SOME REMARKS ON THE GHARAGTERS OF THE SYMMETRIC GROUP, II

MASARU OSIMA

Introduction. Let p be a fixed prime number. We denote by $k(n)$ the number of partitions of n. As is well known, the number of ordinary irreducible characters of the symmetric group S_{n} is $k(n)$. We set $k(0)=1$ and

$$
\begin{array}{ll}
l(b)=\sum_{b_{0}, \ldots, b_{p-1}} k\left(b_{0}\right) k\left(b_{1}\right) \ldots k\left(b_{p-1}\right) & \left(\sum_{i=0}^{p-1} b_{i}=b, 0 \leqslant b_{i} \leqslant b\right), \\
l^{*}(b)=\sum_{b_{1}, \ldots, b_{p-1}} k\left(b_{1}\right) k\left(b_{2}\right) \ldots k\left(b_{p-1}\right) & \left(\sum_{i=1}^{p-1} b_{i}=b, 0 \leqslant b_{i} \leqslant b\right) .
\end{array}
$$

Two ordinary irreducible representations of S_{n} belong to the same p-block if and only if they have the same p-core ($\mathbf{1 0} ; \mathbf{2} ; \mathbf{1 1})$. The number of ordinary irreducible characters belonging to a p-block of weight b is independent of the p-core and is equal to $l(b)(\mathbf{1 6} ; \mathbf{1 2}$; also $\mathbf{1 1} ; \mathbf{1 5})$. This may be also easily proved by applying the theory of p-quotients ($6 ; 4$). Moreover we have the following theorem (13 ; also $4 \mathrm{a} ; 8 ; 15 ; 16$).

Theorem 1. The number of modular irreducible characters belonging to a p-block of weight b is $l^{*}(b)$.

In the present paper we shall give a simple proof for this theorem. We shall then derive some new properties of decomposition numbers of S_{n}.

1. We denote by χ_{α} the character of the irreducible representation $[\alpha]$ corresponding to a Young diagram $[\alpha]$. We set $r\left(\alpha, \alpha^{\prime}\right)=(-1)^{s}$ if a diagram [α^{\prime}] of S_{n-g} is obtained from $[\alpha]$ by removing a g-hook of leg length s. Otherwise we set $r\left(\alpha, \alpha^{\prime}\right)=0$. Then the Murnaghan-Nakayama recursion formula (7;9) is expressed as follows:
If G is an element of S_{n} containing a g-cycle P and \bar{G} is the permutation of $n-g$ symbols arising from G by removing this cycle, then

$$
\begin{equation*}
\chi_{\alpha}(G)=\sum_{\alpha^{\prime}} r\left(\alpha, \alpha^{\prime}\right) \chi_{\alpha^{\prime}}(\bar{G}), \tag{3}
\end{equation*}
$$

where $\left[\alpha^{\prime}\right]$ ranges over all diagrams of $S_{n-\sigma}$.
If $[\alpha]$ is a diagram with p-core $\left[\alpha_{0}\right.$] then the summation in (3) may be limited to those $\left[\alpha^{\prime}\right]$ with the same p-core $\left[\alpha_{0}\right]$.

We set $n=n^{\prime}+t p\left(0 \leqslant n^{\prime}<p\right)$ and consider an element G of S_{n} such that

$$
G=W \cdot Q_{1} \cdot Q_{2} \ldots Q_{s}
$$

where no two of Q_{i} have common symbols and each Q_{i} is a cycle of length
Received March 26, 1954.
$a_{i} p\left(a_{1} \geqslant a_{2} \geqslant \ldots \geqslant a_{s}\right)$ and where W is any permutation on the fixed symbols of $P=Q_{1} \cdot Q_{2} \ldots Q_{s}$. We set

$$
a=\sum_{i} a_{i} \quad(0 \leqslant a \leqslant t)
$$

Then P is called an element of type ($a_{1}, a_{2}, \ldots, a_{s}$) and of weight a. The number of elements of weight a such that they all lie in different conjugate classes of S_{n} is $k(a)$. If we set

$$
\begin{equation*}
\sum_{a=0}^{t} k(a)=r \tag{4}
\end{equation*}
$$

then we have a system of elements of weight $a(a=0,1,2, \ldots, t)$

$$
P_{0}=1, P_{1}, \ldots, P_{r-1}
$$

such that they all lie in different conjugate classes of S_{n} and every element of weight $a(0 \leqslant a \leqslant t)$ is conjugate to one of them. Every conjugate class contains an element of the form $V P_{i}$, where i is uniquely determined by the class and where V is a p-regular element of $S_{n-a p}$, if P_{i} is of weight a. Since the number $k^{*}(n)$ of modular irreducible representations of S_{n} is equal to the number of p-regular classes of S_{n}, we have

$$
\begin{equation*}
k(n)=\sum_{a=0}^{t} k^{*}(n-a p) k(a) \tag{5}
\end{equation*}
$$

Let P_{i} be an element of type $\left(a_{1}, a_{2}, \ldots, a_{s}\right)$ and of weight a. Let [α_{0}] be a p-core with m nodes and $n=m+b p$. Then the number of diagrams of $S_{m+j p}$ with p-core $\left[\alpha_{0}\right]$ is $l(j)$. We denote by $\chi_{\beta}{ }^{(a)}$ the character of the irreducible representation [β] of $S_{n-a p}$ corresponding to a diagram [β]. Let us denote by B the block of S_{n} with p-core $\left[\alpha_{0}\right]$. Applying the Murnaghan-Nakayama recursion formula iterated s times to $[\alpha] \subset B$, we obtain

$$
\chi_{\alpha}\left(V P_{i}\right)= \begin{cases}\sum_{\beta} h(\alpha, \beta) \chi_{\beta}^{(a)}(V),[\beta] \subset B^{(a)} & (\text { for } a \leqslant b) \tag{6}\\ 0 & (\text { for } b<a)\end{cases}
$$

where the $h(\alpha, \beta)$ are rational integers and $B^{(a)}$ denotes the block of $S_{n-a p}$ with p-core $\left[\alpha_{0}\right]$. If $a \leqslant b$ then $B^{(a)}$ is of weight $b-a$. Let $\phi_{\lambda}{ }^{(a)}$ be the character of $S_{n-a p}$ in the modular ${ }_{-}$irreducible representation λ. We then have

$$
\begin{equation*}
\chi_{\beta}^{(a)}(V)=\sum_{\lambda} d_{\beta \lambda}^{(a)} \phi_{\lambda}^{(a)}(V) \quad\left(V \text { in } S_{n-a p}, p \text {-regular }\right) \tag{7}
\end{equation*}
$$

where the $d_{\beta \lambda}{ }^{(a)}$ are the decomposition numbers (1) of $S_{n-a p}$. Hence (6), combined with (7), yields

$$
\begin{equation*}
\chi_{\alpha}\left(V P_{i}\right)=\sum_{\lambda} u_{\alpha \lambda}{ }^{i} \phi_{\lambda}^{(a)}(V), \tag{8}
\end{equation*}
$$

where the $u_{\alpha \lambda}{ }^{i}$ are rational integers. If $b<a$ then $u_{\alpha \lambda}{ }^{i}=0$ for every λ, and if $a \leqslant b$ then $u_{\alpha \lambda}{ }^{i}=0$ for $\lambda \not \subset \not \subset B^{(a)}$. Let $D=\left(d_{\alpha \lambda}\right)$ be the decomposition matrix of S_{n}. Then

$$
\begin{equation*}
\chi_{\alpha}(V)=\sum_{\lambda} d_{\alpha \lambda} \phi_{\lambda}(V) \quad\left(V \text { in } S_{n}, p \text {-regular }\right) \tag{9}
\end{equation*}
$$

Hence, for $P_{0}=1$, we have

$$
\begin{equation*}
u_{\alpha \lambda}{ }^{0}=d_{\alpha \lambda} . \tag{10}
\end{equation*}
$$

We arrange these numbers $u_{\alpha \lambda}{ }^{i}$ for a fixed i in the form of a matrix

$$
\begin{equation*}
U^{i}=\left(u_{\alpha \lambda}{ }^{i}\right) \tag{11}
\end{equation*}
$$

with α as row index and λ as column index, and set

$$
\begin{equation*}
U=\left(U^{0}, U^{1}, \ldots, U^{r-1}\right) \tag{12}
\end{equation*}
$$

Each column of U is given by a pair (i, λ). It follows from (5) that the number of such columns is $k(n)$ (note that the number of elements P_{i} of weight a is $k(a)$), whence U is a square matrix of the same degree as the matrix $Z=\left(\chi_{\alpha}(G)\right)$ of the group characters χ_{α} of S_{n}. According to (8) we have the formula

$$
\begin{equation*}
Z=U A \tag{13}
\end{equation*}
$$

Here A is a square matrix such that

$$
A=\left[\begin{array}{ccc}
\Phi^{(0)} & & 0 \tag{14}\\
& \Phi^{(1)} & \\
\\
& \cdot & \\
& & \\
0 & & \\
0 & & \\
\Phi^{(t)}
\end{array}\right]
$$

where, for each a, the matrix $\Phi^{(a)}=\left({ }_{\phi_{\lambda}}{ }^{(a)}(V)\right)$ of the modular group characters of $S_{n-a p}$ appears in the main diagonal with multiplicity $k(a)$ if the rows and columns are arranged suitably. Since Z is non-singular, so is U :

$$
\begin{equation*}
|U| \neq 0 \tag{15}
\end{equation*}
$$

Proof of Theorem 1. It follows from (8) that, if the rows and columns of U are taken in a suitable order, U breaks up completely into q matrices $U_{1}, U_{2}, \ldots, U_{q}$, each U_{k} corresponding to a block B_{k} of S_{n}. Denote by x_{k} the number of ordinary irreducible characters in B_{k}. It follows from $|U| \neq 0$ that each U-matrix U_{k} of B_{k} must necessarily be a square matrix of degree x_{k} and $\left|U_{k}\right| \neq 0$. Let B_{k} be a block of weight b with p-core $\left[\alpha_{0}\right]$. We then have $x_{k}=l(b)$. Denote by $f(a)$ the number of modular irreducible characters in a block of weight a with p-core $\left[\alpha_{0}\right]$. Since U_{k} is a square matrix of degree $l(b)$ we have by (8)

$$
\begin{equation*}
l(b)=\sum_{a=0}^{b} f(a) k(b-a) \tag{16}
\end{equation*}
$$

Since $l^{*}(0)=f(0)=1$ and $l^{*}(1)=f(1)=p-1$, we shall assume that $l^{*}(a)=f(a)$ for $a<b$. We then have by (12; Lemma 1)

$$
\begin{aligned}
f(b) & =l(b)-\sum_{a=0}^{b-1} f(a) k(b-a) \\
& =l(b)-\sum_{a=0}^{b-1} l^{*}(a) k(b-a)=l^{*}(b)
\end{aligned}
$$

This completes the proof.
2. In what follows we shall be concerned with representations belonging to a fixed block B_{k} of weight b, so we may drop the subscript k. Applying (8) to the orthogonality relations

$$
\sum_{\alpha} \chi_{\alpha}\left(V P_{i}\right) \chi_{\alpha}\left(V^{\prime} P_{j}\right)=0 \quad(i \neq j)
$$

we obtain

$$
\begin{equation*}
\sum_{\alpha} \chi_{\alpha}\left(V P_{i}\right) \chi_{\alpha}\left(V^{\prime} P_{j}\right)=0 \quad[\alpha] \subset B, \quad(i \neq j) \tag{17}
\end{equation*}
$$

whence

$$
\begin{equation*}
\sum_{\alpha} u_{\alpha \lambda}^{i} \chi_{\alpha}\left(V^{\prime} P_{j}\right)=0 \quad[\alpha] \subset B, \quad(i \neq j) \tag{18}
\end{equation*}
$$

We then have

$$
\begin{equation*}
\sum_{\alpha} u_{\alpha \lambda}{ }^{i} u_{\alpha \kappa}^{j}=0 \tag{19}
\end{equation*}
$$

$$
[\alpha] \subset B, \quad(i \neq j)
$$

For $P_{j}=P_{0}=1$, it follows from (18) that

$$
\begin{equation*}
\sum_{\alpha} u_{\alpha \lambda}^{i} \chi_{\alpha}(V)=0 \tag{20}
\end{equation*}
$$

$[\alpha] \subset B, \quad(i \neq 0)$,
where V is any p-regular element of S_{n}. Hence

$$
\begin{equation*}
\sum_{\alpha} u_{\alpha \lambda}^{i} d_{\alpha \kappa}=0 \tag{21}
\end{equation*}
$$

$$
[\alpha] \subset B, \quad(i \neq 0)
$$

Since the U-matrix U_{k} of B is non-singular the identities (21) are linearly independent. Moreover the number of identities (21) is $l(b)-l^{*}(b)$ and hence the system of linearly independent identities (21) satisfied by the rows of the decomposition matrix D_{k} of B is complete.

We shall denote by $n(G)$ the order of the normalizer $N(G)$ of G in S_{n}. Applying (8) to the orthogonality relations

$$
\sum_{\alpha} \chi_{\alpha}\left(V P_{i}\right) \chi_{\alpha}\left(V P_{i}\right)=n\left(V P_{i}\right)
$$

we have

$$
\sum_{\lambda}\left(\sum_{\alpha} u_{\alpha \lambda}^{i} \chi_{\alpha}\left(V P_{i}\right)\right) \phi_{\lambda}^{(a)}(V)=n\left(V P_{i}\right) .
$$

Let $\eta_{\lambda}{ }^{(a)}$ be the character of the indecomposable constituent of the regular representation of $S_{n-a p}$ which corresponds to $\phi_{\lambda}{ }^{(a)}$. Then we have the character relation

$$
\sum_{\lambda} \eta_{\lambda}^{(a)}(V) \phi_{\lambda}^{(a)}(V)=n^{(a)}(V)
$$

where $n^{(a)}(V)$ denotes the order of the normalizer of V in $S_{n-a p}$. Hence

$$
\begin{equation*}
\sum_{\alpha} u_{\alpha \lambda}^{i} \chi_{\alpha}\left(V P_{i}\right)=\frac{n\left(V P_{i}\right)}{n^{(a)}(V)} \eta_{\lambda}^{(a)}(V), \quad[\alpha] \subset B . \tag{22}
\end{equation*}
$$

If P_{i} is an element of weight a with $n-a p 1$-cycles, $k_{1} p$-cycles, $k_{2} 2 p$-cycles, $\ldots, k_{m} m p$-cycles, then (22) yields

$$
\begin{align*}
\sum_{\alpha} u_{\alpha \lambda}^{i} u_{\alpha \kappa}^{i} & =\frac{n\left(V P_{i}\right)}{n^{(a)}(V)} c_{\lambda \kappa}^{(a)} \tag{23}\\
& =c_{\lambda \kappa}^{(a)} \prod_{i}\left(k_{i}!(i p)^{k_{i}}\right)
\end{align*}
$$

where the $c_{\lambda \kappa}{ }^{(a)}$ denote the Cartan invariants of $S_{n-a p}$.
3. Let $[\alpha]$ with p-core $\left[\alpha_{0}\right]$ belong to a block B of weight b and let $[\alpha]^{*}$ be its star diagram (14; also $4 ; 11 ; 17$). We shall write

$$
[\alpha]^{*}=\left[\nu_{0}\right] \cdot\left[\nu_{1}\right] \cdot \ldots \cdot\left[\nu_{p-1}\right]
$$

where the $\left[\nu_{r}\right]$ are the disjoint right constituents of $[\alpha]^{*}$. We assume that [ν_{r}] contains b_{r} nodes, where

$$
\begin{equation*}
b=b_{0}+b_{1}+\ldots+b_{p-1} \tag{24}
\end{equation*}
$$

and r is the leg length of the p-hook represented by its upper left-hand corner node. We denote by $\chi_{\alpha}{ }^{*}$ the character of (reducible) representation [$\left.\alpha\right]^{*}$ of S_{b} corresponding to the star diagram $[\alpha]^{*}$ and by $f_{\alpha}{ }^{*}$ its degree. Then

$$
\begin{equation*}
f_{\alpha}^{*}=\frac{b!}{b_{0}!b_{1}!\ldots b_{p-1}!} f_{v_{0}} f_{v_{1}} \ldots f_{v_{p-1}} \tag{25}
\end{equation*}
$$

where $f_{\nu_{r}}$ denotes the degree of the ordinary irreducible representation $\left[\nu_{r}\right]$ of $S_{b_{r}}$ (14).

If P_{b} represents the product of b cycles, each of length p, on the last $b p$ of n symbols, then P_{b} is of weight b and of type ($1,1, \ldots, 1$). Denote by $N\left(P_{b}\right)$ the normalizer of P_{b} in S_{n}. We then have $N\left(P_{b}\right)=\mathfrak{F}_{1} \times \mathfrak{F}_{2}$, where \mathfrak{H}_{1} is the subgroup of S_{n} which permutes only the first $n-b p$ symbols and which may be identified with $S_{n-b p}$. On the other hand

$$
\begin{equation*}
\mathfrak{H}_{2}=S_{b}^{*} \mathfrak{Q}, \quad S_{b}^{*} \cap \mathfrak{Q}=1 \tag{26}
\end{equation*}
$$

where \mathfrak{Q} is the subgroup generated by the b individual cycles of length p of P_{b} and is the normal subgroup of G_{2}, and $S_{b}{ }^{*}$ is the subgroup of permutations which permute the cycles of P_{b} amongst themselves. We see that $S_{b}{ }^{*}$ is isomorphic to the symmetric group S_{b} of b symbols. We denote by W the element of S_{b} which corresponds to W^{*} of $S_{b}{ }^{*}$. The transitive subgroup $\mathbb{F H}_{2}$ of S_{n} is called the generalized symmetric group and is denoted by $S(b, p)$. The order of $S(b, p)$ is $b!p^{b}$. It may be verified that there are $l(b)$ conjugate classes of $S(b, p)$. For example we shall determine the conjugate classes of $S(2,3)$. We set

$$
Q_{1}=(123), \quad Q_{2}=(456) .
$$

Then there exist two conjugate classes which are represented by

$$
W_{0}^{*}=1, \quad W_{1}^{*}=(14)(25)(36)
$$

A complete system of representatives for the conjugate classes of $S(2,3)$ is given by

$$
W_{0}^{*}, W_{1}^{*}, Q_{1}, Q_{1}^{2}, Q_{1} Q_{2}, Q_{1} Q_{2}^{2}, Q_{1}^{2} Q_{2}^{2}, W_{1}^{*} Q_{1}, W_{1}^{*} Q_{1}^{2}
$$

Each element is associated with a star diagram with 2 nodes by the following way:

$$
\begin{aligned}
& W_{0}^{*}=1 \quad\left[1^{2}\right] \cdot[0] \cdot[0] \\
& W_{1}^{*}=(14)(25)(36) \quad[2] \cdot[0] \cdot[0] \\
& Q_{1} Q_{2}=\left(\begin{array}{ll}
1 & 2
\end{array}\right)(456) \quad[0] \cdot\left[1^{2}\right] \cdot[0] \\
& W_{1}^{*} Q_{1}=(142536) \quad[0] \cdot[2] \cdot[0] \\
& Q_{1}^{2} Q_{2}^{2}=\left(\begin{array}{lll}
1 & 3 & 2
\end{array}\right)\left(\begin{array}{ll}
4 & 6
\end{array}\right) \quad[0] \cdot[0] \cdot\left[1^{2}\right] \\
& W_{1}^{*} Q_{1}^{2}=(143625) \quad[0] \cdot[0] \cdot[2] \\
& Q_{1}=\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right) \quad[1] \cdot[1] \cdot[0] \\
& Q_{1}^{2}=\left(\begin{array}{lll}
1 & 3 & 2
\end{array}\right) \quad[1] \cdot[0] \cdot[1] \\
& Q_{1} Q_{2}^{2}=\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right)\left(\begin{array}{ll}
4 & 6
\end{array}\right) \quad[0] \cdot[1] \cdot[1] .
\end{aligned}
$$

By the same way each conjugate class of $S(b, p)$ is uniquely associated with a star diagram with b nodes. Every conjugate class of $S(b, p)$ associated with $[\alpha]^{*}$ such that $\left[\nu_{0}\right]=[0]$ contains the elements of weight b. But the converse is not valid generally.

Theorem 2. The number of ordinary irreducible representations of $S(b, p)$ is $l(b)$ and there is a (1-1) correspondence between ordinary irreducible representations of $S(b, p)$ and star diagrams $[\alpha]^{*}$ containing b nodes.

This, together with related theorems, will be proved in a forthcoming paper (13a).
We denote by $\zeta_{\alpha^{*}}$ the ordinary irreducible characters of $S(b, p)$ corresponding to a star diagram $[\alpha]^{*}$. Let $V P$ be an element of S_{n} such that P is an element of type $\left(a_{1}, a_{2}, \ldots, a_{s}\right)$ and of weight $b\left(b=\sum a_{i}\right)$ and V is any permutation on the fixed symbols of P, and let W be an element of S_{b} with a_{1}-cycle, a_{2}-cycle, . . , a_{s}-cycle. We have by (6)

$$
\begin{equation*}
\chi_{\alpha}(V P)=h\left(\alpha, \alpha_{0}\right) \chi_{\alpha_{0}}(V) . \tag{27}
\end{equation*}
$$

Since $h\left(\alpha, \alpha_{0}\right)$ is determined by ($a_{1}, a_{2}, \ldots, a_{s}$), we may set $h\left(\alpha, \alpha_{0}\right)=u(W)$. We then have by Thrall and Robinson (18; 14; also cf. 6)

$$
\begin{equation*}
u(W)=\sigma_{\alpha} \chi_{\alpha} *(W) \tag{28}
\end{equation*}
$$

where $\sigma_{\alpha}= \pm 1$ is the product of the parities of the b hooks of length p of $[\alpha]$. On the other hand we can prove that

$$
\begin{equation*}
\chi_{\alpha^{*}}(W)=\zeta_{\alpha^{*}}\left(W^{*}\right), \quad W^{*} \in S_{b}^{*} \tag{29}
\end{equation*}
$$

Thus we may denote without confusion by $\chi_{\alpha}{ }^{*}\left(G^{*}\right), G^{*} \in S(b, p)$, the character of the ordinary irreducible representation of $S(b, p)$ corresponding to $[\alpha]^{*}$.

Let $W_{i}(i=0,1,2, \ldots, k(b)-1)$ be a complete system of representatives for conjugate classes of S_{b}. If we denote by $n^{*}\left(W_{i}^{*}\right)$ the order of the normalizer $N^{*}\left(W_{i}^{*}\right)$ of W_{i}^{*} in $S(b, p)$ then it follows from (19) and (23) that

$$
\sum_{\alpha *} \chi_{\alpha^{*}}\left(W_{i}^{*}\right) \chi_{\alpha} *\left(W_{j}^{*}\right)=\delta_{i j} n^{*}\left(W_{i}^{*}\right) .
$$

Evidently these relations are the orthogonality relations for the characters of $S(b, p)$.
4. Let V be any p-regular element of S_{n} and let W^{*} be any element of $S_{b}{ }^{*}$. We have by (20)

$$
\begin{equation*}
\sum_{\alpha} \chi_{\alpha} *\left(W^{*}\right) \chi_{\alpha}(V)=0, \quad[\alpha] \subset B \tag{30}
\end{equation*}
$$

It was shown in (2) that $S(b, p)$ possesses only one p-block. If we denote by

$$
D^{*}=\left(d_{\alpha \lambda}^{*}\right)
$$

the decomposition matrix of $S(b, p)$, then (30) yields:

$$
\begin{array}{ll}
\sum_{\alpha} \sigma_{\alpha} d_{\alpha \star} \chi_{\alpha} *\left(W^{*}\right)=0, & {[\alpha] \subset B} \\
\sum_{\alpha} \sigma_{\alpha} d_{\alpha \lambda}^{*} \chi_{\alpha}(V)=0, & {[\alpha] \subset B}
\end{array}
$$

and hence

$$
\begin{equation*}
\sum_{\alpha} \sigma_{\alpha} d_{\alpha \kappa} d_{\alpha \lambda}^{*}=0 \tag{33}
\end{equation*}
$$

$[\alpha] \subset B$.
Moreover we have the following
Theorem 3. Let B be a p-block of weight b and let $G=V P$ be an element of S_{n} such that P is any element of weight a different from b and V is any p-regular permutation on the fixed symbols of P. Then for any element $W^{*} \in S_{b}{ }^{*}$,

$$
\sum_{\alpha} \sigma_{\alpha} \chi_{\alpha}(G) \chi_{\alpha^{*}}\left(W^{*}\right)=0
$$

$[\alpha] \subset B$.
This follows immediately from (19).
We obtain the generalization of the Murnaghan-Nakayama recursion formula for the character $\chi_{\alpha} *$ of $S(b, p)$ and this yields

Theorem 4. Let B be a p-block of weight b and let S be any element of $S(b, p)$ associated with a star diagram $[\beta]^{*}=\left[\lambda_{0}\right] \cdot\left[\lambda_{1}\right] \cdot \ldots \cdot\left[\lambda_{p-1}\right]$ such that $\left[\lambda_{0}\right] \neq[0]$. Then

$$
\sum_{\alpha} \sigma_{\alpha} \chi_{\alpha}(V) \chi_{\alpha} *(S)=0 \quad\left(V \text { in } S_{n}, p \text {-regular }\right)
$$

Let R be any element of $S(b, p)$ associated with a star diagram $[\beta]^{*}$ such that $\left[\lambda_{0}\right]=[0]$. The number of conjugate classes of $S(b, p)$ which contain the element R defined above is $l^{*}(b)$. We denote by $R_{1}, R_{2}, \ldots, R_{l^{*}(b)}$ the representatives for these classes.

Theorem 5. Let $D=\left(d_{\alpha \lambda}\right)$ be the decomposition matrix of a p-block B of weight b. Then

$$
d_{\alpha \lambda}=\sigma_{\alpha} \sum_{\kappa=1}^{i^{*}(b)} v_{\kappa \lambda} \chi_{\alpha^{*}}\left(R_{\kappa}\right), \quad \text { for }[\alpha] \subset B,
$$

where the $v_{\mathrm{\kappa} \mathrm{\lambda}}$ are complex numbers and are independent of α.
Corollary. Let $D=\left(d_{\alpha \lambda}\right)$ and $D^{\prime}=\left(d_{\alpha^{\prime} \lambda}^{\prime}\right)$ with $[\alpha]^{*}=\left[\alpha^{\prime}\right]^{*}$ be the decomposition matrices of p-blocks B and B^{\prime} of same weight respectively. Then

$$
d_{\alpha^{\prime} \nu}^{\prime}=\sigma_{\alpha} \sigma_{\alpha^{\prime}} \sum_{\lambda=1}^{\iota^{*}(b)} w_{\nu \lambda} d_{\alpha \lambda}, \quad \text { for }\left[\alpha^{\prime}\right] \subset B^{\prime}
$$

where the $w_{\nu \lambda}$ are rational integers and $\left|w_{\nu \lambda}\right|= \pm 1$.
Consequently we have
Theorem 6. Two matrices of Cartan invariants corresponding to the p-blocks of same weight have the same elementary divisors.

Example. The following is the U-matrix for the 2-block B of S_{6} with 2-core [0].
$[6]$
$[5,1]$
$[4,2]$
$\left[4,1^{2}\right]$
$\left[3^{2}\right]$
$\left[2^{3}\right]$
$\left[3,1^{3}\right]$
$\left[2^{2}, 1^{2}\right]$
$\left[2,1^{4}\right]$
$\left[1^{6}\right]$$\left[\begin{array}{lllllrrrrr}1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 & 1 & 1 & -1 & -1 & -1 \\ 1 & 1 & 1 & 1 & 1 & 1 & -1 & 3 & 1 & 0 \\ 2 & 1 & 1 & 0 & 1 & -2 & 0 & -2 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 & 1 & -1 & -3 & -1 & 0 \\ 1 & 0 & 1 & -1 & 0 & 1 & 1 & 3 & -1 & 0 \\ 2 & 1 & 1 & 0 & -1 & -2 & 0 & 2 & 0 & -1 \\ 1 & 1 & 1 & -1 & -1 & 1 & 1 & -3 & 1 & 0 \\ 1 & 1 & 0 & -1 & -1 & 1 & -1 & 1 & -1 & 1 \\ 1 & 0 & 0 & -1 & 0 & 1 & -1 & -1 & 1 & -1\end{array}\right]$

The matrix occupying the first three columns of this U-matrix is the decomposition matrix of B and the matrix occupying the last three columns is the matrix ($\sigma_{\alpha} \chi_{\alpha}{ }^{*}\left(W_{i}^{*}\right)$) of $S(3,2)$. We set

$$
Q_{1}=(12), \quad Q_{2}=(34), \quad Q_{3}=\left(\begin{array}{ll}
5 & 6
\end{array}\right), \quad P=\left(\begin{array}{ll}
1 & 2
\end{array}\right)\left(\begin{array}{ll}
3 & 4
\end{array}\right)(56) .
$$

Then

$$
\begin{gathered}
W_{0}^{*}=1, \quad W_{1}^{*}=\left(\begin{array}{ll}
1 & 3
\end{array}\right)(24), \quad W_{2}^{*}=\left(\begin{array}{lll}
1 & 3 & 5
\end{array}\right)\left(\begin{array}{ll}
2 & 4
\end{array}\right), \\
Q_{1}, \quad W_{1}^{*} Q_{3}, \quad Q_{1} Q_{2}, \quad W_{1}^{*} Q_{1}, \quad P, \quad W_{1}^{*} Q_{1} Q_{3}, \quad W_{2}^{*} Q_{1}
\end{gathered}
$$

form a complete system of representatives for conjugate classes of $S(3,2)$. We then obtain easily Table I, showing the group characters $\chi_{\alpha} *$ of $S(3,2)$ (cf. 5, p. 275).
TABLE I

class	$\left[1^{3}\right] \cdot[0]$	$[2,1] \cdot[0]$	$[3] \cdot[0]$	$\left[1^{2}\right] \cdot[1]$	$[2] \cdot[1]$	$[1] \cdot\left[1^{2}\right]$	$[1] \cdot[2]$	$[0] \cdot\left[1^{3}\right]$	$[0] \cdot[2,1]$	$[0] \cdot[3]$
element	1	$(13)(24)$	$(135)(246)$	(12)	$(13)(24)(56)$	$(12)(34)$	(1324)	$(12)(34)(56)$	$(1324)(56)$	(135246)
order	1	6	8	3	6	3	6	1	6	8
$[3] \cdot[0]$	1	1	1	1	1	1	1	1	1	1
$[0] \cdot[3]$	1	1	1	-1	-1	1	-1	-1	1	-1
$[2] \cdot[1]$	3	1	0	1	-1	-1	1	-3	-1	0
$[2,1] \cdot[0]$	2	0	-1	2	0	2	0	2	0	-1
$[1] \cdot[2]$	3	1	0	-1	1	-1	-1	3	-1	0
$\left[1^{2}\right] \cdot[1]$	3	-1	0	1	1	-1	-1	-3	1	0
$[0] \cdot[2,1]$	2	0	-1	-2	0	2	0	-2	0	1
$[1] \cdot\left[1^{2}\right]$	3	-1	0	-1	-1	-1	1	3	1	0
$\left[1^{3}\right] \cdot[0]$	1	-1	1	1	-1	1	-1	1	-1	1
$[0] \cdot\left[1^{3}\right]$	1	-1	1	-1	1	1	1	-1	-1	-1

The decomposition matrix D^{*} and the matrix C^{*} of Cartan invariants of $S(3,2)$ are given by

$$
D^{*}=\left[\begin{array}{ll}
1 & 0 \\
1 & 0 \\
1 & 1 \\
0 & 1 \\
1 & 1 \\
1 & 1 \\
0 & 1 \\
1 & 1 \\
1 & 0 \\
1 & 0
\end{array}\right] \quad, \quad C^{*}=\left[\begin{array}{ll}
8 & 4 \\
4 & 6
\end{array}\right]
$$

The following are the D-matrices $\left(d_{\alpha \lambda}\right)$ and ($d_{\alpha^{\prime} \lambda}^{\prime}$) for the 2 -block of $S_{6_{-}}{ }^{7}$ with 2 -core [0] and the 2 -block of S_{7} with 2 -core [1] respectively:
$[6]$
$[5,1]$
$[4,2]$
$\left[4,1^{2}\right]$
$\left[3^{2}\right]$
$\left[2^{3}\right]$
$\left[3,1^{3}\right]$
$\left[2^{2}, 1^{2}\right]$
$\left[2,1^{4}\right]$
$\left[1^{6}\right]$$\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \\ 2 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \\ 2 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]$
$[7]$
$[4,2,1]$
$\left[5,1^{2}\right]$
$[5,2]$
$\left[3^{2}, 1\right]$
$\left[3,2^{2}\right]$
$\left[2^{2}, 1^{3}\right]$
$\left[3,1^{4}\right]$
$\left[3,2,1^{2}\right]$
$\left[1^{7}\right]$$\quad\left[\begin{array}{lll}1 & 0 & 0 \\ 2 & 1 & 1 \\ 2 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ 2 & 1 & 0 \\ 2 & 1 & 1 \\ 1 & 0 & 0\end{array}\right]$

We see from the table of the group characters $\chi_{\alpha} *$ of $S(3,2)$ that

$$
\left(d_{\alpha \lambda}\right)=\left[\begin{array}{rrr}
1 & 1 & 1 \\
1 & -1 & 1 \\
-3 & -1 & 0 \\
-2 & 0 & 1 \\
-3 & 1 & 0 \\
-3 & 1 & 0 \\
-2 & 0 & 1 \\
-3 & -1 & 0 \\
1 & -1 & 1 \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{rrr}
-\frac{1}{3} & -\frac{1}{6} & -\frac{1}{3} \\
0 & -\frac{1}{2} & 0 \\
\frac{4}{3} & \frac{2}{3} & \frac{1}{3}
\end{array}\right]
$$

There exists the following relation between $\left(d^{\prime}{ }_{\alpha^{\prime} \lambda}\right)$ and $\left(\sigma_{\alpha} \sigma_{\alpha^{\prime}} d_{\alpha \lambda}\right)$:

$$
\left(d_{\alpha^{\prime} \lambda}^{\prime}\right)=\left[\begin{array}{rrr}
1 & 0 & 0 \\
-1 & -1 & 0 \\
-1 & -1 & -1 \\
-2 & -1 & -1 \\
1 & 0 & 1 \\
1 & 0 & 1 \\
-2 & -1 & -1 \\
-1 & -1 & -1 \\
-1 & -1 & 0 \\
1 & 0 & 0
\end{array}\right]\left[\begin{array}{rrr}
1 & 0 & 0 \\
-3 & -1 & -1 \\
0 & 0 & 1
\end{array}\right]
$$

References

1. R. Brauer and C. Nesbitt, On the modular characters of groups, Ann. of Math., 42 (1941), 556-590.
2. R. Brauer and G. de B. Robinson, On the conjecture by Nakayama, Trans. Royal Soc. Canada, Series III, Sec. III, 40 (1947), 11-25.
3. J. H. Chung, Modular representations of the symmetric group, Can. J. Math., 3 (1951), 309-327.
4. H. Farahat, On p-quotients and star diagrams of the symmetric group, Proc. Camb. Phil. Soc., 49 (1953), 157-160.
4a. J. S. Frame and G. de B. Robinson, On a theorem of Osima and Nagao, Can. J. Math., 6 (1954), 125-127.
5. D. E. Littlewood, The theory of group characters (Oxford, 1950).
6. ——, Modular representations of symmetric groups, Proc. Roy. Soc. A, 209 (1951), 333353.
7. F. D. Murnaghan, On the representations of the symmetric group, Amer. J. Math., 59 (1937), 437-488.
8. H. Nagao, Note on the modular representations of symmetric groups, Can. J. Math., 5 (1953), 356-363.
9. T. Nakayama, On some modular properties of irreducible representations of a symmetric group I, Jap. J. Math., 17 (1941), 89-108.
10. - , II, ibid., 411-423.
11. T. Nakayama and M. Osima, Note on blocks of symmetric groups, Nagoya Math. J., 2 (1951), 111-117.
12. M. Osima, On some character relations of symmetric groups, Math. J. Okayama Univ., 1 (1952), 63-68.
13. -_, Some remarks on the characters of the symmetric group, Can. J. Math., 5 (1953), 336-343.
13a. - On the representations of the generalized symmetric group, Math. J. Okayama University, 4 (1954), to appear.
14. G. de B. Robinson, On the representations of the symmetric group III, Amer. J. Math., 70 (1948), 277-294.
15. -, On the modular representations of the symmetric group, Proc. Nat. Acad. Sci. U.S.A., 37 (1951), 694-696.
16. -- On a conjecture by J. H. Chung, Can. J. Math., 4 (1952), 373-380.
17. R. A. Staal, Star diagrams and the symmetric group, Can. J. Math., 2 (1950), 79-92.
18. R. M. Thrall and G. de B. Robinson, Supplement to a paper of G. de B. Robinson, Amer. J. Math., 73 (1951), 721-724.

Okayama University

