GENERATION OF THE LOWER CENTRAL SERIES II

by ROBERT M. GURALNICK

(Received 20 January, 1983)

1. Introduction. In this article, we obtain results on commutators in Sylow subgroups of the lower central series, extending the work of Dark and Newell [2], Rodney [12, 13] and Aschbacher and the author [1, 6, 7].

Some notation is required for the statement of the main results. Let r be a positive integer and define

$$[x_1] = x_1, \qquad [x_1, x_2] = x_1^{-1} x_2^{-1} x_1 x_2,$$

and

$$[x_1, \ldots, x_r] = [[x_1, \ldots, x_{r-1}], x_r]$$
 for $r \ge 3$

where x_1, \ldots, x_r are elements in a group G. Let $\Gamma_r G = \{[x_1, \ldots, x_r] | x_i \in G\}$ be the set of *r*-fold commutators in G. Then $L_r G = \langle \Gamma_r G \rangle$ is the *r*th term in the lower central series of G. Set $L_{\infty}G = \cap L_r G$.

THEOREM A. Suppose L_rG is finite and $P \in Syl_p(L_rG)$ is abelian of rank at most 2. If any of the following conditions hold then $P \subset \Gamma_rG$.

- (i) *p*≥5.
- (ii) P is cyclic.
- (iii) P has exponent p.
- (iv) $P \cap L_{\infty}G \neq 1$.
- (v) $P \cap L_{r+1}G = 1$.
- (vi) $r \leq 2$.

This result is known for r = 2. It was first proved by Rodney [13] for $P \in Syl_p(G)$ of exponent p. The complete proof of (vi) is [7, Theorem A]. The main idea of the proof is to reduce to the case where $P = L_rG$. With this hypothesis, (iii) and (iv) are given in [6], while (ii) and (v) are proved in [2]. However, (i) is still a new result even in this more restricted situation. By examples in [1], [2], and [6], rank 2 cannot be replaced by rank 3. Moreover, (i) fails for p = 2 (and possibly for p = 3).

The proof that when $p \ge 5$ and $P = L_r G$ is an abelian rank 2 p-group then $P = \Gamma_r G$ splits essentially into two cases. The first is when $P = L_{\infty}G$ and is handled by [1, Theorem C]. The more difficult case is when G is a p-group. In fact, we consider the more general problem of when $P \subset (\Gamma_r G)^k$. This also breaks up into the two cases described above (Theorem 2.1). An example (Section 4) is given to show that the p-group situation is the relevant obstruction to determining k in terms of the rank of P.

Combining these techniques with a result of Gallagher, we obtain the following results.

Glasgow Math. J. 25 (1984) 193-201.

ROBERT M. GURALNICK

THEOREM B. Suppose G' is a p-group of order p^k with k < n(n+1). (a) If $L_{\infty}G$ is abelian, then $G' = (\Gamma_2 G)^n$. (b) $G' = (\Gamma_2 G)^{2n}$.

THEOREM C. If $G' \leq Z(G)$ and G' is a p-group of rank less than n(n+1), then $G' = (\Gamma_2 G)^n$.

By examples in [5], the bounds in Theorems B and C are of the right order of magnitude. We define a function f = f(p, r, d) by the following: if $P = L_rG$ is an abelian p-group of rank d, then $P = (\Gamma_rG)^f$ and f is the least positive integer satisfying this.

THEOREM D. (i) $\sqrt{d-1} \le f \le 2d$, for r=2 and 3. (ii) $d^{(r-2)/(r-1)}/6r < f \le 2d$, for r>3.

Finally, we note that:

THEOREM E. If |G| < 96 or $|L_rG| < 8$, then $L_rG = \Gamma_rG$.

Moreover, these bounds are best possible for r > 2 (for r = 2, replace 8 by 16). See [6] and [7] for examples.

The paper is organized as follows. In Section 2, the proof of Theorem A is reduced to the case $L_rG = P$. This case is handled in Section 3. Some examples pertaining to lower bounds for f are given in Section 4. Finally, Theorems B – E are proved in Section 5. We shall use notation as in [4]. I wish to thank the referee for his very careful reading of the article and many valuable comments.

2. Reduction of Theorem A. The first result describes how the condition that L_rG has an abelian Sylow *p*-subgroup splits a Sylow *p*-subgroup into two nicer pieces.

THEOREM 2.1. Let G be a finite group with $S \in Syl_p(G)$. Suppose $n \ge r$ and set $P = S \cap L_rG$ and $T = S \cap L_nG$.

(a) $P = (L_r S)T$.

(b) If T is abelian and $N = N_G(T)$, then $P = (L_rS)[T, H] \le L_rN$, where H is a Hall p'-subgroup of N.

(c) If $S \triangleleft G$ and $V = S \cap L_{\infty}G$ is abelian, then S = CV and $C \cap V = 1$, where $C = C_S(H)$ and H is a Hall p'-subgroup of G. Moreover, if G is solvable and m is a positive integer such that $L_rC = (\Gamma_rC)^m$ and rank $V < 2^{m+1} - 1$, then $P \subset (\Gamma_rG)^m$.

Proof. Since G/L_nG is nilpotent, $(L_rS)L_nG/L_nG$ is a Sylow p-subgroup of L_rG/L_nG . Thus $P \ge (L_rS)T \in Syl_p(L_rG)$ and (a) follows. If T is abelian, then by [1, Corollary 5.2] $T = (L_nS)[T, H] \le L_nN$, where H is a Hall p'-subgroup of N. Hence (b) holds.

Now assume $S \lhd G$ and V is abelian. Clearly V = [S, H] and so by [4, Theorems 5.2.3 and 5.3.5], S = CV, V = [V, H] and $V \cap C = 1$. If G is solvable, then by [1, Theorem 4.1] there exist $h_1, \ldots, h_m \in H$ such that

$$V = \prod_{i=1}^{m} [V, h_i] = \prod_{i=1}^{m} [V, h_i, \dots, h_i].$$

Fix $h \in H$. Then for any $v \in V$, and $c_1, c_2 \in C$,

$$vc_1, c_2h$$
] = [v, c_2h] ^{c_1} [c_1, c_2].

Since $\langle c_2 h \rangle \ge \langle h \rangle$, $V \lhd G$ is abelian, and [C, h] = 1,

$$[v, c_2 h]^{c_1} | v \in V\} \supset [V, h].$$

Similarly, it follows that

$$\{ [vc_1, c_2h, \ldots, c_rh] \mid v \in V \} \supset [V, h, \ldots, h] [c_1, \ldots, c_r]$$

= [V, h][c_1, \ldots, c_r].

Hence

$$\Delta_{i} = \{ [vc_{1}, c_{2}h_{i}, \ldots, c_{r}h_{i}] \mid v \in V, c_{j} \in C \} = [V, h_{i}]\Gamma_{r}(C).$$

Finally, note that since C normalizes $[V, h_i]$,

$$\Delta_1 \dots \Delta_m = \left(\prod_{i=1}^m [V, h_i]\right) (\Gamma_r C)^m = V(L_r C).$$

Now (c) follows for $V(L_rC) = V(L_rS) = P$.

We now prove Theorem A (modulo results in section 3). So assume L_rG is finite and $P \in Syl_p(L_rG)$ is abelian of rank at most 2. By [6, Lemma 1.4], we can assume G is finite. By Theorem 2.1b, we can also assume $P \lhd G$ and $P \cap L_{\infty}G = T = [T, H]$ for H a Hall p'-subgroup (note that conditions (i)-(vi) remain valid under these reductions). Now $P = T \times C_P(H)$ by [4, Theorem 5.2.3]. If P = T, then $P \subset \Gamma_rG$ by [1, Theorem C]. Otherwise T is cyclic and so there exists $h \in H$ with [T, h] = T. Moreover, since $G = N_G(S)G' = N_G(S)C_G(T)$, we can assume $h \in N_G(S)$. Consider $M = \langle S, h \rangle$. Then $L_rM = L_rS[h, T] = P$. Thus it suffices to assume G = M and $P = L_rG$. Now (ii), (iii), and (iv) follow by [6, Theorem 3.2] and (v) follows by [2, Theorem 2]. As remarked before (vi) is [7, Theorem A]. Finally, if (i) holds but (iv) fails, then T = 1, $P = L_rS$ and Theorem 3.6 applies.

3. The case $L_rG = P$. We need some commutator calculus. Suppose $g \in G$. Define $\gamma_0(g) = \langle g \rangle$ and $\gamma_{i+1}(g) = [\gamma_i(g), G]$. Note that $\gamma_i(g) \triangleleft G$ for i > 0, and by the three subgroup lemma,

$$[\gamma_i(g), L_r G] \leq \gamma_{i+r}(g), \tag{3.1}$$

$$[\gamma_i(g), \gamma_j(g)] \leq \gamma_{i+j+1}(g). \tag{3.2}$$

PROPOSITION 3.3.
(a)
$$[s, tu, x_1, ..., x_r] \equiv [s, t, x_1, ..., x_r] [s, u, x_1, ..., x_r] \times [s, t, u, x_1, ..., x_r] \mod \gamma_{r+2}([s, t]).$$

(b) $[s, t^i, x_1, ..., x_r] \equiv [s, t, x_1, ..., x_r]^i \times [s, t, t, x_1, ..., x_r]^{i(i-1)/2} \mod \gamma_{r+2}([s, t]).$

Proof. (a) Set y = [s, t]. Induct on r. If r = 0, then

$$[s, tu] = [s, u][s, t][s, t, u].$$
(*)

The result holds in this case since $[s, t, G'] \leq \gamma_2(y)$. Now assume r > 0 and $\gamma_{r+2}(y) = 1$. By induction

 $[s, tu, x_1, \ldots, x_{r-1}] = abcd,$

where $a = [s, t, x_1, \dots, x_{r-1}]$, $b = [s, u, x_1, \dots, x_{r-1}]$, $c = [s, t, u, x_1, \dots, x_{r-1}]$ and $d \in \gamma_{r+1}(y) \leq Z(G)$. Thus,

 $[s, t, u, x_1, \ldots, x_r] = [abcd, x_r] = [abc, x_r].$

However, by (*) (or its inverse),

$$[abc, x_r] = [ab, x_r][ab, x_r, c][c, x_r]$$

= [a, x_r][a, x_r, b][b, x_r][ab, x_r, c][c, x_r].

Now (a) follows by noting that $[ab, x_r, c] \in [G', \gamma_r(y)] \leq \gamma_{r+2}(y)$ and $[a, x_r, b] \in [\gamma_{r-1}(y), G, G'] \leq \gamma_{r+2}(y)$.

(b) follows from (a) by a straightforward induction argument.

LEMMA 3.4. Suppose L_rG is an abelian p-group of rank at most two and $L_{r+1}G \leq U^1L_rG$.

(a) There exist j, $1 \le j \le r$, and u_i , $1 \le i \ne j \le r$, such that

$$L_r G = [u_1, \ldots, u_{j-1}, G, u_{j+1}, \ldots, u_r].$$

(b) Moreover, if p > 2, then

$$L_rG = \{[u_1, \ldots, u_{j-1}, g, u_{j+1}, \ldots, u_r] \mid g \in G\} = \Sigma.$$

Proof. (a) Without loss of generality, $\bigcup^i L_r G = L_{r+1}G = 1$. Choose $J \subseteq I = \{1, \ldots, r\}$ maximal so that there exist $u_i, j \in J$ with $L_r G = [E_1, \ldots, E_r]$ where $E_j = u_j$ if $j \in J$ and $E_j = G$ otherwise. Assume $k < l \in I - J$. Hence $L_r G = \langle [x_1, \ldots, x_r], [y_1, \ldots, y_r] \rangle$ where $x_j = y_j = u_j$ if $j \in J$. Suppose $z = [x_1, \ldots, y_k, \ldots, x_r] \neq 1$. Then either

 $L_r G = \langle [x_1, \ldots, x_r], [x_1, \ldots, y_i, \ldots, x_r] \rangle$

or

$$L_r G = \langle [x_1, \ldots, y_k, \ldots, x_r], [y_1, \ldots, y_r] \rangle$$

In the first case $I - \{k\}$ satisfies the conclusion, and in the second case $J \cup \{j\}$ satisfies the same condition as J. This contradicts the maximality of J. So z = 1. Similarly $[y_1, \ldots, x_l, \ldots, y_r] = 1$; but now $J \cup \{k\}$ satisfies the condition with $u_k = x_k y_k$.

(b) We note that we can assume $j \neq 1$ (for if j = 1 then j = 2 will also satisfy the conclusion in (a)). Set $s = [u_1, \ldots, u_{j-1}]$ and define $\phi : G \to \Sigma$ by $\phi(g) = [s, g, u_{j+1}, \ldots, u_r]$. First we shall show that for any $g, v_{j+1}, \ldots, v_r \in G$ we have

$$y = [s, g^{ep^{i}}, v_{j+1}, \dots, v_{r}] \equiv [s, g, v_{j+1}, \dots, v_{r}]^{ep^{i}} \mod U^{i+1}L_{r}G.$$
(**)

196

Induct on *i*. If i=0, this follows from Proposition 3.3b and the fact that $L_{r+1}G \le U^{1}L_{r}G$. So assume i>0. Again by Proposition 3.3b,

$$\mathbf{y} \equiv [s, g^{\mathbf{p}^{i-1}}, v_{j+1}, \ldots, v_r]^{ep} \mod B,$$

where $B = \gamma_{r-j+1}([s, g^{p^{i-1}}])^p \gamma_{r-j+2}([s, g^{p^{i-1}}])$. By induction,

$$\gamma_{r-j}([s, g^{p^{i-1}}]) \leq \mathcal{O}^{i-1}L_rG.$$

Since $L_{r+1}G \leq U^{1}L_{r}G$ it follows that $[G, U^{k}L_{r}G] \leq U^{k+1}L_{r}G$ and so $B \leq U^{i+1}L_{r}G$. Thus (**) holds.

Suppose now that $\mathcal{O}^k L_r G \neq 1 = \mathcal{O}^{k+1} L_r G$. By (a), there exists $g \in G$ such that $\phi(g)$ has order p^{k+1} and so by (**), $z = \phi(g^{p^k}) = \phi(g)^{p^k}$. In particular, $z \in \mathcal{O}^k L_r G \leq Z(G)$. By induction on $|L_r G|$, if $x \in L_r G$ then $xz^e = \phi(h)$ for some positive integer e and $h \in G$. By Proposition 3.3a,

$$\phi(g^{-ep^{k}}h) \equiv \phi(g^{-ep^{k}})\phi(h) \mod \gamma_{r-j+1}([s, g^{-ep^{k}}]).$$

However by (**),

$$\phi(g^{-ep^{k}}) = z^{-e} \quad \text{and} \quad \gamma_{r-j}([s, g^{-ep^{k}}]) \leq \mathfrak{V}^{k}L_{r}G \leq Z(G).$$

Thus

$$\phi(g^{-ep^k}h)=z^{-e}z^ex=x,$$

and so ϕ is surjective as desired.

The reason we assume p > 3 is apparent in the next lemma. If p > 3, then

$$\sum_{i=0}^{p-1} i^2 \equiv 0 \bmod p.$$

LEMMA 3.5. Let G be a p-group with p > 3. If $x, y \in G$ with $a = [x, y], \langle a^G \rangle = \langle a, b \rangle$ abelian and $[a, G] \leq \langle a^p, b \rangle$, then $[x, y^p] \equiv a^p \mod B$, where $B = \langle a^{p^2}, b^p \rangle$.

Proof. Set $A = \langle a^G \rangle$. Then $[A, G] \leq \langle a^p, b \rangle$. If $c = [a, y] \in \mathcal{U}^1 A$, then $[y, \mathcal{U}^1 A] \leq \mathcal{U}^2 A$, and so

$$[x, y^i] \equiv a^i c^{i(i-1)/2} \mod \mathcal{O}^2 A$$

by Proposition 3.3(b). Hence as $p \neq 2$, $[x, y^p] \equiv a^p \mod B$. Otherwise, we can take b = [a, y].

Now $[b, y] = a^{\alpha p} b^{\beta p}$. Then a straightforward tedious computation shows that modulo B

$$[x, y^{p}] \equiv a^{p} \prod_{i=1}^{p-1} [a, y^{i}]$$
$$\equiv a^{p} \prod_{j=1}^{p-1} a^{\alpha p j (j-1)/2} b^{j} \equiv a^{p}$$

since p > 3.

THEOREM 3.6. If L_rG is a rank 2 abelian p-group with p > 3, then $L_rG = \Gamma_rG$.

Proof. As in Section 2, we can assume G is a p-group. Let G be a counterexample with $|L_rG|$ minimal. Choose $a \in L_rG - \Gamma_rG$. Set $A = \langle a^G \rangle = \langle a, b = [a, g] \rangle$ for some $g \in G$. Let p^{α} and p^{β} denote the orders of a and b respectively. Note that $\alpha \ge \beta$. First assume $\beta < \alpha$. Then $B = U^{\alpha-1}A = \langle a^{p^{\alpha-1}} \rangle \le Z(G)$. If $\alpha > 1$, then by passing to G/B, some generator of $\langle a \rangle$ is in Γ_rG , and thus $a \in \Gamma_rG$ by [6, Lemma 1.3]. So $\alpha = 1$ and $\beta = 0$. If $a = c^p$ with $c \in L_rG$, then as above $c \in \Gamma_rG$. Say c = [d, h] with $d \in \Gamma_{r-1}G$ and set e = [c, h]. Then $e^p = [c^p, h] = 1$. Moreover as $e \in \Omega_1 L_{r+1}G$ and $a \notin L_{r+1}G$ (as $L_{r+1}G = \Gamma_{r+1}G \subset \Gamma_rG$ since $|L_{r+1}G| < |L_rG|$), $e \in Z(G)$. Thus, $[d, h^p] = c^p e^{p(p-1)/2} = a$ since $p \neq 2$. Thus, $a \notin U^1 L_rG$ and so $L_rG = \langle a, x \rangle$. We can assume $x \in \Gamma_rG$ and so x = [g, y] for some $g \in G$ and $y \in \Gamma_{r-1}G$. If $[G, y] = \langle x \rangle$, then $\langle x \rangle \lhd G$ and so $L_{r+1}G = [G, x] \le U^1 L_rG$. Then $L_rG = \Gamma_rG$ by Lemma 3.4b. Otherwise $[G, y] = L_rG$. We claim a = [h, y] for some $h \in G$. Induct on the order of x. If $x^p = 1$, then the map $h \to [h, y] \in Z(G)$ is an endomorphism from G onto L_rG . So assume x has order p^{k+1} . By induction $(x^{p^k} \in Z(G))$, we see that $[h, y] = ax^{e^{p^k}}$ for some integer e. By Lemma 3.5, $[g^p, y] \equiv x^p \mod \langle x^{p^2} \rangle$, and continuing we see that $[g^{p^k}, y] = x^{p^k}$. Hence $[g^{-ep^k}h, y] = a \in \Gamma_rG$.

So $\beta = \alpha$. Thus $B = \langle b^{p^{\alpha-1}} \rangle = \mathcal{O}^{\alpha-1}[G, A] \leq Z(G)$. Hence by passing to G/B, $a(b^{\lambda p^{\alpha-1}}) \in \Gamma_r G$ for some λ . By Lemma 3.5, $[a, g^p] \equiv b^p \mod \mathcal{O}^2 A$, and continuing we find that $[a, g^{\lambda p^{\alpha-1}}] = b^{\lambda p^{\alpha-1}}$ and so a is conjugate to $ab^{\lambda p^{\alpha-1}}$. This completes the proof.

By Example 3.1 in [6], p > 2 is necessary. If r = 2, and p > 3, one can replace rank 2 by rank 3 [7, Theorem B]. This would seem to provide some evidence that there is a counterexample with p = 3 since there is such for r = 2 with L_2G of rank 3.

4. Lower bounds for f. Many examples have been given with $L_rG \neq (\Gamma_rG)^k$, particularly for r = 2 or for k = 1 (see [1], [2], [5], [6], [7], [8], [10] and [11]). We construct one which gives a good lower bound for f = f(p, r, d). First note that for r = 2, it follows from [5] and [7] that:

PROPOSITION 4.1. (a) $f(d) < \sqrt{d-1}$. (b) $f(3) = 1 \Leftrightarrow p > 3$. (c) f(2) = 1.

For the rest of the section, assume r > 2. By Theorem A, f(1) = 1 for all p and f(2) = 1 for p > 3. Also by [1], $f(d) > \log_2(d+1) - 1$.

Now fix a prime p and r>2. Let F be the free group on n generators. Set $H = F/(L_rF)^p L_{r+1}F$. By Witt's formula, L_rH is a free elementary abelian p-group of rank t, where

$$t=\frac{1}{r}\sum_{k\mid r}\mu(k)n^{r/k},$$

and μ is the Moebius function. It follows easily that $rt \ge n^{r-1}$. Now suppose d is a positive integer with $(n-1)^s \le dr < n^s$, s = r-1. Choose a subgroup M of L_rH of index p^d in L_rH . Set G = H/M. Then G is nilpotent, $L_{r+1}G = 1$, and L_rG is elementary abelian of rank d. By Proposition 3.3, the r-fold commutator is multiplicative in each variable. Thus

198

 $|\Gamma_r G| < p^{nr}$. Hence if f = f(p, r, d), then $p^d = |L_r G| = |(\Gamma_r G)^f| < |\Gamma_r G|^f < p^{nrf}$. So f > d/nr. Since

$$d^{1/s} \ge (n-1)r^{-1/s} \ge \frac{1}{2}r^{-1-(1/s)}(nr),$$

it follows that

$$f > d/nr \ge \frac{1}{2}r^{-1-(1/s)}d^{(s-1)/s} \ge d^{(s-1)/s}/6r.$$

We remark that for r=3, one can construct a group G similar to that in [2, Proposition 3] in which L_3G is elementary abelian of rank n^2 and $L_3G \neq (\Gamma_3G)^n$. Thus $f(p, 3, d) \ge \sqrt{d-1}$. Also as r gets large, we can replace 6 by numbers tending to 2. We conjecture that $f(d) \ge d^{(r-1)/r} - 1$ (this is true for r=2).

5. Theorems B–E. Theorem B follows as an easy consequence of Theorem 2.1 and a result of Gallagher.

THEOREM B. Suppose G' is a p-group of order p^k with k < n(n+1). (a) If $L_{\infty}G$ is abelian then $G' = (\Gamma_2 G)^n$. (b) $G' = (\Gamma_2 G)^{2n}$.

Proof. Note that (b) follows from (a) and [3, Theorem 1b] by considering $G/(L_{\infty}G)'$. As usual, we assume G is finite. For (a), note that if $S \in \text{Syl}_p(G)$, and C is as in Theorem 2.1c then $(\Gamma_2 C)^n = C'$ by Gallagher [3, Theorem 2]. The result now follows by Theorem 2.1c (for $n(n+1) < 2^{n+1} - 1$).

Theorem C also follows from the same result of Gallagher and the next lemma.

LEMMA 5.1. Let G be a p-group with $G' \leq Z(G)$ and $G' \neq (\Gamma_2 G)^n$. Moreover, assume |G| is minimal with respect to this property (for a fixed p and n). Then G' has exponent p.

Proof. Choose $a \in L_2G - (\Gamma_2G)^n$. Suppose $d = [u, v]^p = [u, v^p] \neq 1$ for some $u, v \in G$. As $|G| > |G/\langle d \rangle|$, $ad^i \in (\Gamma_2G)^n$ for some *i*. By replacing *d* by d^i , we may assume that $ad \in (\Gamma_2G)^n$. Say

$$ad = \prod_{i=1}^n [s_i, t_i].$$

Then

$$a = \prod_{i=1}^{n} [s_i, t_i][u, v^{-p}].$$

Since $a \in H'$, $H = \langle s_1, t_1, \ldots, s_n, t_n, u, v^p \rangle = G$. However, v^p is an element of the Frattini subgroup of G, and so G can be generated by 2n + 1 elements. However, this implies $G' = (\Gamma_2 G)^n$ by [5, Theorem 5.2]. So $[u, v]^p = 1$ for all $u, v \in G$, proving the lemma.

Now Theorem C follows from Theorem B. Moreover, by [5, Section 5], n(n+1) can not be replaced by $(n+1)^2+1$ in either Theorem B or C. Recall that f = f(p, r, d) is defined as follows: if $P = L_r G$ is an abelian p-group of rank d then $P = (\Gamma_r G)^f$ and f is as small as possible. We first obtain an upper bound for f. PROPOSITION 5.2. Let G be a finite group.

(a) If $\langle x \rangle = \langle y \rangle$ and $x \in (\Gamma_r G)^k$, then $y \in (\Gamma_r G)^k$.

(b) If $x \in (\Gamma_r G)^k$, then $\langle x \rangle \subset (\Gamma_r G)^{3k}$.

(c) If $x \in (\Gamma_r G)^k$ is a p-element, then $\langle x \rangle \subset (\Gamma_r G)^{2k}$.

(d) If $P \in Syl_{p}(L_{r}G)$ is abelian of rank d, then $P \subset (\Gamma_{r}G)^{2d}$.

Proof. As remarked before, (a) is [6, Lemma 1.3]. Now (b) and (c) follow by noting that if $y \in \langle x \rangle$, then y = ab or abc, where a, b and c are some generators for $\langle x \rangle$. Moreover, if x is a p-element, then either $\langle y \rangle = \langle x \rangle$ or y = ab. Now (d) follows from (c) and the observation that if P has rank d, it can be generated by d elements of $\Gamma_r G$ (see Theorem 2.1).

Theorem D now follows from Proposition 5.2(d) and the results in Section 4. We note that f(1) = f(2) = 1 (for p > 3 or r = 2) and $f(3) \ge 2$ (for r > 2 or r = 2 and $p \le 3$.).

Finally, we shall prove Theorem E. Note if $|L_rG| < 8$, then $L_rG = \Gamma_rG$ by Theorem A and [6] unless perhaps $L_rG = S_3$. However if $r \ge 2$, then as $A = (L_rG)' \lhd G$, $L_rG \le G' \le C_G(A)$, a contradiction. So $L_rG \ne S_3$. Now assume |G| < 96. Suppose G is a counterexample. Then $r \ge 3$ by [7, Theorem D]. If G/G' is cyclic, then $\Gamma_2G = \{[g, h] \mid g \in G', h \in G\}$, and $G' = L_rG$ for $r \ge 2$. Since |G| < 96, $G' = \Gamma_2G$, and so by induction, we see that

$$\Gamma_{r+1}(G) = \{ [g, h] \mid g \in \Gamma_r G, h \in G \} = \Gamma_2 G = G' = L_{r+1} G.$$

Since $|L_3G| \ge 8$ and indeed by an argument similar to the one above $|L_3G|$ is divisible by at least three primes, the only possibilities remaining are that [G:G']=4 and $|L_rG|=8, 12$, or 18 or that [G:G']=9 and $|G'|=|L_rG|=8$. The last possibility is easily eliminated by inspection. If [G:G']=4 and $|L_rG|=8$, then G is a 2-group and G' is cyclic. Thus Theorem A applies. If [G:G']=4 and $|L_rG|=12$ or 18, then either L_rG is the union of its Sylow subgroups (and so $L_rG=\Gamma_rG$ by Theorem A) or $G'=L_rG$ is abelian. It then follows that $L_rG \neq G'$, and this contradiction completes the proof.

REFERENCES

1. M. Aschbacher and R. Guralnick, Solvable generation of groups and Sylow subgroups of the lower central series, J. Algebra 77 (1982), 189-201.

2. R. S. Dark and M. L. Newell, On conditions for commutators to form a subgroup, J. London Math. Soc. (2) 17 (1978), 251-262.

3. P. X. Gallagher, The generation of the lower central series, Canad. J. Math. 17 (1965), 405-410.

4. D. Gorenstein, Finite groups (Harper and Row, 1968).

5. R. Guralnick, On a result of Schur, J. Algebra 59 (1979), 302-309.

6. R. Guralnick, Generation of the lower central series, Glasgow Math. J. 23 (1982), 15-20.

7. R. Guralnick, Commutators and commutator subgroups, Adv. in Math. 45 (1982), 319-330.

8. I. M. Isaacs, Commutators and the commutator subgroup, *Amer. Math. Monthly* **84** (1977), 720–722.

9. L.-C. Kappe, Groups with a cyclic term in the lower central series, Arch. Math. (Basel) 30 (1978), 561-569.

200

10. H. Liebeck, A test for commutators, Glasgow Math. J. 17 (1976), 31-36.

11. I. D. Macdonald, On cyclic commutator subgroups, J. London Math. Soc. 38 (1963), 419-422.

12. D. M. Rodney, On cyclic derived subgroups, J. London Math. Soc. (2) 8 (1974), 642–646.

13. D. M. Rodney, Commutators and abelian groups, J. Austral. Math. Soc. Ser. A 24 (1977), 79-91.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF SOUTHERN CALIFORNIA LOS ANGELES CALIFORNIA 90089–1113 U.S.A.