SOME REMARKS ON THE CHARACTERS OF THE SYMMETRIC GROUP, II

MASARU OSIMA

Introduction. Let p be a fixed prime number. We denote by k(n) the number of partitions of n. As is well known, the number of ordinary irreducible characters of the symmetric group S_n is k(n). We set k(0) = 1 and

(1)
$$l(b) = \sum_{b_0, \dots, b_{p-1}} k(b_0) k(b_1) \dots k(b_{p-1})$$
 $\left(\sum_{i=0}^{p-1} b_i = b, \ 0 \le b_i \le b\right),$
(2) $l^*(b) = \sum_{b_1, \dots, b_{p-1}} k(b_1) k(b_2) \dots k(b_{p-1})$ $\left(\sum_{i=1}^{p-1} b_i = b, \ 0 \le b_i \le b\right).$

Two ordinary irreducible representations of S_n belong to the same *p*-block if and only if they have the same *p*-core (10; 2; 11). The number of ordinary irreducible characters belonging to a *p*-block of weight *b* is independent of the *p*-core and is equal to l(b) (16; 12; also 11; 15). This may be also easily proved by applying the theory of *p*-quotients (6; 4). Moreover we have the following theorem (13; also 4a; 8; 15; 16).

THEOREM 1. The number of modular irreducible characters belonging to a p-block of weight b is $l^*(b)$.

In the present paper we shall give a simple proof for this theorem. We shall then derive some new properties of decomposition numbers of S_n .

1. We denote by χ_{α} the character of the irreducible representation $[\alpha]$ corresponding to a Young diagram $[\alpha]$. We set $r(\alpha, \alpha') = (-1)^s$ if a diagram $[\alpha']$ of S_{n-g} is obtained from $[\alpha]$ by removing a g-hook of leg length s. Otherwise we set $r(\alpha, \alpha') = 0$. Then the Murnaghan-Nakayama recursion formula (7; 9) is expressed as follows:

If G is an element of S_n containing a g-cycle P and \overline{G} is the permutation of n - g symbols arising from G by removing this cycle, then

(3)
$$\chi_{\alpha}(G) = \sum_{\alpha'} r(\alpha, \alpha') \chi_{\alpha'}(\tilde{G}),$$

where $[\alpha']$ ranges over all diagrams of S_{n-g} .

If $[\alpha]$ is a diagram with *p*-core $[\alpha_0]$ then the summation in (3) may be limited to those $[\alpha']$ with the same *p*-core $[\alpha_0]$.

We set n = n' + tp ($0 \le n' < p$) and consider an element G of S_n such that

$$G = W \cdot Q_1 \cdot Q_2 \ldots Q_s,$$

where no two of Q_i have common symbols and each Q_i is a cycle of length

Received March 26, 1954.

 $a_i \not p$ $(a_1 \ge a_2 \ge \ldots \ge a_s)$ and where W is any permutation on the fixed symbols of $P = Q_1 \cdot Q_2 \cdot \ldots \cdot Q_s$. We set

$$a = \sum_{i} a_{i} \qquad (0 \leqslant a \leqslant t).$$

Then P is called an element of type (a_1, a_2, \ldots, a_s) and of weight a. The number of elements of weight a such that they all lie in different conjugate classes of S_n is k(a). If we set

(4)
$$\sum_{a=0}^{t} k(a) = r,$$

then we have a system of elements of weight a (a = 0, 1, 2, ..., t)

$$P_0 = 1, P_1, \ldots, P_{r-1},$$

such that they all lie in different conjugate classes of S_n and every element of weight a ($0 \le a \le t$) is conjugate to one of them. Every conjugate class contains an element of the form VP_i , where i is uniquely determined by the class and where V is a p-regular element of S_{n-ap} , if P_i is of weight a. Since the number $k^*(n)$ of modular irreducible representations of S_n is equal to the number of p-regular classes of S_n , we have

(5)
$$k(n) = \sum_{a=0}^{t} k^{*}(n - ap) k(a).$$

Let P_i be an element of type (a_1, a_2, \ldots, a_s) and of weight a. Let $[\alpha_0]$ be a p-core with m nodes and n = m + bp. Then the number of diagrams of S_{m+jp} with p-core $[\alpha_0]$ is l(j). We denote by $\chi_{\beta}^{(\alpha)}$ the character of the irreducible representation $[\beta]$ of S_{n-ap} corresponding to a diagram $[\beta]$. Let us denote by B the block of S_n with p-core $[\alpha_0]$. Applying the Murnaghan-Nakayama recursion formula iterated s times to $[\alpha] \subset B$, we obtain

(6)
$$\chi_{\alpha}(VP_{i}) = \begin{cases} \sum_{\beta} h(\alpha, \beta) \ \chi_{\beta}^{(a)}(V), \ [\beta] \subset B^{(a)} & (\text{for } a \leq b), \\ 0 & (\text{for } b < a), \end{cases}$$

where the $h(\alpha, \beta)$ are rational integers and $B^{(a)}$ denotes the block of S_{n-ap} with *p*-core $[\alpha_0]$. If $a \leq b$ then $B^{(a)}$ is of weight b - a. Let $\phi_{\lambda}^{(a)}$ be the character of S_{n-ap} in the modular irreducible representation λ . We then have

(7)
$$\chi_{\beta}^{(a)}(V) = \sum_{\lambda} d_{\beta\lambda}^{(a)} \phi_{\lambda}^{(a)}(V) \qquad (V \text{ in } S_{n-ap}, p\text{-regular}),$$

where the $d_{\beta\lambda}{}^{(a)}$ are the decomposition numbers (1) of S_{n-ap} . Hence (6), combined with (7), yields

(8)
$$\chi_{\alpha}(VP_{i}) = \sum_{\lambda} u_{\alpha\lambda}{}^{i}\phi_{\lambda}^{(a)}(V),$$

where the $u_{\alpha\lambda}{}^i$ are rational integers. If b < a then $u_{\alpha\lambda}{}^i = 0$ for every λ , and if $a \leq b$ then $u_{\alpha\lambda}{}^i = 0$ for $\lambda \not\subset B^{(a)}$. Let $D = (d_{\alpha\lambda})$ be the decomposition matrix of S_n . Then

(9)
$$\chi_{\alpha}(V) = \sum_{\lambda} d_{\alpha\lambda} \phi_{\lambda}(V) \qquad (V \text{ in } S_n, p \text{-regular}).$$

512

Hence, for $P_0 = 1$, we have (10)

We arrange these numbers $u_{\alpha\lambda}^{i}$ for a fixed *i* in the form of a matrix

 $u_{\alpha\lambda}^{0} = d_{\alpha\lambda}$

(11)
$$U^i = (u_{\alpha\lambda}{}^i),$$

with α as row index and λ as column index, and set

(12)
$$U = (U^0, U^1, \dots, U^{r-1})$$

Each column of U is given by a pair (i, λ) . It follows from (5) that the number of such columns is k(n) (note that the number of elements P_i of weight a is k(a)), whence U is a square matrix of the same degree as the matrix $Z = (\chi_{\alpha}(G))$ of the group characters χ_{α} of S_n . According to (8) we have the formula

Here A is a square matrix such that

(14)
$$A = \begin{bmatrix} \Phi^{(0)} & 0 \\ \Phi^{(1)} & \\ & \\ & \\ & \\ 0 & & \\ 0 & & \\ 0 & & \\ \end{bmatrix},$$

where, for each a, the matrix $\Phi^{(a)} = (\phi_{\lambda}^{(a)}(V))$ of the modular group characters of S_{n-ap} appears in the main diagonal with multiplicity k(a) if the rows and columns are arranged suitably. Since Z is non-singular, so is U:

$$(15) |U| \neq 0.$$

Proof of Theorem 1. It follows from (8) that, if the rows and columns of U are taken in a suitable order, U breaks up completely into q matrices U_1, U_2, \ldots, U_q , each U_k corresponding to a block B_k of S_n . Denote by x_k the number of ordinary irreducible characters in B_k . It follows from $|U| \neq 0$ that each U-matrix U_k of B_k must necessarily be a square matrix of degree x_k and $|U_k| \neq 0$. Let B_k be a block of weight b with p-core $[\alpha_0]$. We then have $x_k = l(b)$. Denote by f(a) the number of modular irreducible characters in a block of weight a with p-core $[\alpha_0]$. Since U_k is a square matrix of degree l(b) we have by (8)

(16)
$$l(b) = \sum_{a=0}^{b} f(a) k(b-a).$$

Since $l^*(0) = f(0) = 1$ and $l^*(1) = f(1) = p - 1$, we shall assume that $l^*(a) = f(a)$ for a < b. We then have by (12; Lemma 1)

$$f(b) = l(b) - \sum_{a=0}^{b-1} f(a) \ k(b-a)$$

= $l(b) - \sum_{a=0}^{b-1} l^*(a) \ k(b-a) = l^*(b).$

This completes the proof.

2. In what follows we shall be concerned with representations belonging to a fixed block B_k of weight b, so we may drop the subscript k. Applying (8) to the orthogonality relations

$$\sum_{\alpha} \chi_{\alpha}(VP_i) \chi_{\alpha}(V'P_j) = 0 \qquad (i \neq j),$$

we obtain

(17)
$$\sum_{\alpha} \chi_{\alpha}(VP_{i}) \chi_{\alpha}(V'P_{j}) = 0 \qquad [\alpha] \subset B, \ (i \neq j),$$

whence

(18) $\sum_{\alpha} u_{\alpha\lambda}{}^{i} \chi_{\alpha}(V'P_{j}) = 0 \qquad [\alpha] \subset B, \quad (i \neq j).$

We then have

(19)
$$\sum_{\alpha} u_{\alpha\lambda}{}^{i} u_{\alpha\kappa}{}^{j} = 0 \qquad [\alpha] \subset B, \quad (i \neq j).$$

For $P_i = P_0 = 1$, it follows from (18) that

(20)
$$\sum_{\alpha} u_{\alpha\lambda}{}^{i}\chi_{\alpha}(V) = 0 \qquad [\alpha] \subset B, \quad (i \neq 0),$$

where V is any p-regular element of S_n . Hence

(21)
$$\sum_{\alpha} u_{\alpha\lambda}{}^{i}d_{\alpha\kappa} = 0 \qquad [\alpha] \subset B, \quad (i \neq 0).$$

Since the U-matrix U_k of B is non-singular the identities (21) are linearly independent. Moreover the number of identities (21) is $l(b) - l^*(b)$ and hence the system of linearly independent identities (21) satisfied by the rows of the decomposition matrix D_k of B is complete.

We shall denote by n(G) the order of the normalizer N(G) of G in S_n . Applying (8) to the orthogonality relations

$$\sum_{\alpha} \chi_{\alpha}(VP_i) \chi_{\alpha}(VP_i) = n(VP_i),$$

we have

$$\sum_{\lambda} \left(\sum_{\alpha} u_{\alpha\lambda}{}^{i} \chi_{\alpha}(VP_{i}) \right) \phi_{\lambda}^{(a)}(V) = n(VP_{i}).$$

Let $\eta_{\lambda}^{(a)}$ be the character of the indecomposable constituent of the regular representation of S_{n-ap} which corresponds to $\phi_{\lambda}^{(a)}$. Then we have the character relation

$$\sum_{\lambda} \eta_{\lambda}^{(a)}(V) \phi_{\lambda}^{(a)}(V) = n^{(a)}(V),$$

where $n^{(a)}(V)$ denotes the order of the normalizer of V in S_{n-ap} . Hence

(22)
$$\sum_{\alpha} u_{\alpha\lambda}{}^{i}\chi_{\alpha}(VP_{i}) = \frac{n(VP_{i})}{n^{(a)}(V)}\eta_{\lambda}^{(a)}(V), \qquad [\alpha] \subset B.$$

If P_i is an element of weight a with n - ap 1-cycles, $k_1 p$ -cycles, $k_2 2p$ -cycles, ..., $k_m mp$ -cycles, then (22) yields

(23)
$$\sum_{\alpha} u_{\alpha\lambda}{}^{i} u_{\alpha\kappa}{}^{i} = \frac{n(VP_{i})}{n^{(\alpha)}(V)} c_{\lambda\kappa}^{(\alpha)}$$
$$= c_{\lambda\kappa}^{(\alpha)} \prod_{i} (k_{i}!(ip)^{k_{i}}), \qquad [\alpha] \subset B,$$

where the $c_{\lambda\kappa}^{(a)}$ denote the Cartan invariants of S_{n-ap} .

3. Let $[\alpha]$ with *p*-core $[\alpha_0]$ belong to a block *B* of weight *b* and let $[\alpha]^*$ be its star diagram (14; also 4; 11; 17). We shall write

$$[\alpha]^* = [\nu_0] \cdot [\nu_1] \cdot \ldots \cdot [\nu_{p-1}],$$

where the $[\nu_r]$ are the disjoint right constituents of $[\alpha]^*$. We assume that $[\nu_r]$ contains b_r nodes, where

(24)
$$b = b_0 + b_1 + \ldots + b_{p-1},$$

and r is the leg length of the *p*-hook represented by its upper left-hand corner node. We denote by χ_{α} * the character of (reducible) representation $[\alpha]$ * of S_b corresponding to the star diagram $[\alpha]$ * and by f_{α} * its degree. Then

(25)
$$f_{\alpha}^{*} = \frac{b!}{b_{\circ}! b_{1}! \dots b_{p-1}!} f_{\nu_{\circ}} f_{\nu_{1}} \dots f_{\nu_{p-1}},$$

where f_{ν_r} denotes the degree of the ordinary irreducible representation $[\nu_r]$ of S_{b_r} (14).

If P_b represents the product of b cycles, each of length p, on the last bp of n symbols, then P_b is of weight b and of type $(1, 1, \ldots, 1)$. Denote by $N(P_b)$ the normalizer of P_b in S_n . We then have $N(P_b) = \mathfrak{G}_1 \times \mathfrak{G}_2$, where \mathfrak{G}_1 is the subgroup of S_n which permutes only the first n - bp symbols and which may be identified with S_{n-bp} . On the other hand

(26)
$$\mathfrak{G}_2 = S_b^* \mathfrak{Q}, \quad S_b^* \cap \mathfrak{Q} = 1,$$

where \mathfrak{Q} is the subgroup generated by the *b* individual cycles of length p of P_b and is the normal subgroup of \mathfrak{G}_2 , and S_b^* is the subgroup of permutations which permute the cycles of P_b amongst themselves. We see that S_b^* is isomorphic to the symmetric group S_b of *b* symbols. We denote by *W* the element of S_b which corresponds to W^* of S_b^* . The transitive subgroup \mathfrak{G}_2 of S_n is called the *generalized symmetric group* and is denoted by S(b, p). The order of S(b, p) is $b!p^b$. It may be verified that there are l(b) conjugate classes of S(b, p). For example we shall determine the conjugate classes of S(2, 3). We set

$$Q_1 = (1 \ 2 \ 3), \qquad Q_2 = (4 \ 5 \ 6).$$

Then there exist two conjugate classes which are represented by

$$W_0^* = 1, \quad W_1^* = (1 \ 4)(2 \ 5)(3 \ 6).$$

A complete system of representatives for the conjugate classes of S(2, 3) is given by

W_0^* , W_1^* , Q_1 , Q_1^2 , Q_1Q_2 , $Q_1Q_2^2$, $Q_1^2Q_2^2$, $W_1^*Q_1$, $W_1^*Q_1^2$.

Each element is associated with a star diagram with 2 nodes by the following way:

$W_0^* = 1$	$[1^2] \cdot [0] \ \cdot [0]$
$W_1^* = (1\ 4)(2\ 5)(3\ 6)$	$[2] \cdot [0] \cdot [0]$
$Q_1Q_2 = (1\ 2\ 3)(4\ 5\ 6)$	$[0] \cdot [1^2] \cdot [0]$
$W_1^*Q_1 = (1\ 4\ 2\ 5\ 3\ 6)$	$[0] \cdot [2] \cdot [0]$
$Q_1^2 Q_2^2 = (1 \ 3 \ 2)(4 \ 6 \ 5)$	$[0] \cdot [0] \cdot [1^2]$
$W_1^* Q_1^2 = (1 \ 4 \ 3 \ 6 \ 2 \ 5)$	$[0] \cdot [0] \cdot [2]$
$Q_1 = (1 \ 2 \ 3)$	$[1] \cdot [1] \cdot [0]$
$Q_1^2 = (1 \ 3 \ 2)$	$[1] \cdot [0] \cdot [1]$
$Q_1 Q_2^2 = (1\ 2\ 3)(4\ 6\ 5)$	$[0] \cdot [1] \cdot [1].$

By the same way each conjugate class of S(b, p) is uniquely associated with a star diagram with *b* nodes. Every conjugate class of S(b, p) associated with $[\alpha]^*$ such that $[\nu_0] = [0]$ contains the elements of weight *b*. But the converse is not valid generally.

THEOREM 2. The number of ordinary irreducible representations of S(b, p) is l(b) and there is a (1-1) correspondence between ordinary irreducible representations of S(b, p) and star diagrams $[\alpha]^*$ containing b nodes.

This, together with related theorems, will be proved in a forthcoming paper (13a).

We denote by ζ_{a^*} the ordinary irreducible characters of S(b, p) corresponding to a star diagram $[\alpha]^*$. Let VP be an element of S_n such that P is an element of type (a_1, a_2, \ldots, a_s) and of weight b $(b = \sum a_i)$ and V is any permutation on the fixed symbols of P, and let W be an element of S_b with a_1 -cycle, a_2 -cycle, \ldots , a_s -cycle. We have by (6)

(27)
$$\chi_{\alpha}(VP) = h(\alpha, \alpha_0) \chi_{\alpha_0}(V).$$

Since $h(\alpha, \alpha_0)$ is determined by (a_1, a_2, \ldots, a_s) , we may set $h(\alpha, \alpha_0) = u(W)$. We then have by Thrall and Robinson (18; 14; also cf. 6)

(28)
$$u(W) = \sigma_{\alpha} \chi_{\alpha} * (W),$$

where $\sigma_{\alpha} = \pm 1$ is the product of the parities of the *b* hooks of length *p* of $[\alpha]$. On the other hand we can prove that

(29)
$$\chi_{\alpha^*}(W) = \zeta_{\alpha^*}(W^*), \qquad W^* \in S_b^*.$$

Thus we may denote without confusion by $\chi_{\alpha} * (G^*)$, $G^* \in S(b, p)$, the character of the ordinary irreducible representation of S(b, p) corresponding to $[\alpha]^*$.

Let W_i (i = 0, 1, 2, ..., k(b) - 1) be a complete system of representatives for conjugate classes of S_b . If we denote by $n^*(W_i^*)$ the order of the normalizer $N^*(W_i^*)$ of W_i^* in S(b, p) then it follows from (19) and (23) that

$$\sum_{\alpha^*} \chi_{\alpha^*}(W_i^*) \chi_{\alpha^*}(W_j^*) = \delta_{ij} n^*(W_i^*).$$

Evidently these relations are the orthogonality relations for the characters of S(b, p).

4. Let V be any p-regular element of S_n and let W^* be any element of S_b^* . We have by (20)

(30)
$$\sum_{\alpha} \chi_{\alpha} * (W^*) \chi_{\alpha}(V) = 0, \qquad [\alpha] \subset B.$$

It was shown in (2) that S(b, p) possesses only one p-block. If we denote by

 $D^* = (d^*_{\alpha\lambda})$

the decomposition matrix of S(b, p), then (30) yields:

(31)
$$\sum_{\alpha} \sigma_{\alpha} d_{\alpha\kappa} \chi_{\alpha} * (W^*) = 0, \qquad [\alpha] \subset B,$$

(32)
$$\sum_{\alpha} \sigma_{\alpha} d^{*}_{\alpha\lambda} \chi_{\alpha}(V) = 0, \qquad [\alpha] \subset B,$$

and hence

(33)
$$\sum_{\alpha} \sigma_{\alpha} d_{\alpha \kappa} d^{*}_{\alpha \lambda} = 0, \qquad [\alpha] \subset B$$

Moreover we have the following

THEOREM 3. Let B be a p-block of weight b and let G = VP be an element of S_n such that P is any element of weight a different from b and V is any p-regular permutation on the fixed symbols of P. Then for any element $W^* \in S_b^*$,

$$\sum_{\alpha} \sigma_{\alpha} \chi_{\alpha} (G) \chi_{\alpha} * (W^*) = 0, \qquad [\alpha] \subset B.$$

This follows immediately from (19).

We obtain the generalization of the Murnaghan-Nakayama recursion formula for the character χ_{α} * of S(b, p) and this yields

THEOREM 4. Let B be a p-block of weight b and let S be any element of S(b, p)associated with a star diagram $[\beta]^* = [\lambda_0] \cdot [\lambda_1] \cdot \ldots \cdot [\lambda_{p-1}]$ such that $[\lambda_0] \neq [0]$. Then

$$\sum_{\alpha} \sigma_{\alpha} \chi_{\alpha}(V) \chi_{\alpha} * (S) = 0 \qquad (V in S_n, p-regular).$$

Let R be any element of S(b, p) associated with a star diagram $[\beta]^*$ such that $[\lambda_0] = [0]$. The number of conjugate classes of S(b, p) which contain the element R defined above is $l^*(b)$. We denote by $R_1, R_2, \ldots, R_{l^*(b)}$ the representatives for these classes.

THEOREM 5. Let $D = (d_{\alpha\lambda})$ be the decomposition matrix of a p-block B of weight b. Then

$$d_{\alpha\lambda} = \sigma_{\alpha} \sum_{\kappa=1}^{l^{*}(b)} v_{\kappa\lambda} \chi_{\alpha^{*}}(R_{\kappa}), \qquad \text{for } [\alpha] \subset B,$$

where the $v_{\kappa\lambda}$ are complex numbers and are independent of α .

COROLLARY. Let $D = (d_{\alpha\lambda})$ and $D' = (d'_{\alpha'\lambda})$ with $[\alpha]^* = [\alpha']^*$ be the decomposition matrices of p-blocks B and B' of same weight respectively. Then

$$d'_{\alpha'\nu} = \sigma_{\alpha} \sigma_{\alpha'} \sum_{\lambda=1}^{l^{*}(b)} w_{\nu\lambda} d_{\alpha\lambda}, \qquad \text{for } [\alpha'] \subset B',$$

where the $w_{\nu\lambda}$ are rational integers and $|w_{\nu\lambda}| = \pm 1$.

Consequently we have

THEOREM 6. Two matrices of Cartan invariants corresponding to the p-blocks of same weight have the same elementary divisors.

Example. The following is the U-matrix for the 2-block B of S_6 with 2-core [0].

[6]	1	0	0	1	0	1	1	1	1	1 -
[5, 1]	1	1	0	1	1	1	1	-1	-1	-1
[4, 2]	1	1	1	1	1	1	-1	3	1	0
$[4, 1^2]$	2	1	1	0	1	-2	0	-2	0	1
$[3^2]$	1	0	1	1	0	1	-1	-3	-1	0
$[2^3]$	1	0	1	-1	0	1	1	3	-1	0
$[3, 1^3]$	2	1	1	0	-1	-2	0	2	0	-1
$[2^2, 1^2]$	1	1	1	-1	-1	1	1	-3	1	0
$[2, 1^4]$	1	1	0	-1	-1	1	-1	1	-1	1
[16]		0	0	-1	0	1	-1	-1	1	-1_

The matrix occupying the first three columns of this U-matrix is the decomposition matrix of B and the matrix occupying the last three columns is the matrix ($\sigma_{\alpha} \chi_{\alpha} * (W_i^*)$) of S(3, 2). We set

$$Q_1 = (1 \ 2), \quad Q_2 = (3 \ 4), \quad Q_3 = (5 \ 6), \quad P = (1 \ 2)(3 \ 4)(5 \ 6).$$

Then

 $W_0^* = 1, \quad W_1^* = (1 \ 3)(2 \ 4), \quad W_2^* = (1 \ 3 \ 5)(2 \ 4 \ 6),$ $Q_1, \quad W_1^*Q_3, \quad Q_1Q_2, \quad W_1^*Q_1, \quad P, \quad W_1^*Q_1Q_3, \quad W_2^*Q_1$

form a complete system of representatives for conjugate classes of S(3, 2). We then obtain easily Table I, showing the group characters $\chi_{\alpha} *$ of S(3, 2) (cf. 5, p. 275).

$[2, 1]$ $[0] \cdot [3]$	(24)(56) (135246)	6 8	1 1	1 1	.1 0	0 -1	·1 0	1 0	0 1	, ,	0 1	
·[0]	(132				1							
[0] · [13]	(12)(34)(56)	F	F1	1	13	5	3	-3	-2	3		
[1].[2]	(1324)	9	1	-1	-	0	-1	-1	0	1		н Г І
$[1] \cdot [1^2]$	(12)(34)	en		1	-	5	-11	- 1	27	1		щ
$[2] \cdot [1]$	(13)(24)(56)	9	1	-1	- 1	0	Ч	1	0	1		- 1
$[1^2] \cdot [1]$	(12)	co	1	-1	1	73	-1	1	-2	1		1
[3] · [0]	(135)(246)	×	1	H	0	1	0	0	-1	0		Н
$[2,1] \cdot [0]$	(13)(24)	9	1	I	1	0	1	-1	0	-1		-1-
$[1^3] \cdot [0]$	1	1	1		က	62	က	က	62	က	-	, 1
class	element	order	[3] · [0]	$[0] \cdot [3]$	$[2] \cdot [1]$	$[2,1] \cdot [0]$	$[1] \cdot [2]$	$[1^2] \cdot [1]$	$[0] \cdot [2,1]$	$[1] \cdot [1^2]$		$[1^3] \cdot [0]$

CHARACTERS OF THE SYMMETRIC GROUP

519

TABLE I

The decomposition matrix D^* and the matrix C^* of Cartan invariants of S(3, 2) are given by

$$D^* = \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 1 & 1 \\ 0 & 1 \\ 1 & 1 \\ 1 & 1 \\ 0 & 1 \\ 1 & 1 \\ 1 & 0 \\ 1 & 0 \end{bmatrix} , \quad C^* = \begin{bmatrix} x & 4 \\ x & 4 \\ x & 4 \end{bmatrix}.$$

The following are the *D*-matrices $(d_{\alpha\lambda})$ and $(d'_{\alpha'\lambda})$ for the 2-block of $S_6^{?}$ with 2-core [0] and the 2-block of S_7 with 2-core [1] respectively:

[6]	[1	0	0 7	[7]	Γ1	0	07
[5, 1]	1	1	0	[4, 2, 1]	2	1	1
[4, 2]	1	1	1	$[5, 1^2]$	2	1	0
$[4, 1^2]$	2	1	1	[5, 2]	1	1	0
$[3^2]$	1	0	1	$[3^2, 1]$	1	0	1
$[2^3]$	1	0	1	$[3, 2^2]$	1	0	1
$[3, 1^3]$	2	1	1	$[2^2, 1^3]$	1	1	0
$[2^2, 1^2]$	1	1	1	$[3, 1^4]$	2	1	0
$[2, 1^4]$	1	1	0	$[3, 2, 1^2]$	2	1	1
[16]	L 1	0	0	[17]	$\lfloor 1$	0	0]

We see from the table of the group characters $\chi_{\alpha} *$ of S(3, 2) that

$$(d_{\alpha\lambda}) = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ -3 & -1 & 0 \\ -2 & 0 & 1 \\ -3 & 1 & 0 \\ -3 & 1 & 0 \\ -2 & 0 & 1 \\ -3 & -1 & 0 \\ 1 & -1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} -\frac{1}{3} & -\frac{1}{6} & -\frac{1}{3} \\ 0 & -\frac{1}{2} & 0 \\ \frac{4}{3} & \frac{2}{3} & \frac{1}{3} \end{bmatrix}$$

There exists the following relation between $(d'_{\alpha'\lambda})$ and $(\sigma_{\alpha} \sigma_{\alpha'} d_{\alpha\lambda})$:

520

References

- 1. R. Brauer and C. Nesbitt, On the modular characters of groups, Ann. of Math., 42 (1941), 556-590.
- R. Brauer and G. de B. Robinson, On the conjecture by Nakayama, Trans. Royal Soc. Canada, Series III, Sec. III, 40 (1947), 11-25.
- 3. J. H. Chung, Modular representations of the symmetric group, Can. J. Math., 3 (1951), 309-327.
- 4. H. Farahat, On p-quotients and star diagrams of the symmetric group, Proc. Camb. Phil. Soc., 49 (1953), 157-160.
- 4a. J. S. Frame and G. de B. Robinson, On a theorem of Osima and Nagao, Can. J. Math., 6 (1954), 125–127.
- 5. D. E. Littlewood, The theory of group characters (Oxford, 1950).
- 6. ——, Modular representations of symmetric groups, Proc. Roy. Soc. A, 209 (1951), 333– 353.
- 7. F. D. Murnaghan, On the representations of the symmetric group, Amer. J. Math., 59 (1937), 437-488.
- 8. H. Nagao, Note on the modular representations of symmetric groups, Can. J. Math., δ (1953), 356–363.
- 9. T. Nakayama, On some modular properties of irreducible representations of a symmetric group I, Jap. J. Math., 17 (1941), 89–108.
- **10.** ——, II, *ibid.*, 411–423.
- 11. T. Nakayama and M. Osima, Note on blocks of symmetric groups, Nagoya Math. J., 2 (1951), 111-117.
- 12. M. Osima, On some character relations of symmetric groups, Math. J. Okayama Univ., 1 (1952), 63-68.
- 13. ——, Some remarks on the characters of the symmetric group, Can. J. Math., 5 (1953), 336-343.
- 13a. ——, On the representations of the generalized symmetric group, Math. J. Okayama University, 4 (1954), to appear.
- 14. G. de B. Robinson, On the representations of the symmetric group III, Amer. J. Math., 70 (1948), 277-294.
- 15. ——, On the modular representations of the symmetric group, Proc. Nat. Acad. Sci. U.S.A., 37 (1951), 694–696.
- 16. , On a conjecture by J. H. Chung, Can. J. Math., 4 (1952), 373-380.
- 17. R. A. Staal, Star diagrams and the symmetric group, Can. J. Math., 2 (1950), 79-92.
- R. M. Thrall and G. de B. Robinson, Supplement to a paper of G. de B. Robinson, Amer. J. Math., 73 (1951), 721-724.

Okayama University

521