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1. Introduction.

1.1. Krull dimension of classical enveloping algebras. Let g be a finite dimensional
complex Lie algebra, and let U(g) be its enveloping algebra. The Krull–(Gabriel–
Rentschler) dimension K(U(g)) of U(g) is a non-negative integer bounded above by
dim g that gives a rough measure of how close U(g) is to being commutative; for
example, this upper bound is attained whenever g is solvable, but in general K(U(g)) is
strictly smaller than dim g.

The problem of showing that K(U(g)) is equal to the dimension of a Borel
subalgebra b of g when g is semisimple was considered by Paul Smith in [20], [21] and has
been open until relatively recently. In 1981, Thierry Levasseur made the observation
[14] that if G is the semisimple simply-connected complex algebraic group with Lie
algebra g and U is a maximal unipotent subgroup of G, then the Krull dimension
of U(g) is bounded above by the Krull dimension of the ring of global differential
operators D(X) on the “basic affine space” X = G/U . The problem with this strategy
is that X is only quasi-affine, and that D(X) = D(X) for some singular affine variety X .
The algebra of differential operators on a singular variety can behave rather badly: for
example, it need not even be Noetherian. Levasseur [15] was eventually able to deduce
that K(U(g)) = dim b from deep work of Bezrukavnikov, Braverman and Positselskii
[9], which established that D(G/U) is Noetherian, and even has finite self-injective
dimension. This algebra was subsequently studied in more depth by Levasseur and
Stafford [16].

1.2. Another approach. In this paper, we give another proof of the inequality
K(U(g)) � dim b, using Beilinson–Bernstein localisation [4]. Let B be a Borel subgroup
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of G containing U , and let ξ : G/U → G/B the natural projection. Then, ξ is a
Zariski locally trivial H := B/U-torsor, and D̃ := (ξ∗DG/U )H is a sheaf of “enhanced”
differential operators on the flag variety G/B. Letting V1, . . . , Vm be the Weyl-group
translates of a big cell in G/B, the infinitesimal action of g on G/B gives an algebra
homomorphism

U(g) −→ ⊕m
i=1D̃(Vi),

and each D̃(Vi) is a polynomial algebra in dim H variables over a Weyl algebra An,
where n = dim Vi = dim G/B = dim U . An application of Bernstein’s Inequality shows
that the Krull dimension of this algebra is dim U + dim H = dim b, so we would be
done if we knew that ⊕m

i=1D̃(Vi) was a faithfully flat U(g)-module. This is in fact
not the case (see Example 4.4), but using Beilinson–Bernstein localisation it is still
possible to show that there is a morphism from the lattice of left ideals in U(g) to the
corresponding lattice in ⊕m

i=1D̃(Vi), which preserves strict inclusions. This is sufficient
for the intended application – see Corollary 4.3.

1.3. Affinoid enveloping algebras. Recently, a new class of non-commutative
Noetherian rings has emerged from the study of non-commutative Iwasawa algebras
[2]. Let R be a complete discrete valuation ring with field of fractions K , let π ∈ R
generate the unique maximal ideal of R, and let g be an R-Lie algebra, free of finite
rank over R. Form the π -adic completion of the R-enveloping algebra U(g) of g, and
then invert π ; the result is the affinoid enveloping algebra

̂U(g)K :=
(

lim←− U(g)/πaU(g)
)

⊗R K.

For example, when g = Rn is abelian, its affinoid enveloping algebra ̂U(g)K can
be identified with the Tate algebra K〈x1, . . . , xn〉 consisting of formal power series∑

α∈�d λαxα ∈ K [[x1, . . . , xn]] such that λα converges to zero in K as α1 + . . . + αn

approaches infinity.

1.4. Main result. We may form the affinoid enveloping algebra of any R-Lie
lattice in a finite dimensional K-Lie algebra. As one may expect, “canonical” lattices
arising from semisimple algebraic groups are better behaved than others, so we restrict
our attention to these lattices. Our main result, Theorem 4.3, reads as follows.

THEOREM. Let G be a connected, simply connected, split semisimple, affine algebraic
group scheme over R, let B be a closed and flat Borel R-subgroup scheme of G, and
let g be the Lie algebra of G. Suppose that the characteristic of K is zero, the residue
characteristic p of R is very good for G and that n > 0. Then

K
(

̂U(πng)K

)
� dim B.

We refer the reader to [2, Section 6.8] for a precise definition of what it means
for a prime number p to be a very good prime for G and simply remark here that this
condition is satisfied by any p > 5 if G is not of type A. Both this theorem and its
classical analogue follow from a general result, Theorem 2.3. We have carefully given
all the details in the affinoid case, which requires many more technicalities than the
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classical enveloping algebra. For this reason, the reader may find it easier to begin with
the remarks following Corollary 4.3.

The interest in Theorem 1.4 is threefold. Firstly, it breaks down completely if K
had positive characteristic, since in this case enveloping algebras are known to be
finite modules over their centre – it is genuinely a mixed characteristic phenomenon.
Secondly, it is nice to have a proof of Levasseur’s theorem using only the classical
Beilinson–Bernstein theorem. However, what is of most interest is to contrast affinoid
enveloping algebras with Iwasawa algebras. When R = �p, the affinoid enveloping

algebra ̂U(pn−1g)�p arises as a microlocalisation of the Iwasawa algebra �pGn of the
nth congruence kernel Gn = ker(G(�p) → G(�p/pn�p)) of the p-adic Lie group G(�p),
and we expect [3] the Krull dimension of this algebra to be equal to dim B + dim H. We
hope to compute the Krull dimension of �pGn as a consequence of work in progress
(K. Ardakov and I. Grojnowski, in preparation), which has been ongoing concurrent
with [2].

2. Localisation and Krull dimension.

2.1. Coherently D-acyclic spaces. We refer the reader to [12, Section 0.5.3.1] for
the definition of coherent D-modules over a sheaf D of not necessarily commutative
rings over a topological space X . We write coh(D) for the abelian category of coherent
sheaves of D-modules on X , and mod(D) for the abelian category of all sheaves of
D-modules.

Recall [2, Section 5.1] that X is said to be coherently D-acyclic if D is a coherent
sheaf of rings on X and every coherent D-module is �(X,−)-acyclic and has coherent
global sections as a D(X)-module. If this is the case, then �(X,−) is exact on coherent
D-modules. We say that X is coherently D-affine if X is coherently D-acyclic and every
coherent D-module is generated by its global sections as a D-module. In this case,
�(X,−) induces an equivalence of categories between coh(D) and the category of
coherent D(X)-modules (see [2, Proposition 5.1]).

2.2. The left ideal sheaf I◦. Let D → D′ be a map of sheaves of rings on X . We
assume throughout Section 2 that:

(a) X is coherently D′-acyclic,
(b) D′ := �(X,D′) is left Noetherian, and is a flat right D := �(X,D)-module.

Since we do not consider any other space apart from X in this section, we will abbreviate
�(X,M) to �(M) for any sheaf M on X .

If I is a left ideal in D, then we define a left ideal sheaf I◦ of D as follows:

I◦ := ker
(
D −→ D ⊗D

D
I

)
.

Equivalently, I◦ is the image of D ⊗D I in D under the natural multiplication map. This
left ideal sheaf fits into the short exact sequence

0 → I◦ → D → D ⊗D
D
I

→ 0.
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Taking global sections gives a commutative diagram of D-modules with exact rows:

0 �� I ��

ϕI

��

D ��

��

D
I

��

��

0

0 �� �(I◦) �� �(D) �� �(D ⊗D
D
I ).

(1)

Since �(D) = D by assumption, the middle vertical map is an isomorphism and ϕI is
an injection. Thus, we may view �(I◦) as a left ideal of D containing I .

Similarly, whenever J is a left ideal in D′, we can define an ideal sheaf

J◦ := ker
(
D′ −→ D′ ⊗D′

D′

J

)
.

Since D′ is left Noetherian by Section 2.2(b), D′/J is a finitely presented D′-module.
Since D′ is coherent by Section 2.2(a) and D′ ⊗D′ − is right exact, it follows that
D′ ⊗D′ D′

J is a coherent D′-module. Therefore, J◦ is also a coherent D′-module. Thus,
we obtain a similar diagram of D′-modules:

0 �� J ��

ψJ

��

D′ ��

��

D′
J

��

��

0

0 �� �(J◦) �� �(D′) �� �(D′ ⊗D′ D′
J ) �� 0

(2)

and its bottom row is exact because � is exact on coh(D′) by [2, Proposition 5.1].

2.3. Lemma. For every finitely generated D-module M, the natural map

γM : D′ ⊗D M −→ �(D′ ⊗D M)

is an isomorphism in coh(D′).

Proof. The D′-module N := D′ ⊗D M is finitely generated, and D′ ⊗D M ∼=
D′ ⊗D′ N naturally in M. Now D′ is left Noetherian by Section 2.2(b) so N is a coherent
D′-module. Since X is coherently D′-acyclic by Section 2.2(a), the result follows from
the proof of [2, Proposition 5.1]. �

2.4. Since �(D) = D, the functor � is right adjoint to D ⊗D − : mod(D) →
mod(D). The counit of this adjunction induces a natural transformation

αM : D′ ⊗D M −→ D′ ⊗D �(D ⊗D M)

of D′-modules. Since �(D′ ⊗D M) is naturally a left �(D′) = D′-module, we also have
a natural transformation of D′-modules

βM : D′ ⊗D �(D ⊗D M) −→ �(D′ ⊗D M).
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When M is a finitely generated D-module, αM and βM fit into a commutative diagram

D′ ⊗D �(D ⊗D M)

�(D′ ⊗D M),

D′ ⊗D M

γM

αM

βM

where the curved arrow γM is the isomorphism in coh(D′) given by Lemma 2.3.

2.5. Proposition. Let I be a left ideal in D, and suppose that the hypotheses of
Section 2.2 are satisfied. Then, the natural map

1 ⊗ ϕI : D′ ⊗D I −→ D′ ⊗D �(I◦)

is an isomorphism.

Proof. Consider the following diagram of D′-modules:

D′ ⊗D �(I◦) D′ ⊗D �(D) D′ ⊗D �(D ⊗D
D
I )

�((D′ ⊗D I)◦) �(D′) �(D′ ⊗D
D
I ).

D′ ⊗D I D′ D′ ⊗D
D
I

ψ γD γD/I

θ βD βD/I

ι

1 ⊗ ϕI αD αD/I

The two squares on the top are obtained by applying the functor D′ ⊗D − to the
diagram Section 2.2(1), and the two squares at the back with curved sides together
form a special case of the diagram Section 2.2(2) with J := D′ ⊗D I and ψ = ψD′⊗DI .
Thus, these squares commute, and top two rows are exact since D′ is a flat right
D-module by assumption Section 2.2(b).

The right front square commutes because β is a natural transformation. This
induces the map θ which makes the left front square commute. Note that θ is an
injection because βD is an isomorphism. The middle curved triangle commutes by
Section 2.3; since ι is an injection, we see that the curved triangle on the left also
commutes

ψ = θ ◦ (1 ⊗ ϕI ).
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But ψ is an isomorphism because γD and γD/I are isomorphisms by Lemma 2.3, and
1 ⊗ ϕI is injective because ϕI is injective and D′ ⊗D − is exact. Therefore, 1 ⊗ ϕI is an
isomorphism. �

2.6. An application to Krull dimension. Now, let {V1, . . . , Vm} be an open cover
of X and let U be a subring of D. Then, we have a function


 : I �→ ⊕m
i=1�(Vi, (D · I)◦)

from the set of left ideals in U to the set of left ideals in the ring ⊕m
i=1D(Vi).

LEMMA. 
(I) ⊆ 
(J) whenever I ⊆ J are left ideals in U.

Proof. Clearly D · I ⊆ D · J. There is a commutative diagram with exact rows

0 �� (D · I)◦ ��

��

D �� D ⊗D
D

D·I ��

��

0

0 �� (D · J)◦ �� D �� D ⊗D
D

D·J �� 0

inducing an injective map (D · I)◦ ↪→ (D · J)◦ of left ideal sheaves of D. Now, apply
the left exact functor ⊕m

i=1�(Vi,−). �
THEOREM. Let D be a coherent sheaf of rings on X, let {V1, . . . , Vm} be an open cover of
X, and let U be a subring of D = �(X,D). Suppose that
(1) D is left Noetherian, and a faithfully flat right U-module,
(2) each Vi is coherently D-affine,
(3) for any simple left U-module M, there exists a map D → D′ such that

(a) X is coherently D′-acyclic,
(b) D′ := �(X,D′) is left Noetherian, and a flat right D-module,
(c) D′ ⊗U M �= 0.

Then, I

�→ ⊕m

i=1�(Vi, (D · I)◦) preserves strict inclusions, and consequently

K(U) � K(⊕m
i=1D(Vi)).

Proof. Let I ⊂ J be two left ideals in U . Assumption (1) forces U to be left
Noetherian, so we may assume that M := J/I is a simple U-module. Since D is a
faithfully flat right U-module by (1), N := D · J/D · I ∼= D ⊗U M is non-zero. Using
(3), choose D → D′ such that D′ ⊗U M �= 0. By Proposition 2.3,

D′ ⊗D
�((D · J)◦)
�((D · I)◦)

∼= D′ ⊗D
D · J
D · I

= D′ ⊗D N ∼= D′ ⊗U M �= 0

so (D · I)◦ ⊂ (D · J)◦. Since D is left Noetherian by (1), (D · I)◦ is the image of a
morphism between two coherent D-modules and is therefore a coherent D-module.
Since {V1, . . . , Vm} is an open cover of X , (D · I)◦|Vj

⊂ (D · J)◦|Vj
for some j. But Vj is

coherentlyD-affine by (2), which implies that �(Vj,−) is exact and faithful on coherent
DVj -modules by [2, Proposition 5.1]. Therefore,


(I) = ⊕m
i=1�(Vi, (D · I)◦) ⊂ ⊕m

i=1�(Vi, (D · J)◦) = 
(J)
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as claimed. The last statement follows from [18, Proposition 6.1.17(ii)] applied to the
poset map 
 with γ = δ = 0. �

3. The sheaf ̂̃Dn,K on the flag variety. Throughout, we will work over a complete
discrete valuation ring R with uniformiser π , residue field k of characteristic p � 0,
and field of fractions K . We begin by briefly recalling relevant definitions and notation
from [2].

3.1. Crystalline differential operators on the flag variety. Let X be a scheme over
Spec(R) which is smooth, separated and locally of finite type. The sheaf of crystalline
differential operators D on X [2, Section 4.2] is the sheaf of associative R-algebras
generated by O and the tangent sheaf T , subject only to the relations
� f ∂ = f · ∂ and ∂f − f ∂ = ∂(f ) for each f ∈ O and ∂ ∈ T ;
� ∂∂ ′ − ∂ ′∂ = [∂, ∂ ′] for ∂, ∂ ′ ∈ T .
Let G be a connected, simply connected, split semisimple, affine algebraic group scheme
over R. Let B be a closed and flat Borel R-subgroup scheme of G, let N be its unipotent
radical and let H := B/N be the abstract Cartan group. Let g, b, n and h be the
corresponding R-Lie algebras.

Let B = G/B be the flag variety and B̃ = G/N the base affine space of G. The
natural projection ξ : B̃ → B is a Zariski locally trivial H-torsor, and we define

D̃ := (ξ∗DB̃)H

to be the relative enveloping algebra of ξ . We write S for the basis of B consisting of
open affine subschemes V on which ξ is trivial – see [2, Section 4.6] for more details.

3.2. The Harish-Chandra homomorphism. Since our group G is split by
assumption, we can find a Cartan subgroup T of G complementary to N in B.

Let i : T
∼=−→ H denote the natural isomorphism, and let i : t

∼=−→ h be the induced
isomorphism between the corresponding Lie algebras. The adjoint action of T on g

induces a root space decomposition

g = n ⊕ t ⊕ n+

and we will regard n, the Lie algebra of N, as being spanned by negative roots. This
decomposition induces an isomorphism of R-modules

U(g) ∼= U(n) ⊗ U(t) ⊗ U(n+)

and a direct sum decomposition

U(g) = U(t) ⊕ (
nU(g) + U(g)n+)

.

Now, the adjoint action of the group G induces a rational action of G on U(g) by algebra
automorphisms, so we may consider the subring U(g)G of G-invariants. We call the
composite of the natural inclusion of U(g)G ↪→ U(g) with the projection U(g) � U(t)
onto the first factor defined by this decomposition the Harish-Chandra homomorphism:

φ : U(g)G −→ U(t).
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LEMMA. Let W be the Weyl group of G, and suppose that p is a very good prime for G.
Then gr U(t) is a free graded gr(U(g)G)-module of rank |W| via gr φ.

Proof. There is an analogous factorisation S(g) ∼= S(n−) ⊗ S(t) ⊗ S(n), and a
corresponding decomposition S(g) = S(t) ⊕ (nS(g) + S(g)n+). Let ψ : S(g)G → S(t)
be the composition of the inclusion S(g)G ↪→ S(g) with the projection S(g) � S(t)
along this decomposition. Then

gr φ = ψ.

It has been shown in [2, Proposition 6.9] that ψ is injective, and that the image of ψ

is precisely the ring of invariants S(t)W. Since p is a very good prime, the result now
follows from [10, Corollaire du Théorème 2 and Théorème 2(c)]. �

3.3. Deformations. Let A be a positively �-filtered R-algebra with F0A an R-
subalgebra of A. Recall [2, Section 3.5] that A is said to be a deformable R-algebra if
gr A is a flat R-module. A morphism of deformable R-algebras is an R-linear filtered
ring homomorphism. The nth deformation of A is

An :=
∑
i�0

π inFiA ⊆ A.

This is actually an R-subalgebra of A. It becomes a deformable R-algebra when we
equip An with the subspace filtration arising from the given filtration on A, and
multiplication by π in on graded pieces of degree i extends to a natural isomorphism of
graded R-algebras

σA : gr A
∼=−→ gr An

by [2, Lemma 3.5]. The assignment A �→ An is functorial in A.

LEMMA. Let B
α→ A and B

γ→ C be morphisms of deformable R-algebras with central
images. Suppose that gr C is a free graded gr B-module via gr γ . Equip A ⊗B C with the
tensor filtration. Then
(a) there is a natural isomorphism gr A ⊗gr B gr C

∼=−→ gr(A ⊗B C),
(b) A ⊗B C is a deformable R-algebra,
(c) there is a natural isomorphism of deformable R-algebras

An ⊗Bn Cn
∼=−→ (A ⊗B C)n.

Proof. (a) This follows from [17, I.6.14].
(b) Since gr C is a free graded gr B-module, gr A ⊗gr B gr C is free as a gr A-module.

Since A is deformable, gr A is flat over R and therefore gr A ⊗gr B gr C is also flat over
R. Now, apply part (a).

(c) There are natural maps A −→ A ⊗B C and C −→ A ⊗B C of deformable R-
algebras which send a ∈ A to a ⊗ 1 and c ∈ C to 1 ⊗ c, respectively. Applying the
deformation functor to these maps, we obtain a filtered R-algebra homomorphism
An ⊗R Cn → (A ⊗B C)n which descends to a filtered R-algebra homomorphism

θ : An ⊗Bn Cn −→ (A ⊗B C)n.
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The associated graded of this map fits into the following commutative diagram:

gr(An ⊗Bn Cn)
gr θ �� gr(A ⊗B C)n

gr An ⊗gr Bn gr Cn

��

gr A ⊗gr B gr C
σA⊗σC

�� �� gr(A ⊗B C)

σA⊗BC

��

where all the other maps are isomorphisms either by part (a) above or by [2, Lemma
3.5]. Hence, θ is an isomorphism. �

Combining this result together with Lemma 3.2, we obtain the following:

COROLLARY. Suppose that p is a very good prime for G. Then
(a) U(g) ⊗U(g)G U(t) is a deformable R-algebra,
(b) its associated graded is isomorphic to S(g) ⊗S(g)G S(t), and
(c) (U(g) ⊗U(g)G U(t))n ∼= U(g)n ⊗(U(g)G)n U(t)n for all n � 0.

We will assume from now on that p is a very good prime for G.

3.4. π -adic completions. If B is a deformable R-algebra, B̂ := lim←− B/πaB will

denote its π -adic completion. Recall almost commutative affinoid K-algebras from [2,
Section 3.8]. Such an algebra A has a double associated graded ring Gr(A); when

A = B̂n,K = B̂n ⊗R K

for some deformable R-algebra B, [2, Corollary 3.7] tells us that Gr(A) can be computed
as follows:

Gr(A) = Gr(B̂n,K ) ∼= gr B/π gr B.

In this way, we obtain three examples of almost commutative affinoid K-algebras:

U := ̂U(g)n,K , Z := ̂U(g)G
n,K and Z̃ = ̂U(t)n,K

by applying this process to the algebras U(g)n, (U(g)G)n and U(t)n, respectively.
Note that Z̃ becomes a Z-module via the completed, deformed, Harish-Chandra
homomorphism φ̂ : Z → Z̃ – see [2, Section 9.3].

LEMMA. U ⊗Z Z̃ is an almost commutative affinoid K-algebra, and there is a natural
isomorphism

Gr(U ⊗Z Z̃) ∼= S(gk) ⊗S(gk)Gk S(tk).

Proof. Let B := U(g) ⊗U(g)G U(t). Then B is a deformable R-algebra and

Bn ∼= U(g)n ⊗(U(g)G)n U(t)n

by Corollary 3.3. So, B̂n,K is an almost commutative affinoid K-algebra, with

Gr(B̂n,K ) ∼= gr B/π gr B
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by [2, Corollary 3.7]. Now, gr B ∼= S(g) ⊗S(g)G S(t) by Corollary 3.3(b) and
S(g)G/πS(g)G ∼= S(gk)Gk by [2, Proposition 6.9], so

Gr(B̂n,K ) ∼= gr B/π gr B ∼= S(gk) ⊗S(gk)Gk S(tk).

On the other hand, it follows from Lemma 3.2 and [2, Lemma 3.5] that U(t)n is a
finitely generated (U(g)G)n-module via φn, so we may apply [2, Lemma 6.5] to deduce
that

B̂n ∼= (
U(g)n ⊗(U(g)G)n U(t)n

)̂ ∼= ̂U(g)n ⊗
̂(U(g)G)n

̂U(t)n.

Thus, U ⊗Z Z̃ ∼= B̂n,K is also an almost commutative affinoid K-algebra, and Gr(U ⊗Z

Z̃) ∼= Gr(B̂n,K ) ∼= S(gk) ⊗S(gk)Gk S(tk) as claimed. �

3.5. The sheaf D̃n. The actions of G and H = B/N on B̃ = G/N can be
differentiated to obtain a commutative diagram

U(g)G

��

φ �� U(t)

j◦i

��
U(g)

U(ϕ)
�� D̃

of deformable R-algebras – see [2, Lemma 4.9].
Fix the deformation parameter n, and let D̃n be the sheafification of the presheaf

obtained by postcomposing D̃ with the deformation functor A → An. Applying the
deformation functor produces the commutative diagram

(U(g)G)n

��

φn �� U(t)n

(j◦i)n

��
U(g)n U(ϕ)n

�� D̃n

and a homomorphism

ϕ̃n : U(g)n ⊗(U(g)G)n U(t)n −→ D̃n.

3.6. Global sections of ̂̃Dn,K . Let ̂̃Dn := lim←− D̃n/π
aD̃n be the π -adic completion

of D̃n and let

D := ̂̃Dn,K := ̂̃Dn ⊗R K

be the sheaf of K-algebras on B obtained from ̂̃Dn by inverting π . The abbreviation D
will be useful because we will need to pass to further completions of this sheaf. The
R-algebra homomorphism ϕ̃n : U(g)n ⊗(U(g)G)n U(t)n −→ D̃n defined in §3.5 extends to
a K-algebra homomorphism

Φ : U ⊗Z Z̃ −→ D .
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PROPOSITION. The map Φ : U ⊗Z Z̃ −→ �(B,D) is an isomorphism.

Proof. Let {V1, . . . , Vm} be an S-cover of B, and let V := ∐
Vi. Since each Vi

is in S, it follows from [2, Proposition 5.10(a)] that D(V ) ∼= ̂D̃(V )n,K is an almost
commutative affinoid K-algebra, and Gr(D(V )) ∼= O( ˜T∗Vk). There is a complex

0 → U ⊗Z Z̃
Φ−→ D(V ) −→ D(V ×B V )

of almost commutative affinoid K-algebras, and it is enough to show that this complex
is exact. Passing to the double associated graded and applying Lemma 3.4, we obtain
the complex

0 → S(gk) ⊗S(gk)Gk S(tk) → O( ˜T∗Vk) → O( ˜T∗(V ×B V )k).

Since p is a very good prime for G, this complex was shown to be exact in the proof of
[8, Proposition 3.4.1]. �
COROLLARY. �(B,D) is a faithfully flat right U-module.

Proof. Since �(B,D) ∼= U ⊗Z Z̃ by the Proposition, this follows from [2,
Proposition 9.3], where it is shown that Z̃ is free of rank |W| as a module
over Z. �

3.7. The J-adic associated graded ring. If J is a centrally generated ideal of a ring
A, we denote the associated graded ring of A with respect to the J-adic filtration by
grJ A. Thus,

grJ A :=
⊕
m�0

Jm

Jm+1
.

LEMMA. Let A be a ring, and let Z be a central subring of A. Suppose that A is a flat
Z-module and let J be an ideal of Z. Then

grJA A ∼= grJ Z ⊗
Z/J

A
JA

.

Proof. Fix m ∈ �. Since A is a flat Z-module by assumption and 0 → Jm → Z →
Z/Jm → 0 is exact, there is a short exact sequence

0 → Jm ⊗Z A → Z ⊗Z A → (Z/Jm) ⊗Z A → 0

of A-modules. Therefore, Jm ⊗Z A ∼= JmA. Applying flatness again to the short exact
sequence 0 → Jm+1 → Jm → Jm/Jm+1 → 0 produces the short exact sequence

0 → Jm+1A → JmA → (Jm/Jm+1) ⊗Z A → 0.

Since Jm/Jm+1 is killed by J, we obtain isomorphisms

(JA)m

(JA)m+1
= JmA

Jm+1A
∼= Jm

Jm+1
⊗Z A ∼= Jm

Jm+1
⊗

Z/J

A
JA

for all m ∈ � and the result follows. �

https://doi.org/10.1017/S0017089513000487 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089513000487


18 KONSTANTIN ARDAKOV AND IAN GROJNOWSKI

We will apply this Lemma in the following two cases:

PROPOSITION. (a) D(V ) is a flat Z̃-module for any V ∈ S.
(b) D(B) is a flat Z̃-module.

Proof. (a) Since Z̃ → D(V ) is a map of almost commutative affinoid K-algebras,
by applying [19, Proposition 1.2] twice, it is enough to show that Gr(D(V )) is a
flat Gr(Z̃)-module. Now, Gr(Z̃) ∼= S(tk) and Gr(D(V )) ∼= O( ˜T∗Vk) by [2, Proposition
5.10(a)]. Since V trivialises the torsor ξ : B̃ → B, there is an isomorphism O(T̃∗V ) ∼=
O(T∗V ) ⊗R S(t), so O( ˜T∗Vk) ∼= O(T∗Vk) ⊗k S(tk) is a flat S(tk)-module.

(b) Since D(B) ∼= U ⊗Z Z̃ by Proposition 3.6, it is enough to show that U is a flat Z-
module. Now, Gr(U) ∼= S(gk) and Gr(Z) ∼= S(gk)Gk by the proof of [2, Proposition 9.3],
so again by [19, Proposition 1.2], it is enough to check that S(gk) is a flat S(gk)Gk -module.
But ψk : S(gk)Gk → S(tk) is an embedding with image S(tk)Wk by [2, Proposition 6.9]
and S(tk) is a free graded S(tk)Wk -module of rank |W| by [10, Théorème 2(c)], so S(gk)
is actually a free graded S(gk)Gk -module by [6, Proposition 3.1]. �

3.8. The completion of D at a maximal ideal of the centre. Let t1, . . . , tl ∈ h be
the simple coroots corresponding to the simple roots in t∗K given by the adjoint action
of t on n+.

DEFINITION. For any λ ∈ HomR(πnt, R), let mλ be the ideal of Z̃ = ̂U(t)n,K generated
by the elements ti − λ(ti) for all i = 1, . . . , l, and let

D̂ := lim←− D/mn
λD

be the mλ-adic completion of D .

PROPOSITION. Let V ∈ S.
(a) D̂(V ) ∼= ̂D(V ).
(b) D̂(V ) is Noetherian.
(c) D̂(V ′) is a flat right D̂(V )-module for all V ′ ∈ S contained in V.

Proof. (a) Since V is coherently D-affine by [2, Theorem 5.13], �(V,−) is exact on
coherent D-modules. Since Z̃ is Noetherian,

(D/ma
λD)(V ) ∼= D(V )/ma

λD(V )

for all a � 1 by [2, Lemma 5.2]. Hence, D̂(V ) is the mλ-adic completion of D(V ).
(b) D(V ) is Noetherian by [2, Proposition 5.10]. Hence, D̂(V ) ∼= ̂D(V ) is also

Noetherian by [7, Section 3.2.3(vi)].
(c) By part (a), the associated graded ring of D̂(V ) with respect to the mλ-adic

filtration is isomorphic to gr D(V ). So by part (b) and [19, Proposition 1.2], it is enough
to prove that gr D(V ′) is a flat right gr D(V )-module. Since D(V ) is flat as a Z̃-module
by Proposition 3.7(a), gr D̂(V ) is isomorphic to

grmλ
Z̃ ⊗

Z̃/mλ

D(V )/mλD(V )

by Lemma 3.7. Since Z̃/mλ is a copy of the ground field K , it is enough to show that
D(V ′)/mλD(V ′) is a flat right D(V )/mλD(V )-module. But the proof of [2, Proposition
6.5(c)] shows that there is an isomorphism between D(V )/mλD(V ) and the algebra
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̂D(V )n,K , which is compatible with the restriction maps to the corresponding algebras
over V ′ ⊆ V . The flatness of ̂D(V ′)n,K as a right ̂D(V )n,K -module in turn follows from
the proof of [2, Proposition 5.7(d)]. �
COROLLARY. D̂ is coherent.

Proof. This follows from [7, Proposition 3.1.1] and the Proposition above. �

3.9. Global sections of D̂ . Recall the central reduction D̂λ
n,K of the sheaf D = ̂̃Dn,K

defined in [2, Section 6.5].

PROPOSITION. D̂(B) is isomorphic to the mλ-adic completion of D(B).

Proof. Let {V1, . . . , Vm} be an S-cover of B, and let V := ∐
Vi. The sequence

0 → D(B) → D(V ) −→ D(V ×B V )

is exact, and because D̂(V ) ∼= ̂D(V ) by Lemma 3.8(a) it will be enough to prove that
the associated graded of this sequence with respect to the mλ-adic filtration is exact.
Now D(B) ∼= U ⊗Z Z̃ by Proposition 3.6, so each term in this sequence is flat as a
Z̃-module by Proposition 3.7. So by Lemma 3.7, this associated graded is isomorphic
to the tensor product of grmλ

Z̃ over Z̃/mλ with the complex

0 → D(B)
mλD(B)

→ D(V )
mλD(V )

→ D(V ×B V )
mλD(V ×B V )

.

Since Z̃/mλ is a copy of the field K , it is enough to prove that this complex is exact.
Now, [2, Theorem 6.10(a) and (b)] tell us that

D(B)
mλD(B)

∼= (U ⊗Z Z̃) ⊗Z̃ (Z̃/mλ) ∼= U ⊗Z (Z̃/mλ) ∼= D̂λ
n,K (B),

and [2, Proposition 6.5(c)] tells us that

D(V ′) ⊗Z̃ (Z̃/mλ) ∼= D̂λ
n,K (V ′) for any V ′ ∈ S.

This complex can thus be identified with

0 → D̂λ
n,K (B) → D̂λ

n,K (V ) → D̂λ
n,K (V ×B V ),

and is therefore exact. �
COROLLARY. D̂(B) is Noetherian, and a flat right D(B)-module.

Proof. The algebra D(B) is isomorphic to U ⊗Z Z̃ by Proposition 3.6, which is
an almost commutative affinoid K-algebra by Lemma 3.4. It is therefore Noetherian.
Now, apply the Proposition together with [7, Section 3.2.3 (iv) and (vi)]. �

3.10. The Beilinson–Bernstein theorem for D̂ . We assume from now on that K
has characteristic zero. Let ω1, . . . , ωl ∈ h∗

K be the system of fundamental weights
corresponding to the coroots {t1, . . . , tl}, and let ρ = ω1 + . . . + ωl. Following [5], we
say that a weight μ ∈ h∗

K is dominant if μ(h) /∈ {−1,−2,−3, · · · } for any positive coroot
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h ∈ h, and we say that μ is regular if its stabiliser under the action of W is trivial. Finally,
we will say that λ is ρ-dominant if λ + ρ is dominant, and λ is ρ-regular if λ + ρ is
regular.

Recall [2, Section 5.1] that if A is a sheaf of rings on B, then we say that S is
coherently A-acyclic, respectively coherently A-affine, if for all U ∈ S, U is coherently
A|U -acyclic, respectively coherently A|U -affine.

THEOREM. (a) S is coherently D-affine.
(b) S is coherently D̂-affine.
(c) If λ is ρ-dominant, then B is coherently D̂-acyclic.
(d) If λ is ρ-dominant and ρ-regular, then B is coherently D̂-affine.

Proof. (a) This is [2, Theorem 5.13].
(b) D(V ) is Noetherian for all V ∈ S by [2, Proposition 5.10(a)], S is coherently

D-affine by part (a), and D̂ is coherent by Corollary 3.8. Therefore, S is coherently
D̂-affine by [2, Theorem 5.5].

(c),(d) By [2, Proposition 6.12], B is coherently D-acyclic whenever λ is ρ-
dominant, and it is coherently D-affine if λ is in addition ρ-regular. Since D̂ is coherent
by Corollary 3.8 and D̂(B) is Noetherian by Corollary 3.9, both parts follow from [2,
Theorem 5.5] applied to the topological space B equipped with the base S ∪ {B}. �

3.11. Base change. Let K ′/K be a finite extension with rings of integers R′/R
and ramification index e, and let B′ := B ×R R′, H′ := H ×R R′, ξ ′ := ξ ×R R′ and
h′ := h ⊗R R′ be the corresponding base-changed objects.

Let D ′ := ̂D̃ne,K ′ be the sheaf of K ′-algebras on B′ obtained as in Section 3.6 using
the H′-torsor ξ ′ and the deformation parameter ne, and let λ : πnh′ → R′ be a character.
We let D̂ ′ denote the completion of D ′ at the maximal ideal mλ of Z̃′ := ̂U(h′)ne,K

defined in Section 3.8.

LEMMA. Let τ : B′ → B denote the natural projection.
(a) �(B, τ∗D̂ ′) is isomorphic to the mλ-adic completion of K ′ ⊗K �(B,D).
(b) The sheaf of rings τ∗D̂ ′ is coherent.
(c) B is coherently τ∗D̂ ′-acyclic, whenever λ is ρ-dominant.

Proof. (a) Let U ′ := ̂U(g′)ne,K , Z′ := ̂U(g′)G′
ne,K and Z̃′ := ̂U(t′)ne,K be the

corresponding base-changed objects. Then [2, Lemma 3.9(c) and Lemma 9.5] tell
us that U ′ ∼= K ′ ⊗K U , Z′ ∼= K ′ ⊗K Z and Z̃′ ∼= K ′ ⊗K Z̃, so

D ′(B′) ∼= U ′ ⊗Z′ Z̃′ ∼= K ′ ⊗K (U ⊗Z Z̃) ∼= K ′ ⊗K D(B)

by applying Proposition 3.6 twice. Therefore, �(B, τ∗D̂ ′) = �(B′, D̂ ′) is the mλ-adic
completion of D ′(B′) ∼= K ′ ⊗K D(B) by Proposition 3.9.

(b) Let S ′ be the base of open subschemes of B′ that trivialise ξ ′, and note
that τ−1(V ) = V ×R R′ is in S ′ whenever V ∈ S. Now, �(V, τ∗D̂ ′) = �(τ−1(V ),D ′)
is left Noetherian by Proposition 3.8(b), and for any open V ′ ∈ S contained in
V , �(V ′, τ∗D̂ ′) = �(τ−1(V ′),D ′) is a flat right �(τ−1(V ),D ′)-module by Proposition
3.8(c), so τ∗D̂ ′ is coherent by [7, Proposition 3.1.1].

(c) Let N be a coherent D̂ ′-module. Then Hi(τ−1(V ),N ) = 0 for all i > 0 and
all V ∈ S by Theorem 3.10(b), so Riτ∗N = 0 for all i > 0 by [13, Proposition III.8.1].
Hence, τ∗ is exact on coherent D̂ ′-modules.
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Now let M be a coherent A := τ∗D̂ ′-module and let N := D̂ ′ ⊗τ−1A τ−1M. We
will show that N is a coherent D̂ ′-module, and that the natural map ηM : M → τ∗N
is an isomorphism. Since these are local properties, we may assume that M has a finite
presentation Ar → As → M → 0. Then D̂ ′r → D̂ ′s → N → 0 is a presentation for
N ; hence, N is coherent because D̂ ′ is coherent by Corollary 3.8. As τ∗ is exact on
coherent D̂ ′-modules by the first paragraph, Ar → As → τ∗N → 0 is exact. Hence,
ηM : M → τ∗N is an isomorphism as claimed, so we may invoke [13, Exercise III.8.1]
to deduce that

Hi(B,M) = Hi(B, τ∗N ) = Hi(B′,N ) for all i � 0.

The result now follows from Theorem 3.10(c) applied to the sheaf D̂ ′ on B′. �

3.12. Lemma. Let M be a simple left U-module, and suppose that n > 0. Then
there exists a finite field extension K ′/K and a ρ-dominant character λ : πnt → R′ such
that if N := K ′ ⊗K Z̃ ⊗Z M, then mλ · N < N.

Proof. Let M be a simple U-module and let P = AnnZ(M). Since n > 0 by
assumption, the affinoid Quillen Lemma [2, Theorem 9.4] implies that Z/P is finite
dimensional over K . Since Z̃ is a finitely generated Z-module via φ̂, the algebra
Z̃ ⊗Z Z/P is finite dimensional over K . Using the notation of Section 3.11, choose
a finite field extension K ′/K large enough so that every maximal ideal of

Z̃′/Z̃′ · P ∼= K ′ ⊗K Z̃ ⊗Z Z/P

is of the form mλ/Z̃′ · P for some λ : πnt → R′, and let � ⊂ πnt′∗ be the finite set
of characters obtained in this way. Since φ̂(Z) consists of W-invariant elements of Z̃
under the dot action, � is a union of W-orbits.

Suppose for a contradiction that mλ · N = N for all ρ-dominant λ ∈ �. Using [2,
Lemma 9.6], we see that mλ · N = N for all λ ∈ �, and hence mt

λ · N = N for all λ ∈ �

and all integers t � 1. Since Z̃′/Z̃′ · P is finite dimensional, we can find some t � 1
such that

∏
λ∈� mt

λ ⊆ Z̃ · P, and therefore P · N = N. But P · N = 0 by construction
and hence N = 0. On the other hand, Z̃ is a finitely generated free Z-module by [2,
Proposition 9.3], so N is a direct sum of finitely many copies of M – a contradiction. �

We can now state and prove the main result of this section.

3.13. Theorem. Let {V1, . . . , Vm} be an open S-cover of B, let D := ̂̃Dn,K and let
U = ̂U(g)n,K . If n > 0, then K(U) � K(⊕m

i=1D(Vi)).

Proof. We will apply Theorem 2.3 to the sheaf D on B, which is coherent by [2,
Proposition 5.10(c)]. By Proposition 3.6, D := �(B,D) is isomorphic to U ⊗Z Z̃ and
therefore contains U . We will now verify the hypotheses of Theorem 2.3.

(1) By Lemma 3.4, D is an almost commutative affinoid K-algebra, so it is
automatically Noetherian – see [2, Section 3.8]. It is a faithfully flat right U-module
by Corollary 3.6.

(2) S is coherently D-affine by Theorem 3.10(a).
(3) Let M be a simple left U-module. By Lemma 3.12, we can find a finite

field extension K ′/K and a ρ-dominant λ : πnt → R′ such that mλ · N < N, where

https://doi.org/10.1017/S0017089513000487 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089513000487


22 KONSTANTIN ARDAKOV AND IAN GROJNOWSKI

N = K ′ ⊗K Z̃ ⊗Z M. Let D̂ ′ be the completion of D ′ considered in Section 3.11, and
set D′ := τ∗D̂ ′.

(a) Since λ is ρ-dominant, B is coherently D′-acyclic by Lemma 3.11(c).
(b) By Lemma 3.11(a), D′ := �(B,D′) is the mλ-adic completion of K ′ ⊗K D. This

algebra is left Noetherian and flat over K ′ ⊗K D (and hence also over D) by [7, Section
3.2.3(vi) and (iv)].

(c) It follows from Proposition 3.6 that N = K ′ ⊗K Z̃ ⊗Z M ∼= K ′ ⊗K D ⊗U M.
Now, D′ ⊗U M ∼= D′ ⊗K ′⊗K D N is the mλ-adic completion of N by [7, Section 3.2.3(iii)],
and it is non-zero because mλ · N < N by our choice of λ. �

4. Krull dimension of Extended Tate–Weyl algebras.

4.1. The injective dimension of almost commutative affinoid K-algebras. In this
subsection, K can have arbitrary characteristic. Let A be an almost commutative
affinoid K-algebra, and let M be a finitely generated A-module. The characteristic
variety of M was defined in [2, Section 3.3] to be the support

Ch(M) = Supp(Gr(M)) ⊆ Spec(Gr(A))

of the associated double graded module Gr(M) of M with respect to a good double
filtration on M. By definition, the ambient space Spec(Gr(A)) containing these
characteristic varieties is an affine variety of finite type over k.

LEMMA. If Spec(Gr(A)) is smooth, then the injective dimension of A is determined by the
characteristic varieties of simple A-modules. More precisely, we have

inj.dim(A) = dim Gr(A) − min
M

dim Ch(M),

where the minimum is taken over all simple A-modules M.

Proof. It is explained in [2, Theorem 3.3] that the grade number

jA(M) := min{j : Extj
A(M, A) �= 0}

of any finitely generated A-module M can be computed using the characteristic variety
using the formula

jA(M) = dim Gr(A) − dim Ch(M).

It is well known that inj.dim(A) = maxM jA(M), where the maximum is taken over all
non-zero finitely generated A-modules M, and therefore

inj.dim(A) = dim Gr(A) − min
M

dim Ch(M).

Since dim Ch(N) � dim Ch(M) for any quotient N of M, we may as well take the
minimum over all simple A-modules. �

4.2. Bernstein’s Inequality and Quillen’s Lemma. We return to assuming that K
has characteristic zero. Recall from Section 3.8 that l = dim T denotes the rank of G.
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THEOREM. Let D = D(V ) for some V ∈ S, suppose that n > 0 and that V ∼= �m
R, where

m = dimB. Then

inj.dim(D) � m + l.

Proof. The double associated graded of D was computed in [2, Proposition 5.10(a)]
as follows:

Gr(D) = Gr( ̂̃Dn,K (V )) ∼= O( ˜T∗Vk).

Since V trivialises ξ by assumption, it follows from [2, Lemma 4.4] that T̃∗V ∼= T∗V ×
h∗, so T̃∗Vk is smooth. Since we are assuming that V ∼= �m

R , we see that

dim Gr(D) = dim ˜T∗Vk = 2 dim V + dim h = 2m + l.

By Lemma 4.1, it is therefore enough to show that dim Ch(M) � m for any simple
D-module M.

Now Z̃ = ̂U(t)n,K is a central subalgebra of D. Let P = AnnZ̃(M). By the affinoid
Quillen Lemma [2, Corollary 8.6], P has finite codimension in Z̃. Suppose first that
Z̃/P is a copy of K . Then mλ kills M for some character λ ∈ π−nt∗, so M is a module
over D/mλD. It follows from [2, Proposition 6.5(a)] that this algebra is isomorphic to
a Tate–Weyl algebra ̂D(�m)n,K . Since K has characteristic zero by assumption, we may
apply the affinoid Bernstein Inequality, [2, Corollary 7.4].

In the general case, pass to a finite field extension using [2, Proposition 3.9]. �
COROLLARY. The Krull dimension of D is at most m + l.

Proof. This follows from the inequality

K(D) � inj.dim(D)

which is apparently originally due to Roos (see [1, Corollary 1.3]). �

4.3. Levasseur’s Theorem. We can finally state and prove the main result of this
paper.

THEOREM. Let U = ̂U(g)n,K and suppose that n > 0. Then K(U) � dim B.

Proof. Let {V1, . . . , Vm} be the W-translates of a big cell in B. Then each �(Vi,D)
is a copy of D, so

K(U) � ⊕m
i=1K(D(Vi)) � inj.dim(D(D)) � m + l

by Theorem 3.13 and Corollary 4.2. �
We remark that the reverse inequality K(U) � dim B in Theorem 4.3 can be

established along classical lines, and the restriction n > 0 in the affinoid Quillen Lemma
is not really necessary, and will be removed in a future paper. Levasseur’s original result
immediately follows as a consequence.

COROLLARY. Let g be a complex semisimple Lie algebra, and let b be a Borel subalgebra.
Then K(U(g)) � dim b.
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Proof. We regard K = � as being complete with respect to the trivial discrete
valuation obtained by setting π = 0. Let the deformation parameter n be equal to
zero. Then U(g)0 is just the enveloping algebra U(g) and the π -adic filtration on this
algebra is trivial, so U(g) is isomorphic to ̂U(g)0,K . Thus, the result would follow from
Theorem 4.3, had the restriction n > 0 not been present. However, this restriction is
only needed in the proof to invoke the affinoid Quillen Lemma, which reduces to the
classical Quillen Lemma [11, Proposition 2.6.8] in this case. �

Levasseur’s Theorem can also be deduced directly from Theorem 2.3 as follows.
Take D to be D̃ which is a quasi-coherent sheaf of O-modules on the flag variety; then
(2) is immediate. It is coherent since its associated graded sheaf is Noetherian, and (1)
holds because �(D̃) is a finitely generated free U(g)-module of rank |W |. Finally for
(3), every simple U(g)-module has a central character by the classical Quillen Lemma.
Choose a ρ-dominant weight λ that lifts that central character, and takeD′ to be the mλ-
adic completion of D̃. Beilinson–Bernstein [5] proved that the flag variety is coherently
D̃/mn

λD̃-acyclic for all n � 1, and a straightforward Mittag–Leffler argument gives the
remaining conditions of (3).

4.4. Enhanced localisation is not flat. We conclude by giving an example
which partially justifies the somewhat long argument presented in Theorem 2.3.
Geometrically, this example is plausible because the Grothendieck–Springer resolution
T̃∗B → g∗ is not flat.

EXAMPLE. Let G = SL2 and let V = Spec(R[z]) be a big cell in the corresponding flag
variety �1. Then D̃(V ) is not a flat right U(g)-module.

Proof. Let f, h, e be the standard basis for g and identify D̃(V ) with the polynomial
algebra A1[t] over the first Weyl algebra A1 = R[z; ∂]. The algebra homomorphism
U := U(g) → A1[t] is given on generators by

f �→ −∂, h �→ 2z∂ − t, and e �→ z2∂ − zt.

Consider the trivial left U-module R. We compute TorU
1 (A1[t], R) using the standard

Chevalley complex [22, Section 7.7]: this Tor group is equal to the middle homology
of the complex

A1[t] ⊗ �2g
d2−→ A1[t] ⊗ g

d1−→ A1[t],

where the maps are given explicitly by

d2(u ⊗ f ∧ h) = uf ⊗ h − uh ⊗ f − u ⊗ 2f
d2(v ⊗ f ∧ e) = vf ⊗ e − ve ⊗ f + v ⊗ h
d2(w ⊗ h ∧ e) = wh ⊗ e − we ⊗ h − w ⊗ 2e

d1(u ⊗ x) = ux

for all u, v, w ∈ A1[t] and x ∈ g. So elements in the image of d2 are of the form

(−uh − ve − 2u) ⊗ f + (uf + v − we) ⊗ h + (vf + wh − 2w) ⊗ e

for some u, v, w ∈ A1[t]. Now,

d1(z2 ⊗ f + z ⊗ h − 1 ⊗ e) = z2(−∂) + z(2z∂ − t) − (z2∂ − zt) = 0;
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suppose for a contradiction that z2 ⊗ f + z ⊗ h − 1 ⊗ e is in the image of d2. Equating
the coefficient of e gives elements v,w ∈ A1[t] such that

−1 = vf + w(h − 2) = −v∂ + w(2z∂ − t − 2) = (2wz − v)∂ − w(t + 2).

Setting t = −2 now implies that −1 lies in the left ideal A1 · ∂ of the first Weyl algebra,
a contradiction. Therefore, TorU

1 (A1[t], R) is non-zero. �
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