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REPRESENTATIONS OF LIE GROUPS 
BY CONTACT TRANSFORMATIONS, 

I: COMPACT GROUPS 

BY 

CARL HERZ 

ABSTRACT. The action of Lie groups as transitive groups of restricted 
contact transformations of compact manifolds are classified. 

RÉSUMÉ. On classifie les actions de groupe de Lie par transformations 
de contact, au sens restreint, de variété compacte. 

1. Statements of results. An exact contact manifold (A, 9) is a smooth (2n + 1)-
dimensional manifold A endowed with a 1-form 9 such that 9 A dOn gives a volume 
element, i.e. it vanishes nowhere. A restricted contact transformation is a diffeomor-
phism S of A such that, for the tangent functor T, one has 9 o T(S) = 9. 

We consider the case of a connected Lie group G acting as a transitive group of contact 
transformations of (A, 9 ). Put g for the Lie algebra of G and write A* for the vector field 
on A corresponding to the infinitesimal action of X G q. We shall henceforth assume 
that the action of G is infinitesimally faithful, i.e. 

X e g and Ax(z) = 0 Vz G A implies X = 0. 

One can give a simple complete classification. 

PROPOSITION 1.1. Suppose G acts infinitesimally faithfully as a transitive group of 
restricted contact transformations of a compact manifold A. There are three cases: 

(i) G is compact semi-simple; 
(ii) there exists a compact semi-simple subgroup KofG of codimension 1 which acts 
as a transitive group of contact transformations of an; 
(in) G is 1-dimensional and A is a circle. 

The contact manifolds (A, 9 ) are heavily restricted by admitting a transitive group 
of restricted contact transformations. Replacing 9 by c9 where c > 0 changes nothing 
important. Such a change will be called a normalization. For any exact contact manifold 
there is a unique vector field 0 defined on A by the properties 

(1.2) 0 (0) = 1 d9 (0(z), O = 0 for each £ G TZ(A). 

The group invariance of 9 leads to 
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PROPOSITION 1.3. Suppose (A, 6 ) is a compact contact manifold admitting a transitive 
group, G, of restricted contact transformations. Then the 0 defined by (1.2) commutes 
with the action ofG, i.e. So S = T(S) o S for each S G G. Moreover one can normalize 
6 so that the flow of 0 has period 2TT everywhere. Thus, in Q. = A x R+ one can 
introduce an action of C* where multiplication by i is given by exp(^7T0). Q can be 
given a canonical complex structure so that it appears as a holomorphic C^-bundle over 
a compact Kâhler manifold Of on which G acts as a transitive group of holomorphic 
isometries, and the Kdhlerform on Of is carried back by the projection map of the circle 
bundle A —> Of to dO. 

In view of Proposition 1.1 we may confine our attention to G compact semi-simple. 
Let A be the highest weight of an irreducible unitary representation of G in a complex 
Hilbert space 11 with inner product ( -, •) which is conjugate linear in the first variable 
and linear in the second. (The existence of a highest weight vector implies that the rep
resentation is P-extreme in the sense of [5; p. 90]; see also [1]). We may as well suppose 
that the representation is faithful, and that G is defined as a group of unitary transfor
mations of 11. Fix zo as a highest weight vector of norm 1, and put A for the G-orbit of 
zo- The tangent space TZ(A) is viewed as a subspace of 11. Define a 1-form on A by 

(1.4) 0 fc u) = Im( z, u) for u G TZ(A) 

For X G g we have 
A*(z) = Xz. 

LEMMA 1.5. The 6 defined by (1.4) is a G-invariant contact structure for A. A is 
invariant under scalar multiplication by e where e G C, | e | = 1. 

Put £1 for the cone through A; thus Q = { zc : z G A, c > 0} . Then Q, admits an action 
of C* by scalar multiplication and has a complex structure given by multiplication by / 
in the tangent space viewed as a subspace of 11. The Of of Proposition 1.3 is the image 
of Q in the complex projective space 11/ C*. 

ILLUSTRATION. Take G = SU(3) in its standard representation IT in C3. Then g may 
be identified with the 3x3 complex skew-Hermitian matrices of trace 0. C 0 g is viewed 
as the complex 3 x 3 matrices of trace 0. The highest weights of C 0 q are equivalent 
to some dominant weight Am>n where 

XmtnX = mX\ — nX\ with m,n G Z, m,n^ 0, 

and we suppose m+n > 0. The corresponding representation is contained in 7r(g)m <8)7f(g)n, 
and, in terms of the standard basis for C3, the highest weight vector may be taken to 
be the tensor product of e\ with itself m times tensored with the tensor product of e\ 
with itself n times. There are only two different Of which arise. If n — 0 we have 
Of = PROJ (2, C ), and A is the standard circle bundle corresponding to muj\ where u\ is 
the standard generator for H2(0f) given by the Kàhler form. Thus A may be viewed as 
standard S5 modulo identification by a cyclic group of order m. If m = 0 the situation 
is the same except that A corresponds to — nuj\. The contact manifolds obtained for An,o 
and A0,n are distinct as G-manifolds. If m ^ 0,n ^ 0 one has Of = G /T 2 where T2 
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is a maximal torus. To make matters clearer we examine in detail the weight Aij. The 
representation is the one on the space, 11, of 3 x 3 complex matrices of trace 0 given 
by (S,Z) i—> SZS~l. Observe that the equivalence class of this representation is usually 
taken as the action on the Hermitian 3 x 3 matrices of trace 0, but in order to have a 
highest weight vector one must use a complex vector space. One may choose zo here to 
be the 3 x 3 matrix with 1 in the upper right-hand corner and 0 elsewhere. Here we have 

n = {ze u\ {o} :z2 = o}. 

Thus 9f appears as an algebraic variety of complex dimension 3 in PROJ (7, C ). SU(3) 
acts faithfully on A except when m and n are both divisible by 3 in which case the centre 
acts trivially. 

THEOREM 1.6. Let G be a compact semi-simple Lie group acting as a transitive group 
of restricted contact transformations of (A, 6). After suitable normalization A is equiv
alent as a G-manifold to the orbit of a highest-weight vector in an irreducible unitary 
representation of G with the contact form given by (1.4). 

PROPOSITION 1.7. The 9f given by Proposition 1.3 is a symmetric space of G iff the 
representation has highest weight X with the property that if a and /} are distinct positive 
roots such that a + (3 is a root and A — a and X — f3 are weights of the representation 
then X — a — (3 is not a weight of the representation. 

Combining (1.1) and ( 1.6) we can assert 

PROPOSITION 1.8. In order that a connected Lie group G admit a faithful represen
tation by restricted contact transformations of a compact manifold it is necessary and 
sufficient that G be compact with finite cyclic centre orG = J. 

The upshot is that we get no new, interesting information about Lie groups by con
sidering restricted contact transformations. This contrasts with representations of non-
compact simple Lie groups by unrestricted contact transformations acting on compact 
manifolds; see [3] and [4]. The contact manifolds which occur for the non-compact sim
ple Lie groups are always among the ones described here. 

ILLUSTRATION. Consider the exceptional simple compact 14-dimensional group G2. 
It acts as a faithful transitive group of transformations of (S6,u) where u is the non-
degenerate 2-form corresponding to the quasi-complex structure of S6; see [2] for a 
detailed description. This arises when one considers the fundamental representation TT\ 
of G2 by orthogonal transformations of R7. When one views this representation as a 
unitary representation in C 7, the orbit of a highest-weight vector is 11-dimensional. The 
system of positive roots in the complexified Lie algebra may be represented as 

7, 6, 7 + £, 27 +6, 37 +6, 37 +26. 

The highest weight corresponding to TT\ is A = 27 + 6. The elements X e Q such that 
Ax(zo) = 0 where zo is the weight vector for A are the skew-Hermitian elements of 

CHS + q(S) + q(S) 
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where H& is the co-root vector and g (±6 ) are the root spaces in C ® g. If we write 
SU(2) for the subgroup corresponding to this Lie algebra then the contact manifold for 
G2 given by Theorem 1.6 is isomorphic to G2/ SU(2). This contrasts with case of the 
adjoint group of the non-compact version of the Lie algebra G2 which acts faithfully as 
a transitive group of unrestricted contact transformations of a 5-dimensional manifold; 
see [2, Theorem (6.3)]. 

2. Proofs. We start with the general situation of G a connected Lie group acting 
transitively as restricted contact transformations of (A, 6). A general property of in
finitesimal restricted contact transformations gives 

(2.1) d6 (Ax, AY) = 6 ( A r a ) for X, Y G g. 

Write g * for the dual vector space of the Lie algebra g. There is a canonical map 

(2.2) A -> g*, z ^ z where zX = 9 (Ax(z)). 

Under the action of G on A we have 

Tz = z ad ST1 

where ad S, S G G, acts on the left on g and on the right in g*. Put Of for the image 
of this map. Write 0fx for the infinitesimal action of X G g on Of. Obviously Of is a 
co-adjoint orbit. It's Kostant-Souiriau form uj\ is, by definition 

(2. 3) CJ, {0<x(q\ 0{Y(q)) = q[X, Y] for q G 0{. 

Therefore, under the mapping (2.2) the Kostant-Souriau form of Of lifts back to dO on 
A. 

LEMMA 2.4. Suppose G acts as an infinitesimally faithful transitive group of contact 
transformations of a compact manifold A. Put C for the centre of the Lie algebra g. If 
N G g is such that AdN is nilpotent then iVGC. Moreover dim(c) < 1. The projection 
A —> 9f given by (2.2) is a finite covering map. 

PROOF, IT is obvious that dim 9'f = dim A — 1. Define 

If N G g is such that ad TV is nilpotent then for fixed q G Of and X G g, t H-> 
q exp(£ ad N)X is a bounded polynomial function. We conclude that TV G c. Conversely, 
if N G c then dO{z\ AN, Ax) = 0 for all X G g. This implies that 0(AN) is a constant 
function on A. By hypothesis, if 6 (AN) = 0 then N = 0. Thus c has dimension at most 
1, and [c, g ] = 0 which shows that c is indeed the centre of g. 

PROOF OF PROPOSITION 1.1. Consider the Levi decomposition g = £ + r where ë 
is a semi-simple subalgebra and r is the radical. By (2.4), r = c. Thus £ is an ideal. 
Again by (2.4), 3 contains no Ad-nilpotent elements. Therefore it is of compact type. 
Let K be the connected compact subgroup of G corresponding to ë. If c = O w e have 
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case (i) and there is nothing to prove. If ê = 0 we have the trivial case (iii). Finally if 
c is 1-dimensional and dim G > 1 it is easy to see that for each z G A there must exist 
Xe$ such that 6(Ax(z)) ^ 0. 

Henceforth we assume that q is semi-simple of compact type. 
The flow corresponding to 0, defined by (1.2), must commute with the action of G by 

uniqueness, and hence it is strictly confined to the fibres of A over fH which are compact 
and 1-dimensional. One easily sees that the flow is circular, and we can normalize 0 so 
that the period is exactly 2ir. Write t i—• exp(Y0) for the flow of 0. In Q = A x R+ 
introduce an action on the right of C* by 

(2.5) (z,c)(re,Y)= (exp(*0)z,cr). 

The action of G is extended to Q by S(z, c) = (Sz, c)\ thus it commutes with the action 
of C*. Put E for the vector field on Q corresponding to the infinitesimal action of scalar 
multiplication on R+. Put V(z) — { £ G TZ(A) : 6 (£ ) = 0}. In an obvious way we have 
a direct sum decomposition 

rfcc)(Q) = E(z,c)R e 0(z)R e v(zy 

To define a complex structure, 7, on T(ZtC)(Q) it suffices to set JE(z, c) = 0(z), 70(z) = 
—E(z, c), and impose a complex structure J(z) on V(z). To do this we note that V(z) is 
canonically isomorphic to T%(!H). Proposition 1.3 will be proved once we can show 
that there is a G-invariant complex structure J on 9{ such that UJ\ (•, J) is a Riemannian 
metric where o;i is the Kostant-Souriau form. To do this we need the theory of semi-
simple Lie algebras and their root systems. 

Let P(z) be the subgroup of G leaving z G A fixed. Put Q(z) for the subgroup of G 
leaving z fixed. Put g for the 1-dimensional subspace of the Lie algebra q(z) which is 
orthogonal to p (z) under the Killing form. Observe that for K G 8 we have K = 0 iff 
zK — 0. It follows that 8 is a central ideal in q(z). 

LEMMA 2.6. Q(z) contains the identity component of the centralizer of l in G. 

PROOF. Using the Killing form one can choose K G 8 so that 

£ X = K I L L ( £ , X ) VXGg. 

If S G G is such that adS8 = 8 then adSK = ±K, and hence z ad S_1 = ±z. 
Take a to be a maximal abelian subalgebra of g which contains 8 By Lemma 2.6, 

a C q(z). Take K G a such that / / a = — «X is a co-root vector for a root a of C ® a in 
C 0 g, i.e. 

a(//) = 2KILL (//, tfa)/ KILL (Ha,Ha) for all H G C 0 a. 

In particular exp(27rAT) = 1. Observe that 

AK(z) = e(z)c where c = 9 (z; A*) = zK. 
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We must have c integral. This is to say that z — —iX where A is a weight for C ® a. 
For a suitable ordering of the roots, À is the highest weight of an irreducible unitary 
representation of G. 

At this stage we need 
PROOF OF LEMMA 1.5. We have to prove, for £ G TZ(A) 

0(O = 0 and d6(^ri) = 0 V77 G TZ(A) imply £ = 0. 

It suffices to take z — ZQ and £ of the form Xzo, X E q. Observe that 

d6 (z; Ax, Ay) = 9 (z; A lxy]) = 2Im( Yz, Xz). 

We have only to show that if {Xzo, Yzo) is real for every Y G q and (zo,Xzo) = 0 then 
Xzo — 0. Let a be the maximal abelian subalgebra of g used to define the weights. Let 
g+ be the subspace of C (g) g spanned by the positive root vectors for C 0 a for some 
ordering of the roots. Then every element of g can be written in the form 

X = K + (M - Af*) where AT G a and Af G q+. 

By the fact that zo is a highest weight vector we have MZQ — 0 for M G g+. Therefore 

Xzo = Zoi\(K)-M*zo. 

By the hypothesis on X, X(K) — 0. Take F = —i(M + Af*); this defines an element of 
g and (Xzo, Yzo) — i ||Af*zo||2 which is real iff Xzo = 0. Since A is supposed to be a 
non-zero weight, there exists K G a such that A K — i, and exp(Y/T) zo — zoelt which 
proves the invariance of A under scalar multiplication by complex numbers of modulus 
1. 

Now let us assume that G acts faithfully and transitively as restricted contact transfor
mations of (A, 6 ). For a given zo G A we get a weight A = —izo. Consider the irreducible 
unitary representation ir of G in the complex Hilbert space U with highest weight vec
tor £0; the maximal abelian subalgebra C (g) a and the ordering of the roots being that 
constructed for zo- Let (A, 0) be the G-orbit through zo with the contact form given by 
(1.4). Since 7r is a representation of G, and not merely of its universal covering group, 
the transitivity of G on A gives a map 

A ^ A , Szo"->7r(S)£o, ^ G G 

such that 6 is carried back to 6. We claim that the map is a diffeomorphism; one only 
need prove that it is one-to-one. It is easy to see that if C G G and TT(C) = I then C 
must be in the centre of G. Thus C belongs to the maximal torus with Lie algebra a, 
and we can write C = exp(^) where K G a. Since 7r(C) = 1 we have 6(AK(ZQ)) — 0 
as well as dô(AK(zo), Ax(zo)) — 0 for all X G g. This implies that AK(zo) — 0, so 
Czo = zo, i.e. C = 1. 

We have now completed the proof of ( 1.3), but see the next paragraph for more details. 
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PROOF OF PROPOSITION 1.7. Once again we may assume that we are in the situation 
of Lemma 1.4 with G a group of unitary transformations of U, here Q(zo) is the sub
group leaving invariant the complex line containing the highest weight vector zo G 11 
invariant. To say that 

^ = G / Q ( z 0 ) 

is a symmetric space of G is to say that there exists an involution a of g whose fixed 
subspace is q (zo). To investigate this involution we take an ordering of the roots of C <g> a 
in C (g) g for which À is a highest weight. Put g (a) for the root space in C 0 g of the 
root a, and let Ha be the corresponding co-root. One has that 

[M,N] = c(M,N)Ha if M G g(a), N E g ( - a ) 

where 2c(M, AO KILL (Ha,Ha) = KILL (M,N). 

As in the proof of (1.5) we can identify T^0(^{) with the subspace V(zo) of g generated 
by the vectors of the form (Ma — M* ) where À Ha > 0. If the involution a exists we 
must have a = — / on V(z), but this requires that 

(2.7) [V(zolV(z0)]Cq(zol 

One calculates 

[Ma ~ A C t y - ^ 1 = Wa,Np] - [Ma,Np]* ~ ([Ma,N*p] - [M„,A^]*). 

Now [Ma, A^ ] G q (zo) unless a + /3 is a positive root and \Ha+p > 0. Similar consid
erations apply to the second term; so (2.7) holds unless we have positive roots a and (3 
with \Ha > 0, \Hp > 0 such that a +/3 is a positive root with \Ha+p > 0 or a — (3 
is a positive root with \Ha-p > 0. The two cases need not be distinguished. To say the 
a is a root and À Ha > 0 is to say that À — a is a weight of the representation n with 
highest weight A. 
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