Zig-zag Self-assembly of Magnetic Octahedral Fe$_3$O$_4$ Nanocrystals using in situ Liquid Transmission Electron Microscopy

Arnaud Demortiere1,2,3, Charudatta Phatak5, Andras Kovacs6, Jan Caron6, Nikita Repnin4, Martial Duchamp6, Nestor J. Zaluzec1, Petr Kral6, Igor S. Aranson3, Rafal Dunin-Borkowski6, Alexey Snezhko3 and Dean Miller1

1. Electron Microscopy Center, Argonne National Lab, 9700 S Cass Ave., Argonne, IL 60439, USA.
2. Réseau pour le Stockage Electrochimique de l’Energie (RS2E) & Laboratoire de Reactivité et Chimie des Solides (LRCS), CNRS, UMR7314-UPJV, 33 Rue Saint Leu 80039 Amiens, France.
3. Materials science division, Argonne National Lab, 9700 S Cass Ave., Argonne, IL 60439, USA.
5. Nanoscience and Technology Division, Argonne National Lab, 9700 S Cass Ave., IL 60439, USA.
6. Ernst Ruska Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Juelich GmbH, 52425 Juelich, Germany.

Direct imaging of colloidal nanoparticle solution by liquid phase transmission electron microscopy [1] enables unique in situ study of nanocrystal self-organization [2] and offers a great opportunity to improve understanding of fundamental mechanisms governing self-assembly at nano-scale. In equilibrium, different aspects of self-assembly can be described in term of thermodynamics of interacting particles. However, out of equilibrium, long-range hydrodynamic interactions play also an important role in the process and expected to become more significant, as for instance, in charged solvent media with electrophoresis effect. Real time/nanoscale capable instrumentation is needed for the successful design of large-scale particles arrays suitable for effective device architectures. Since the size domain of nanoparticle self-assembled lattices is below the diffraction limit of visible light, the X-ray scattering techniques, such as SAXS and GISAXS have been used as being the best tool in the study of the superlattice growth (in situ or ex situ) at liquid/air and liquid/substrate interfaces. However, nanoscopic details remain elusive during the super-cluster formation, such as particle dynamics, surface re-building, re-arrangement effect, and relative position. The latest developments in liquid cell TEM technology opens up a new window for in situ study at nanoscale.

The goal of our project is to investigate the self-assembly of magnetic nanocrystals in solution at nanoscale using liquid TEM setup. The liquid-cell microchip (Protochips – Poseidon 200) [3] is consisted of a hermetically sealed liquid-filled chamber (thickness from 0.5 to 2 µm) sandwiched between two silicon nitride membranes. The liquid cell experiments enable direct imaging of phenomena occurring during the self-assembly process. We were able to induce self-assembly of magnetic octahedral nanocrystals in liquid cell inside TEM (Tecnai F20ST – EMC Argonne NL) using Lorentz lens (and mini-lens) with which a magnetic field (0.1 to 2T) can be applied (parallel to e-beam). Chains of Fe$_3$O$_4$ nanocrystals are then formed inside the liquid cell along of the magnetic field. The octahedral nanocrystals are assembled in chain with a zig-zag configuration due to the orientation of magnetic easy axis (perpendicular to {111} facets). We studied self-organization behaviors as a function of applied magnetic field, type of solvent and liquid cell spacer. To the best of our knowledge, this is the first example of self-assembly control of magnetic nanocrystals inside TEM in liquid medium. This novel tool will provide unique capabilities to tackle fundamental problems of colloidal dynamics and self-assembly, for instance, by precise quantization of driving forces at nanometer scale. Monte-Carlo simulations were used to understand processes of the formation of these complex nano-chains consisted
of octahedral particles (figure 1). Finally, as shown in the figure 2, Lorentz microscopy and the electron holography were used to study the magnetic induction within and around a chain of magnetite nanocrystals formed during the in situ liquid cell experiment [4].

Figure 1. (a) Zig-zag chain of magnetic octahedral FeO₄ nanocrystals aligned within liquid cell TEM under magnetic field applied using Lorentz lens. Inset Monte-Carlo simulation of chain assembly under magnetic field (b) Scheme of octahedra aligned in zig-zag chain. (c) Liquid in situ TEM picture of chain of FeO₄ nanocrystals. (d) Sketch of octahedral with magnetic easy axis [111].

Figure 2. Magnetization map of a FeO₄ nano-chain obtained using Lorentz microscopy. Magnetic induction map (electron holography) of a chain of particles with three crystals. The contour spacing is 0.25 rad. The color code represents the direction of the projected magnetic induction. Bright-field TEM image of the same chain is shown in insert. The scale bars are 50 nm.