. It now follows from (i) that $x=\frac{1}{2}\left(x_{1}+x_{2}\right)$ and $y=\frac{1}{2}\left(y_{1}+y_{2}\right)$ and then from (ii) that $x_{1}=x_{2}$ and $y_{1}=y_{2}$. Thus $x_{1}+y_{1}=x_{2}+y_{2}$, which gives the required result.

Proof of Theorem 1. If $\mathrm{m}(X) \in \operatorname{Ext}(R)$, so also does $\mathrm{m}\left(X^{\prime}\right)$ by Lemma 1. Thus $0=\mathrm{m}\left(X \cap X^{\prime}\right)=\mathrm{m}\left(X^{\prime} \cap X\right) \in \operatorname{Ext}(R(X)) \cap \operatorname{Ext}\left(R\left(X^{\prime}\right)\right)$ by Lemma 2.

Suppose that $W \subseteq X, Z \subseteq X^{\prime}$ and $\mathbf{m}(W)=\mathbf{m}(Z)\left({ }^{*}\right)$. Then

$$
\mathbf{m}(X)=\frac{1}{2}\{\mathbf{m}(X)+\mathbf{m}(Z)\}+\frac{1}{2}\{\mathbf{m}(X)-\mathbf{m}(W)\}=\frac{1}{2} \mathbf{m}(X \cup Z)+\frac{1}{2} \mathbf{m}(X \backslash W),
$$

so that $\mathbf{m}(X \cup Z)=\mathbf{m}(X \backslash W)$, since $\mathbf{m}(X) \in \operatorname{Ext}(R)$. Thus $\mathbf{m}(Z)=-\mathbf{m}(W)$, which combined with (${ }^{*}$) shows that $\mathbf{m}(W)=\mathbf{m}(Z)=0$, i.e., $R(X) \cap R\left(X^{\prime}\right)=\{0\}$. Combining these results, we have

$$
\{0\} \subseteq \operatorname{Ext}(R(X)) \cap \operatorname{Ext}\left(R\left(X^{\prime}\right)\right) \subseteq R(X) \cap R\left(X^{\prime}\right)=\{0\}
$$

which establishes the necessity of the condition.
Conversely, suppose that $R(X) \cap R\left(X^{\prime}\right)=\operatorname{Ext}(R(X)) \cap \operatorname{Ext}\left(R\left(X^{\prime}\right)\right)=\{0\}$. Since $\mathbf{m}(\emptyset)=$ $0 \in \operatorname{Ext}(R(X)), \mathrm{m}(X) \in \operatorname{Ext}(R(X))$ by Lemma 1. Now $R(S)=R(X)+R\left(X^{\prime}\right)$. Choose any $W \subseteq X, Z \subseteq X^{\prime}$ such that $\mathbf{m}(X)=\mathbf{m}(W)+\mathbf{m}(Z)$. Then

$$
\mathbf{m}(X \backslash W)=\mathbf{m}(X)-\mathbf{m}(W)=\mathbf{m}(Z)
$$

and, since $\mathbf{m}(X \backslash W) \in R(X)$ and $\mathbf{m}(Z) \in R\left(X^{\prime}\right)$, it follows that $\mathbf{m}(Z)=0\left(\in \operatorname{Ext}\left(R\left(X^{\prime}\right)\right)\right.$) and $\mathbf{m}(W)=\mathbf{m}(X)$. Thus, by Lemma 3, $\mathbf{m}(X) \in \operatorname{Ext}(R)$.

Lemma 4. $0 \in \operatorname{Ext}(R(X)$) if and only if $Z \subseteq Y \subseteq X$ and $\mathbf{m}(Y)=0$ imply that $\mathbf{m}(Z)=0$.
Proof. Suppose that $Z \subseteq Y \subseteq X$ and $\mathbf{m}(Y)=0$. Then $0=\mathbf{m}(Y)=\mathbf{m}(Z)+\mathbf{m}(Y \backslash Z)=$ $\frac{1}{2} \mathrm{~m}(Z)+\frac{1}{2} \mathrm{~m}(Y \backslash Z)$, and, if $0 \in \operatorname{Ext}(R(X))$, it follows that $\mathrm{m}(Z)=0$.

Conversely, suppose that the given condition is satisfied, and that $0=\frac{1}{2} \mathrm{~m}\left(W_{1}\right)+\frac{1}{2} \mathrm{~m}\left(W_{2}\right)$, where $W_{1}, W_{2} \subseteq X$. Then

$$
\begin{aligned}
0 & =\frac{1}{2}\left\{\mathbf{m}\left(W_{1} \cap W_{2}\right)+\mathbf{m}\left(W_{1} \backslash W_{2}\right)\right\}+\frac{1}{2}\left\{\mathbf{m}\left(W_{1} \cap W_{2}\right)+\mathbf{m}\left(W_{2} \mid W_{1}\right)\right\} \\
& =\mathbf{m}\left(W_{1} \cap W_{2}\right)+\frac{1}{2} \mathbf{m}\left(W_{1} \backslash W_{2}\right)+\frac{1}{2} \mathbf{m}\left(W_{2} \backslash W_{1}\right) \\
& =\mathbf{m}\left(W_{1} \cap W_{2}\right)+\mathbf{m}(W)
\end{aligned}
$$

for some $W \subseteq\left(W_{1} \backslash W_{2}\right) \cup\left(W_{2} \backslash W_{1}\right)$, since $R\left(\left(W_{1} \backslash W_{2}\right) \cup\left(W_{2} \backslash W_{1}\right)\right)$ is convex. Thus $0=\mathbf{m}\left(\left(W_{1} \cap W_{2}\right) \cup W\right)$, which, by hypothesis, implies that $\mathbf{m}\left(W_{1} \cap W_{2}\right)=0$. Hence

$$
0=\frac{1}{2} \mathrm{~m}\left(W_{1} \backslash W_{2}\right)+\frac{1}{2} \mathrm{~m}\left(W_{2} \backslash W_{1}\right)=\frac{1}{2} \mathrm{~m}\left(\left(W_{1} \backslash W_{2}\right) \cup\left(W_{2} \backslash W_{1}\right)\right),
$$

EXTREMAL POINTS OF THE RANGE OF A VECTOR-VALUED MEASURE 63
and, as before, this implies that $\mathbf{m}\left(W_{1} \backslash W_{2}\right)=\mathbf{m}\left(W_{2} \backslash W_{1}\right)=0$. Thus finally, $\mathbf{m}\left(W_{1}\right)=$ $\mathrm{m}\left(W_{2}\right)=0$, i.e. $0 \in \operatorname{Ext}(R(X))$.

Proof of Theorem 2. Suppose that $\mathbf{m}(X) \in \operatorname{Ext}(R)$ and $\mathbf{m}(Y)=\mathbf{m}(X)$. Then $\mathbf{m}(X)=$ $\frac{1}{2} \mathrm{~m}(X \cap Y)+\frac{1}{2} \mathrm{~m}(Y \cup(X \backslash Y))$, which implies that $\mathbf{m}(Y \cup(X \backslash Y))=\mathbf{m}(X)$, so that $\mathbf{m}(X \backslash Y)=0$. Similarly $\mathbf{m}(Y \backslash X)=0$.

Now, by Lemmas 2 and 1,0 is an extremal point of both $R(X)$ and $R(Y)$. Hence

$$
\mathbf{m}(X \cap Z)=\mathbf{m}(X \cap Y \cap Z)+\mathbf{m}((X \backslash Y) \cap Z)=\mathbf{m}(X \cap Y \cap Z)
$$

and

$$
\mathbf{m}(Y \cap Z)=\mathbf{m}(X \cap Y \cap Z)+\mathbf{m}((Y \backslash X) \cap Z)=\mathbf{m}(X \cap Y \cap Z)
$$

by Lemma 4. This establishes the necessity of the condition.
Now suppose that the given condition is satisfied. If $Z \subseteq X$ and $m(Z)=0$, then $\mathbf{m}(X)=\mathbf{m}(X \backslash Z)$, and, if $W \subseteq Z, \mathbf{m}\left(X \cap W^{\prime}\right)=\mathbf{m}\left((X \backslash Z) \cap W^{\prime}\right)=\mathbf{m}(X \backslash Z)=\mathbf{m}(X)$. Thus $\mathbf{m}(W)=\mathbf{m}(X)-\mathbf{m}(X \backslash W)=0$. It now follows from Lemma 4 that $0 \in \operatorname{Ext}(R(X))$.

Also, if $\mathbf{m}\left(X^{\prime}\right)=\mathbf{m}(Y), \mathbf{m}(X)=\mathbf{m}\left(Y^{\prime}\right)$, so that

$$
\mathrm{m}\left(X^{\prime} \cap Z\right)=\mathrm{m}(Z)-\mathrm{m}(X \cap Z)=\mathrm{m}(Z)-\mathrm{m}\left(Y^{\prime} \cap Z\right)=\mathrm{m}(Y \cap Z) ;
$$

i.e., X^{\prime} has the same property as X, so that as before $0 \in \operatorname{Ext}\left(R\left(X^{\prime}\right)\right)$. The result will follow by Theorem 1 if it is now shown that $R(X) \cap R\left(X^{\prime}\right)=\{0\}$.

Suppose that $W \subseteq X, Z \subseteq X^{\prime}$ and $\mathbf{m}(W)=\mathbf{m}(Z)$. Then $\mathbf{m}(X)=\mathbf{m}(X \backslash W)+\mathbf{m}(W)=$ $\mathrm{m}((X \backslash W) \cup Z)$, so that, by hypothesis,

$$
0=\mathrm{m}(X \cap Z)=\mathrm{m}(((X \backslash W) \cup Z) \cap Z)=\mathbf{m}(Z)
$$

This completes the proof.

REFERENCES

1. J. F. C. Kingman and A. P. Robertson, On a theorem of Lyapunov, J. London Math. Soc. 43 (1968), 347-351.
2. J. Schmets, Sur une généralisation d’une théorème de Lyapounov, Bull. Soc. Royale Liège 35 (1966), 185-194.
3. J. J. Uhl, Jr, The range of a vector-valued measure, Proc. Amer. Math. Soc. 23 (1969), 158-163. University of Stirling
