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1. Introduction. Let Q"+l be an n + 1-dimensional, complete simply connected
Riemannian manifold of constant sectional curvature c and Po e Q"+l. We consider the
function r(-) = d{-, Po) where d stands for the distance function in (2"+1 and we denote by
grad r the gradient of r in Q"+1- The position vector (see [1]) with origin Po is defined as
.r = <pc(r)grad r, where <pc(r) equals

sin(Vcr) sinh(Vzcr)

~ ^ T " or V^c
r, if c = 0, c > 0 or c < 0 respectively.

Let/:M"—»£2c+1 be an immersed, oriented, connected hypersurface. We decompose
the position vector x, restricted to M", in a component normal to M", and a component
xT tangent to AT:

x = xT+pN, (1.1)

where N is the given orientation. The function p = (x, N) is called the support function (cf.
[1]) with respect to the origin Po. We denote by Ric, x and dv respectively the Ricci
curvature, the scalar curvature and the associated volume element on M".

The main purpose of this paper is to establish the following theorem.

THEOREM 1. Let f:M" —»C?"+I bean oriented compact hypersurface. Then

(n(n -l)-p2x + R\c(xT)-c(n-l)(n +2)\xT\2)dv = 0.

The above integral formula yields the following characterizations of geodesic spheres
in space forms.

THEOREM 2. Let f: M" —> Q"+l be an oriented, compact and connected hypersurface. If
Ric(X)>c(n - l)(n +2) \X\2 for every non-zero tangent vector X and p2x<n{n - 1),
then f(M") is a geodesic sphere.

THEOREM 3. Let f: M" —* Q"+1 be an oriented, compact and connected hypersurface. If
all sectional curvatures of M" are greater than c and p2x < n(n - 1) - c(n — l)(/i + 1) |;CT-|2

then f(M") is a geodesic sphere.

An immediate consequence of Theorem 3 is the following.

COROLLARY. Let f:M"—>Q"+\c^0) be an oriented, compact and connected hyper-
surface. If all sectional curvatures of M" are greater than c and p2x < n(n - 1), then f(M")
is a geodesic sphere.

REMARK. Theorem 1 and Theorem 2 were obtained by S. Deshmukh [2] for c = 0.
The spherical case was considered in [4], Our approach shows that similar results are
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valid in any space form including the hyperbolic space. Moreover Theorem 2 extends the
result of S. Deshmukh in [3].

2. Preliminaries. We need the following result.

LEMMA 2.1. Let V denotes the Riemannian connection of Q"+l. Then the position
vector with respect to an origin Po E Q"+l satisfies

= <p'c(r)X, (2.1)

for any tangent vector X in Q"+l-

Proof. The case c = 0 is trivial.

Case c > 0. Assume that Q"+l is the hypersphere of radius -7= in the Euclidean space
Vc

R"+2. The position vector at P e Q"+l is given by (cf. [1])
X(P) = cos(V^r(P))/» - Po,

where ( , ) stands for the usual inner product in R"+2. Differentiating covariantly in R"+2

in the direction of X and taking the tangential component we obtain (2.1).
Case c<0. Let Ln+2 be the Euclidean space R"+2 endowed with the pseudo-

Riemannian metric given by
n + l

(U, W) = 2 UjWj - Un+2Wn+2,
i = l

where u = (wi,. . . , un+2) and w = (w,, . . . , wn+2). It is well known that the hyperbolic
space £?"+1 c a n be realized as

Q"c
+1 = {ueL"+2\un+2>0 and <«,«> =

The position vector at P e Q"+l is given by (cf. [1])

x{P) = cosh(V^~cr(P))P - Po.

Differentiating in the direction of X and using the second fundamental form of Q"+1 as a
hypersurface of L"+2 we get (2.1).

Let f:Mn —> <2"+1 be an oriented hypersurface with given orientation N. Denote by V
the Riemannian connection of M". For tangent vectors X and Y of M" we have the Gauss
formula

and the Weingarten formula

VXN=

where A is the Weingarten map. Using these, (1.1) and (2.1) we compute

= VxxT + (Xp)N + pVxN

= VxxT + (AxT, X)N + (Xp)N - pAX.
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Taking the tangential and the normal component of both sides of this equation we obtain
(cf. [5])

VxxT = <p'c(r)X+pAX, (2.2)

grad p = -AxT. (2.3)

LEMMA 2.2. Let f:M" —>Q"+1 be an oriented hypersurface with mean curvature H.
Then

X- A |x|2 = -c \xT\2 + v'c(n<p'c + npH), (2.4)

(2.5)

where A is the Laplace operator of M".

Proof. Using (2.1) we easily find

gradk|2 = 2 ^ r . (2.6)
From (2.2) we get (cf. [1])

div xT = ncp'c + npH. (2.7)

Equations (2.6) and (2.7) imply

\A\x\ \xT\+
2 <pc

By virtue of <p" = — apc we obtain (2.4).
Let Xu... , Xn be an orthonormal frame on AT. On account of (2.3) we have

/=i 1=1

Using Codazzi equation, the symmetry of A and (2.2) we get (2.5).

3. Proofs of the results.
Proof of Theorem 1. Using (2.3) and (2.5) we obtain

X- Ap2 = -np(grad H, xT) - n<p'cpH - p2 tr A 2 + \AxT\2.

The Ricci curvature in the direction xT is given by (cf. [6])

Ric(xr) = c(n - 1) pcr|
2 + nH(AxT, xT) - \AxT\2.

Therefore, by means of (2.3) we have

- X- Ap2 = n{grad(pH), xT) + ncp'^H + p2 tr A2 + Ric(xr) - c(n - 1) \xT\2. (2.8)

From (2.7) we easily find

(grad(pH), xT) = div(pHxT) - n<p'cPH - np2H2. (2.9)
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Combining (2.8), (2.9) and the equation r = n2H2 - trA2 + n(n - l)c we get

-^Ap2-n d\v{pHxT) = n(l - n)<p'j>H - p2r + Ric(xr) + c(n - l)(np2 - \xT\2).

By integration we have

I (n(l - n)(p'j)H-p2T + Ric(xr) + c(n - \)n \x\2 - c(n - l)(/i + 1) \xT\2) dv = 0.

Furthermore from (2.4) we obtain

J ^ / i ^ / / ^ = J ^ (c |xr|
2 - n(<p'c)

2) dv.
Hence

(n(n - l)((<Pc)2 + c \x\2) - p2r + Ric(A:r) - c(n - l)(n + 2) \xT\2) dv = 0.

Moreover it is easy to see that |.x|2 = (<pc)
2 and so ((p'c)

2 + c \x\2 = 1. This completes the
proof of Theorem 1.

Proof of Theorem 2. Using the assumptions and Theorem 1 we get

Hence xT = 0 on M". From (2.6) we conclude that |JC|2 = const. On account of \x\2 - (<pc)
2

we infer that/(A/") is a geodesic sphere.

Proof of Theorem 3. The integral formula stated in Theorem 1 can be rearranged as

I (Ric(jtr) - c(n - 1) |jcr|
2 + n(n - 1) - p2x - c(n - l)(n + 1) \xT\2) dv = 0.

Since all sectional curvatures are greater than c we have

for every non-zero tangent vector X. Our assumptions imply that Ric(̂ T-) = c(n - 1) \xT\2

and so x r = 0 on M". Since |jc|2 = (<pc)
2 from (2.6) we deduce that f(M") is a geodesic

sphere.
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