THE $\boldsymbol{k}(\boldsymbol{G} \boldsymbol{V})$-PROBLEM REVISITED
 THOMAS MICHAEL KELLER

(Received 14 April 2004; revised 10 November 2004)

Communicated by E. A. O’Brien

Abstract

Suppose that the finite group G acts faithfully and irreducibly on the finite G-module V of characteristic p not dividing $|G|$. The well-known $k(G V)$-problem states that in this situation, if $k(G V)$ is the number of conjugacy classes of the semidirect product $G V$, then $k(G V) \leq|V|$. For p-solvable groups, this is equivalent to Brauer's famous $k(B)$-problem. In 1996, Robinson and Thompson proved the $k(G V)$ problem for large p. This ultimately led to a complete proof of the $k(G V)$-problem. In this paper, we present a new proof of the $k(G V)$-problem for large p.

2000 Mathematics subject classification: primary 20C15, 20 C 20.

1. Introduction

The subject of this paper is a classical open problem in the modular representation theory of finite groups, known as Brauer's $k(B)$-problem and dating back to the 1950s.

Recall that in modular representation theory, for a given prime p and a finite group G, the set of all irreducible complex and p-Brauer characters of G is partitioned into subsets called the p-blocks of G, and one assigns to each p-block B a certain p-subgroup D of G, called the defect group of B, which is uniquely determined up to conjugacy. If $|D|=p^{d(B)}$, then $d(B)$ is called the defect of B. (For an introduction to the subject, we refer the reader to [18].)

With these notions Brauer's $k(B)$-problem states that for any p-block B of G the number $k(B)$ of irreducible complex characters in B is bounded above by the order of the defect group D of B, that is, $k(B) \leq p^{d(B)}$.

The best general bound to date is due to Brauer and Feit and states that $k(B) \leq$ $p^{2 d(B)-2}$.

If G is p-solvable, it has been known for a long time that Brauer's $k(B)$-problem is equivalent to the following conjecture which is known as the $k(G V)$-problem.
$k(G V)$-Problem. If the group G acts faithfully and irreducibly on the finite G-module V and if $(|G|,|V|)=1$, then the number $k(G V)$ of conjugacy classes of the semidirect product $G V$ is bounded above by the order of V, that is, $k(G V) \leq|V|$.

Over the past two decades this conjecture attracted the interest of a number of mathematicians, and in a huge effort its proof has finally been completed in [8]. For a detailed history of this fascinating problem, we refer the reader to [12] and [21]. We point out, however, that the whole line of attack on the problem is based on some fundamental ideas introduced by R. Knörr in the 1980s, which eventually led to the celebrated paper [22] by Robinson and Thompson, where they were able to settle the conjecture for large primes p (more precisely, for $p>5^{30}$). All subsequent work on the problem is based on the results in [22].

In this paper, we will provide a new proof of the $k(G V)$-problem for large p, that is, for $p>K$ where K is a suitable constant. Our approach is independent of [22] and more straightforward, and the new proof in many instances gives bounds stronger than $k(G V) \leq|V|$. It turns out to be yet another application of character and fixed point ratio estimates (see, for example, $[4,15,23]$ for other important examples), thus demonstrating once again their usefulness and power. Some of the ideas behind this approach to the $k(G V)$-problem were already developed in [11], but the proof in that paper was long and worked only for solvable groups.

Our strategy is as follows: We proceed by induction on $|G V|$. Clearly V is induced from a submodule W that is a primitive and faithful \bar{N}-module, where $\bar{N}=$ $N_{G}(W) / C_{G}(W)$ (possibly $W=V$). We will reduce the problem to one of the following situations:
(1) $k(\bar{N} W) \leq|W| / T$ for some $T \in \mathbb{N}$ or
(2) $W<V$ and $k(\bar{N})$ is small relative to $|W|$ or
(3) $\bar{N} \leqq \Gamma(q)$, where q is a power of p and $\Gamma(q)$ is the semilinear group on $G F(q)$.

This reduction process involves an analysis of the structure of coprime primitive linear groups which are large relative to the module they act on (see Theorem 3.5). The results obtained in this context are of independent interest and can be understood as qualifying the general result of Gambini and Gambini-Weigel [6] on the order of such groups. The proof is based on character ratio estimates which were proved by Gluck and Magaard in [7] for different purposes, and it ultimately makes use of an argument of Liebeck [13] that already had proved useful in the Robinson-Thompson paper. Thus the reduction to Cases (1), (2) and (3) depends on CFSG.

In Case (1), if $V=W$, we are done, and if $W<V$, an easy induction argument will show that $k(G V) \leq|V|$. In Case (2), an elementary induction (see Lemma 2.2)
will do the job. In Case (3), if $W=V$, the conclusion can be shown directly. The inductive arguments used up to this point are of an elementary and purely group theoretical nature. We are left with Case (3) and $W<V$. This case not surprisingly requires a more sophisticated inductive treatment presented in Lemma 2.3. While formally similar to Lemma 2.2, it requires some basic character theory and also a technical argument from [11] on stabilizers in the action of a group on the set of conjugacy classes of a subgroup.

The paper is organized as follows: Section 2 contains the inductive arguments, Section 3 deals with the structure of primitive linear groups. In Section 4, we prove the main theorem.

Note that since the focus of the paper is on the methods and in order to keep the tedious parts of the proofs short, no effort has been made to keep the constant K small.

The notation used is standard and is as in [11]. In particular, $n(G, V)$ denotes the number of orbits of G on V. If F is a field, by the natural F-module V for S_{n} respectively A_{n} we mean the deleted permutation module of S_{n} respectively A_{n}, that is, $V=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{i} \in F\right.$ for all $\left.i, \sum_{i=1}^{n} x_{i}=0\right\}$ with components permuted naturally by S_{n} respectively A_{n}.

We will frequently use the fact that $k(G) \leq 2^{n-1}$ for any subgroup G of the symmetric group S_{n} (see [14]), and that if V is an S_{n} - or A_{n}-module for $n>6$ with $\operatorname{char}(V)>n$, then $\operatorname{dim} V \geq n-1$ (see [24]). Also basic estimates for $k(G)$ such as $k(G) \leq k(G / N) k(N)$ for $N \unlhd G$ and the basic formulas for $k(G V)$ (see, for example, [11]) will freely be used, as well as the fact that if G acts faithfully on V with $(|G|,|V|)=1$, then $|G|<|V|^{2}$ (see [20]).

2. The key lemmas

We begin with an auxiliary result.

Lemma 2.1. Let G be a group acting on a finite set Ω. Suppose that $\left|C_{\Omega}(g)\right| \geq$ $|\Omega| / 2$ for all $g \in G$. Then there exists an $\omega \in \Omega$ such that $\omega^{g}=\omega$ for all $g \in G$.

Proof. This is immediate from the Cauchy-Frobenius orbit counting formula.
Now we can prove a crucial lemma in the spirit of [11, Lemma 3.8 and Remark 3.9].
Lemma 2.2. Let G be a finite group and V be a finite G-module with $(|G|,|V|)=1$. Suppose that $N \unlhd G$ and $V_{N}=V_{1} \oplus \cdots \oplus V_{n}$ for an $n \in \mathbb{N}$, where the V_{i} are N-modules, and assume that G / N permutes the V_{i} transitively and faithfully. Put $H=N_{G}\left(V_{1}\right)$.

Let $W \leq V$ be a G-submodule with $|W| \geq|V|^{\delta}$ for some $0 \leq \delta \leq 1$. Moreover, suppose that the following hold:
(i) $k(H W) \leq|W|$;
(ii) $k(U) \leq(1 / \sqrt{n+1})|W|^{1 / 2-3 /(88)}$ for all $U \leq G$.

Then $k(G W) \leq|W|$.
Proof. We may assume that $n \geq 2$. Let $M=\{g \in G \mid g$ normalizes at least $n / 2$ of the V_{i} \} and observe that $N \subseteq M$ and M is a normal subset of G, that is, $M^{g}=M$ for all $g \in G$. Let $T=\left\{v^{G} \mid v \in W\right.$ and $\left.C_{G}(v) \nsubseteq M\right\}$; so $v^{G} \in T$ means that there is a $g \in G-M$ such that g fixes an element of v^{G}, that is, $v^{G} \cap C_{V}(g) \neq \emptyset$. Hence $v^{G} \cap C_{V}\left(g^{h}\right) \neq \emptyset$ for all $h \in G$. This shows that if $g_{i}, i=1, \ldots, t$ are representatives of the conjugacy classes of G which are not in M, then

$$
T \subseteq \bigcup_{i=1}^{t}\left\{v^{G} \mid v \in V \text { and } v^{G} \cap C_{V}\left(g_{i}\right) \neq \emptyset\right\}
$$

and thus $|T| \leq t \max _{i=1, \ldots, t}\left|C_{V}\left(g_{i}\right)\right|$.
Now by definition of M clearly if $g \in G-M$, then g normalizes at most $n / 2$ of the V_{i} which immediately implies that $\left|C_{V}(g)\right| \leq|V|^{3 / 4}$. Thus

$$
|T| \leq k(G)|V|^{3 / 4} \leq k(G)|W|^{3 /(4 \delta)}
$$

Now consider $v \in W$ with $v^{G} \notin T$. Thus $C_{G}(v) \subseteq M$, so that $C_{G}(v) N / N$ is a permutation group on $\left\{V_{1}, \ldots, V_{n}\right\}=: \Omega$ and all elements of $C_{G}(v) N / N$ have at least $n / 2$ fixed points on Ω. By Lemma 2.1 , there is an $i \in\{1, \ldots, n\}$ with $C_{G}(v) \leq N_{G}\left(V_{i}\right)$, so by replacing v by another representative of v^{G} we may assume that $C_{G}(v) \leq H$. Thus $C_{G}(v)=C_{H}(v)$, and so $\left|v^{G}\right|>\left|v^{H}\right|$. Therefore, if $w_{1}, \ldots, w_{k} \in$ v^{G} are representatives of the orbits of H on v^{G} with $w_{1}=v$, then $k \geq 2$, and if we write $w_{i}=v^{g_{i}}$ for some $g_{i} \in G(i=2, \ldots, k)$, then by [5, Formula (2)] for $i=2, \ldots, k$ we have

$$
\begin{aligned}
k\left(C_{H}(v)\right) & =k\left(C_{G}(v)\right)=k\left(C_{G}\left(w_{i}\right)\right) \leq\left|C_{G}\left(w_{i}\right): C_{H}\left(w_{i}\right)\right| k\left(C_{H}\left(w_{i}\right)\right) \\
& \leq|G: H| k\left(C_{H}\left(w_{i}\right)\right)=\operatorname{nk}\left(C_{H}\left(w_{i}\right)\right)
\end{aligned}
$$

and hence $k\left(C_{H}\left(w_{i}\right)\right) \geq(1 / n) k\left(C_{H}(v)\right)$ for $i=2, \ldots, k$. With this we obtain that

$$
\begin{aligned}
\sum_{j=1}^{k} k\left(C_{H}\left(w_{j}\right)\right) & \geq k\left(C_{H}\left(w_{1}\right)\right)+(k-1) \frac{1}{n} k\left(C_{H}(v)\right) \\
& =\frac{n+k-1}{n} k\left(C_{H}(v)\right) \geq \frac{n+1}{n} k\left(C_{H}(v)\right)
\end{aligned}
$$

the last inequality being true as $k \geq 2$.
Since the above considerations hold for any $v \in W$ with $v^{G} \notin T$, we conclude that if $v_{i} \in W(i=1, \ldots, n(G, W))$ are representatives of the orbits of G on W and
for any i the $w_{i j}\left(j=1, \ldots, k_{i}\right)$ are representatives of the orbits of H on v_{i}^{G} (so that clearly the $w_{i j}$ for all i, j are representatives of all orbits of H on W), then we may assume that for all i with $v_{i}^{G} \notin T$ we have $C_{G}\left(v_{i}\right) \leq H$, and then the above yields

$$
\begin{aligned}
\sum_{i \text { with } v_{i}^{G} \notin T} k\left(C_{G}\left(v_{i}\right)\right) & =\sum_{i \text { with } v_{i}^{G} \notin T} k\left(C_{H}\left(v_{i}\right)\right) \leq \frac{n}{n+1} \sum_{i \text { with } v_{i}^{G} \notin T} \sum_{j=1}^{k_{i}} k\left(C_{H}\left(w_{i j}\right)\right) \\
& \leq \frac{n}{n+1} \sum_{i=1}^{n(G, W)} \sum_{j=1}^{k_{i}} k\left(C_{H}\left(w_{i j}\right)\right)=\frac{n}{n+1} k(H, W) .
\end{aligned}
$$

Hence altogether with our hypotheses we obtain

$$
\begin{aligned}
k(G W) & =\sum_{i \text { with } v_{i}^{G} \in T} k\left(C_{G}\left(v_{i}\right)\right)+\sum_{i \text { with } v_{i}^{G} \notin T} k\left(C_{G}\left(v_{i}\right)\right) \\
& \leq|T| \frac{1}{\sqrt{n+1}}|W|^{1 / 2-3 /(88)}+\frac{n}{n+1} k(H W) \\
& \leq k(G)|W|^{3 /(4 \delta)} \frac{1}{\sqrt{n+1}}|W|^{1 / 2-3 /(8 \delta)}+\frac{n}{n+1}|W| \\
& \leq \frac{1}{\sqrt{n+1}}|W|^{1 / 2-3 /(8 \delta)}|W|^{3 /(4 \delta)} \frac{1}{\sqrt{n+1}}|W|^{1 / 2-3 /(8 \delta)}+\frac{n}{n+1}|W|=|W|
\end{aligned}
$$

as desired.
We next prove another lemma of a similar flavor. For this we will need Gallagher's goodness property. Recall that in [5] Gallagher defines, for $N \unlhd G, \psi \in \operatorname{Irr}(N)$ and $g \in C_{G}(\psi)$ (the inertia group of ψ in G), that g is good for ψ if an extension ψ_{0} of ψ to $N\langle g\rangle$ is invariant under $C_{G}(\psi) \cap L$, where $L=\left\{h \in G \mid(g N)^{h}=g N\right\}$. Goodness is independent of the choice of ψ_{0} and depends only on the conjugacy class of $g N$ in $C_{G}(\psi) / N$. Then as in [11, Example 3.4 (b)] for $N \leq U \leq G$ we define

$$
P(U / N, \psi)=\left\{M \in \operatorname{cl}\left(C_{U / N}(\psi)\right) \mid \text { there is a } g \in M \text { that is good for } \psi\right\}
$$

then P is a goodness property in the sense of [11, Definition 3.1] which we call Gallagher's goodness property, and from [11, Example 3.4 (b)] we know that for any $N \leq U \leq G$ we have

$$
k(U)=\alpha_{P}(U / N, \operatorname{Irr}(N))=\sum_{x \in \operatorname{lrr}(N)} \frac{\left|C_{U / N}(\chi)\right| k_{P}\left(C_{U / N}(\chi)\right)}{|U / N|}
$$

where $k_{P}\left(C_{U / N}(\chi)\right)$ is the number of conjugacy classes of elements of $C_{U / N}(\chi)$ which are good for χ.

LEMMA 2.3. Let G be a finite group and V be a finite faithful G-module. Suppose that $N \unlhd G$ and $V_{N}=V_{1} \oplus \cdots \oplus V_{n}$ where the V_{i} are N-modules, and assume that G / N permutes the V_{i} transitively and faithfully. Furthermore assume that $N / C_{N}\left(V_{1}\right) \lesssim$ $\Gamma\left(V_{1}\right)$ and write $q=\left|V_{1}\right|$. Let $W \leq V$ be a G-submodule with $|W| \geq|V|^{15 / 16}$. Put $H=N_{G}\left(V_{1}\right)$ and suppose that the following hold:
(i) $k(H W) \leq|W|$;
(ii) $q>2^{400}$.

Then $k(G W) \leq|W|$.
Proof. We may assume that $n>1$. Write $\Gamma(q)=\Gamma\left(V_{1}\right)$. Clearly

$$
N \lesssim \Gamma\left(V_{1}\right) \times \cdots \times \Gamma\left(V_{n}\right) \cong \Gamma(q)^{n}
$$

Identifying N with its isomorphic subgroup in $\Gamma(q)^{n}$, we write $T=\Gamma_{0}(q)^{n}$ and $M=N \cap T_{1}$ so that M is an abelian normal subgroup of G and $|N / M| \leq\left(\log _{2} q\right)^{n}$.

We consider the action of G / M on $\Omega:=\operatorname{Irr}(M W)$. If $\omega \in \Omega$, we will write ω^{G} for the orbit of ω under G and $\omega \uparrow^{G}$ for the induced character. Let P be Gallagher's goodness property with respect to this action. Then we have $k(H W)=\alpha_{P}(H / M, \Omega)$ and $k(G W)=\alpha_{P}(G / M, \Omega)$. Now let $R=\{g M \in G / M \mid g M$ normalizes at least $n / 2$ of the $\left.V_{i}\right\}$, so R is a normal subset of G / M. Let $T=\left\{\omega^{G / M} \mid \omega \in \Omega\right.$ and $\left.C_{G / M}(\omega) \nsubseteq R\right\}$, so $\omega^{G / M} \in T$ means that there is a $g M \in G / M-R$ such that $g M$ fixes an element of $\omega^{G / M}$, that is, $\omega^{G / M} \cap C_{\Omega}(g M) \neq \emptyset$. Hence $\omega^{G / M} \cap C_{\Omega}\left(g^{h} M\right) \neq \emptyset$ for all $h \in G$. This shows that if $g_{i} M, i=1, \ldots, t$, are representatives of the conjugacy classes of G / M which are not in R, then

$$
T \subseteq \bigcup_{i=1}^{t}\left\{\omega^{G / M} \mid \omega \in \Omega \text { and } \omega^{G / M} \cap C_{\Omega}\left(g_{i} M\right) \neq \emptyset\right\}
$$

and thus $|T| \leq t \max _{i=1, \ldots, t}\left|C_{\Omega}\left(g_{i} M\right)\right| \leq k(G / M) \max _{g M \in G / M-R}\left|C_{\Omega}(g M)\right|$. Now as $G / N \lesssim S_{n}$, we have $k(G / M) \leq k(G / N) k(M / N) \leq 2^{n-1}\left(\log _{2} q\right)^{n}$. Furthermore, if $g M \in G / M-R$, then $g M$ has at most $n / 2$ fixed points in its permutation action on $\left\{V_{1}, \ldots, V_{n}\right\}$. Hence we may apply [11, Lemma 4.7 (c)] to the action of $\langle g, N\rangle$ on V which yields that if $\Omega_{1}=\operatorname{cl}(M V)$ is the set of conjugacy classes of $M V$, then $\left|C_{\Omega_{1}}(g)\right| \leq 4^{n} q^{7 n / 8}$. Let $\Omega_{0}=\operatorname{Irr}(M V)$. Since there is a G-module W^{\prime} such that $V=W \oplus W^{\prime}$, clearly $M W \cong M V / W^{\prime}$ and hence $\Omega \subseteq \Omega_{0}$. Now G / M acts on Ω_{1} and Ω_{0} by conjugation, and so Brauer's permutation lemma (see, for example, [10, Theorem 18.5 (b)]) yields

$$
\left|C_{\Omega}(g M)\right| \leq\left|C_{\Omega_{0}}(g M)\right|=\left|C_{\Omega_{1}}(g M)\right|=\left|C_{\Omega_{1}}(g)\right| \leq 4^{n} q^{7 n / 8}
$$

Hence we conclude that

$$
|T| \leq 2^{n-1}\left(\log _{2} q\right)^{n} 4^{n} q^{7 n / 8}
$$

Now consider ω with $\omega^{G / M} \notin T$. Then $C_{G / M}(\omega) \subseteq R$, so all elements of $C_{G}(\omega) N / N$ have at least $n / 2$ fixed points on $\left\{V_{1}, \ldots, V_{n}\right\}$. By Lemma 2.1 there is an $i \in\{1, \ldots, n\}$ with $C_{G}(\omega) \leq N_{G}\left(V_{i}\right)$, and so we may assume that $C_{G}(\omega) \leq H$. As $H<G$, it follows that $\left|\omega^{G / M}\right|>\left|\omega^{H / M}\right|$, and so if $\omega_{1}, \ldots, \omega_{k} \in \omega^{G / M}$ are representatives of the orbits of H / M on $\omega^{G / M}$ with $\omega_{1}=\omega$, then $k \geq 2$, and by the theorem in [5] and [10, Exercise E17.2] we see that, for $i=2, \ldots, k$, we have

$$
\begin{aligned}
k_{P}\left(C_{H / M}(\omega)\right)= & k_{P}\left(C_{G / M}(\omega)\right)=k_{P}\left(C_{G / M}\left(\omega_{i}\right)\right) \\
= & \mid\left\{\psi \in \operatorname{Irr}\left(C_{G V}\left(\omega_{i}\right)\right) \mid \psi\right. \text { is a constituent of the induced } \\
& \quad \text { character } \omega_{i} \uparrow C_{G V}\left(\omega_{i}\right) \\
\leq & \left|C_{G V}\left(\omega_{i}\right): C_{H V}\left(\omega_{i}\right)\right| \\
& \times \mid\left\{\Theta \in \operatorname{Irr}\left(C_{H V}\left(\omega_{i}\right)\right) \mid \Theta \text { is a constituent of } \omega_{i} \uparrow^{C_{H V}\left(\omega_{i}\right)}\right\} \mid \\
\leq & |G: H| \cdot k_{P}\left(C_{H / M}\left(\omega_{i}\right)\right)=n k_{P}\left(C_{H / M}\left(\omega_{i}\right)\right)
\end{aligned}
$$

Hence, as in the previous lemma, we obtain

$$
\sum_{j=1}^{k} k_{P}\left(C_{H / M}\left(\omega_{j}\right)\right) \geq \frac{n+k-1}{n} k_{P}\left(C_{H / M}(\omega)\right) \geq \frac{n+1}{n} k_{P}\left(C_{H / M}(\omega)\right)
$$

Since these considerations hold for any $\omega^{G / M} \notin T$, we conclude that if $\omega_{i} \in \Omega$ ($i=1, \ldots, n(G / M, \Omega)$) are representatives of the orbits of G / M on Ω and the $\omega_{i j}$ $\left(j=1, \ldots, k_{i}\right)$ are representatives of the orbits of H / M on $\omega_{i}^{G / M}$, then we may assume that for all i with $\omega_{i}^{G / M} \notin T$ we have $C_{G / M}\left(\omega_{i}\right) \leq H / M$, and then the above yields

$$
\begin{aligned}
\sum_{i \text { with } \omega_{i}^{G / M} \notin T} k_{P}\left(C_{G / M}\left(\omega_{i}\right)\right) & =\sum_{i \text { with } \omega_{i}^{\sigma / M} \notin T} k_{P}\left(C_{H / M}\left(\omega_{i}\right)\right) \\
& \leq \frac{n}{n+1} \sum_{i \text { with } \omega_{i}^{\sigma / M}} \sum_{\xi T}^{k_{i}} k_{P}\left(C_{H / M}\left(\omega_{i j}\right)\right) \\
& \leq \frac{n}{n+1} \alpha_{P}(H / M, \Omega)=\frac{n}{n+1} k(H W)
\end{aligned}
$$

Hence altogether with hypothesis (i) we obtain

$$
\begin{aligned}
k(G W)=\alpha_{P}(G / M, \Omega) & =\sum_{i \text { with } \omega_{i}^{G / M} \in T} k_{P}\left(C_{G / M}\left(\omega_{i}\right)\right)+\sum_{i \text { with } \omega_{i}^{G / M} \notin T} k_{P}\left(C_{G / M}\left(\omega_{i}\right)\right) \\
& \leq|T| \max _{i=1, \ldots, n(G / M, \Omega)} k_{P}\left(C_{G / M}\left(\omega_{i}\right)\right)+\frac{n}{n+1} k(H W) \\
& \leq 2^{n-1}\left(\log _{2} q\right)^{n} 4^{n} q^{7 n / 8} \max _{U \leq G / M} k(U)+\frac{n}{n+1}|W| .
\end{aligned}
$$

Since for any $U \leq G / M$ we have $k(U) \leq 2^{n-1}|N / M| \leq 2^{n-1}\left(\log _{2} q\right)^{n}$, we further conclude that

$$
k(G W) \leq\left(2^{n-1}\left(\log _{2} q\right)^{n}\right)^{2} 4^{n} q^{7 n / 8}+\left(1-\frac{1}{n+1}\right)|W|
$$

which implies $k(G W) \leq|W|$ whenever $2^{2 n-2}\left(\log _{2} q\right)^{2 n} 4^{n} q^{7 n / 8} \leq|W| /(n+1)$. As $|W| \geq|V|^{15 / 16}=q^{15 n / 16}$, for this it suffices that $2^{4 n-2}\left(\log _{2} q\right)^{2 n}(n+1) \leq q^{n / 16}$. This will be satisfied whenever $2^{5 n}\left(\log _{2} q\right)^{2 n} \leq q^{n / 16}$ or, equivalently, $32\left(\log _{2} q\right)^{2} \leq q^{1 / 16}$. But this is the case since, by our hypothesis, $q>2^{400}$, and so the lemma is proved.

3. Primitive linear groups

The next lemma is essentially from [7].
Lemma 3.1. Let G be a finite group, and let W be a faithful irreducible $G F(q) G$ module, where q is a prime power such that $(|G|, q)=1$. Suppose further that W is primitive and that G has no component which is an alternating group of degree at least 10. Then for every $1 \neq g \in G$ we have $\left|C_{W}(g)\right| \leq|W|^{79 / 80}$. In particular, for every $\delta>0$ and for every $H \leq G$ with $|H| \geq|G|^{\delta}$, we have

$$
n(H, W) \leq \frac{2|W|}{\min \left(|G|^{\delta},|G|^{1 / 160}\right\}} .
$$

Proof. The first assertion follows immediately from the proof of [7, Proposition 2.8] (note that the assumption $\operatorname{dim} W>88$ in that proof is not needed for the argument). Now by Cauchy-Frobenius we have

$$
\begin{aligned}
n(H, W) & =\frac{|W|}{|H|}+\frac{1}{|H|} \sum_{1 \neq \varepsilon \in H}\left|C_{W}(g)\right| \\
& \leq \frac{|W|}{|H|}+\frac{|H|-1}{|H|}|W|^{99 / 80} \leq\left(\frac{1}{|H|}+\frac{1}{|W|^{1 / 80}}\right)|W| .
\end{aligned}
$$

As $|G|<|W|^{2}$, we further conclude that

$$
n(H, W) \leq\left(\frac{1}{|G|^{\delta}}+\frac{1}{|G|^{1 / 160}}\right)|W|
$$

which implies the assertion.
Next we need to slightly generalize Liebeck's well-known regular orbit theorem.

Lemma 3.2. Let $T \geq 1$. There exists a function $f:[1, \infty) \rightarrow \mathbb{N}$ such that the following holds: If p is a prime with $p>f(T)$ and G is a p^{\prime}-group and V is a faithful $G F(p) G$-module such that G has a quasisimple normal subgroup H which is irreducible on V, then one of the following holds:
(a) $\sum_{g \in G-\{1\}}\left|C_{V}(g)\right| \leq|V| / T$; in particular, $k(U V) \leq(T+|U|+1)|V| / T|U|$ for any $U \leq G$.
(b) $H=A_{c}, c<p$, and V is the natural $G F(p)$-module for H.

Proof. This can be shown by slightly adjusting the proof of the main theorem in [13] in an obvious way as follows (we use the notation of that paper): The assumption (\dagger) now reads $|V| / T<\sum_{g \in G-\{1\}}\left|C_{V}(g)\right|$. Lemma 1 reads $q<6 T|\operatorname{Aut}(\bar{H})|$, and Lemma 2 (iii) and (iv) read $q^{2} \leq 6 T|\operatorname{Aut}(\bar{H})|$ and $q \leq(3 T|\operatorname{Aut}(\bar{H})|)^{r /(n-r t+r)}$, respectively, with the obvious adjustments in their proofs. Most of the changes to be made in the proof of Lemma 4 are obvious; the inequality on page 1140 needs to be changed to $2 c!\geq(1 / T) q^{5 n /(c+22)}-\cdots$ (the rest is not modified), and right after that it should read: Since $q>c \geq 20$ and $n \geq c(c-3) / 2$, for $q>f(T)$ (given that $f(T)$ has been chosen large enough) the second, third, fourth, and fifth terms of the right-hand side are all less than $(1 / 8 T) q^{5 n /(c+22)}$, and hence, $(1 / T) q^{5 n /(c+22)} \leq 4 c$!. Hence for $c \geq 20$ we obtain, as $n \geq c(c-3) / 2$, that $q^{5 c(c-3) / 2} \leq\left(4 T c^{c}\right)^{c+22}$ which for $q>f(T)$ and $f(T)$ large enough yields a contradiction. Therefore $c<20$. (...) Then Lemma 2 (iii) gives $p^{2} \leq 6 T c!\leq 6(19!) T$, whence $p<5^{30} T$, a contradiction if $f(T)$ is chosen greater than $5^{30} T$. And if $c<12$, then Lemma 1 gives $p \leq 6(12!) T<5^{30} T$, again a contradiction. To complete the proof, suppose now that $t>1$. We know that if $f(T)$ is large enough, then $c \neq 6$ (by Lemma 1), ... The remaining modifications of the proof of Lemma 4 are obvious.

The first line of the proof of Lemma 5 should read: By Lemma 1, $p \leq 6 T|\operatorname{Aut}(\bar{H})|$; hence if $f(T)>5^{30} T$, then $6|\operatorname{Aut}(\bar{H})|>5^{30}$. The remaining modifications are obvious; the last line of the proof should read: Then Lemma 2 (iv) shows that p is bounded by a function of T, so if $f(T)$ is greater that that function, we get a contradiction.

Similar adjustments are needed in the proof of Lemma 6, and then the proof of the main result is complete.

The bound for $k(U V)$ in Case (a) is easily obtained with the elementary argument demonstrated in the proof of [12, Lemma 5.3], namely

$$
\begin{aligned}
k(U V) & =\sum_{g \in U} \frac{\left|C_{U}(g)\right|}{|U|} n\left(C_{U}(g), C_{V}(g)\right) \\
& =\frac{1}{|U|}\left(\sum_{g \in U}\left|C_{V}(g)\right|+\sum_{1 \neq g \in U}\left|C_{U}(g)\right| n\left(C_{U}(g), C_{V}(g)\right)\right)
\end{aligned}
$$

$$
\leq \frac{|V|}{|U|}+\frac{|U|+1}{|U|} \sum_{1 \neq g \in U}\left|C_{V}(g)\right| \leq \frac{|V|}{|U|}+\frac{|U|+1}{|U|} \frac{|V|}{T}
$$

from which the assertion follows.
The next lemma is probably well known.
Lemma 3.3. Suppose that G is a finite group and V is a finite $G F(q) G$-module for a prime power q not dividing $|G|$. Suppose that $V=V_{1} \oplus V_{2}$ for G-modules V_{i} $(i=1,2)$. Then $k(G V) \leq n\left(G, V_{1}\right) \max _{v_{1} \in V_{1}} k\left(C_{G}\left(v_{1}\right) V_{2}\right)$.

Proof. First note that the formulas in [11, Corollary 3.7] are also true (with essentially the same proof) in the more general situation that G acts coprimely on an abelian group V, and using this we obtain

$$
\begin{aligned}
k(G V) & =\frac{1}{|G|} \sum_{v_{1} \in V_{1}, v_{2} \in V_{2}}\left|C_{G}\left(v_{1}+v_{2}\right)\right| k\left(C_{G}\left(v_{1}+v_{2}\right)\right) \\
& =\frac{1}{|G|} \sum_{v_{1} \in V_{1}, v_{2} \in V_{2}}\left|C_{C_{G}\left(v_{1}\right)}\left(v_{2}\right)\right| k\left(C_{C_{G}\left(v_{1}\right)}\left(v_{2}\right)\right) \\
& =\sum_{v_{1} \in V_{1}} \frac{\left|C_{G}\left(v_{1}\right)\right|}{|G|}\left(\frac{1}{\left|C_{G}\left(v_{1}\right)\right|} \sum_{v_{2} \in V_{2}}\left|C_{C_{G}\left(v_{1}\right)}\left(v_{2}\right)\right| k\left(C_{C_{G}\left(v_{1}\right)}\left(v_{2}\right)\right)\right) \\
& =\sum_{v_{1} \in V_{1}} \frac{\left|C_{G}\left(v_{1}\right)\right|}{|G|} k\left(C_{G}\left(v_{1}\right) V_{2}\right) \leq\left(\max _{v_{1} \in V_{1}} k\left(C_{G}\left(v_{1}\right) V_{2}\right)\right) n\left(G, V_{1}\right),
\end{aligned}
$$

as wanted.
We need another easy lemma.
Lemma 3.4. Let q be a prime power, $m \in \mathbb{N}, G$ a finite group and let $V_{i}(i=$ $1, \ldots, m$) be finite, faithful $G F(q) G$-modules. Write $V_{0}=\bigoplus_{i=1}^{m} V_{i}$. Then the following hold:
(a) $n\left(G, V_{0}\right) \leq\left(\left(q^{m}+|G|-1\right) /\left(q^{m}|G|\right)\right)\left|V_{0}\right|$.
(b) If $(|G|, q)=1$ and $\max \left\{k\left(U V_{1}\right) \mid U \leq G\right\} \leq\left|V_{1}\right|$, then

$$
k\left(G V_{0}\right) \leq \frac{q^{m-1}+|G|-1}{q^{m-1}|G|}\left|V_{0}\right| \leq \frac{2}{\min \left\{|G|, q^{m-1}\right\}}\left|V_{0}\right| .
$$

Proof. (a) Clearly $C_{V_{i}}(g) \neq V_{i}$ for all i and $g \in G-\{1\}$, so $\left|C_{V_{i}}(g)\right| \leq\left|V_{i}\right| / q$ for all i and $g \neq 1$, and thus

$$
n\left(G, V_{0}\right)=\frac{1}{|G|} \sum_{g \in G}\left|C_{V_{0}}(g)\right| \leq \frac{\left|V_{0}\right|}{|G|}+\frac{1}{|G|} \sum_{1 \neq g \in G} \frac{\left|V_{0}\right|}{q^{m}}=\frac{q^{m}+|G|-1}{q^{m}|G|}\left|V_{0}\right|
$$

(b) By Lemma 3.3 and the hypothesis we have $k\left(G V_{0}\right) \leq\left|V_{1}\right| n\left(G, \bigoplus_{i=2}^{m} V_{i}\right)$ which with (a) implies the assertion.

Theorem 3.5. Let $\epsilon>0$ and $T \in \mathbb{N}$ with $T \geq 2$. There exist constants $D_{\epsilon}, F_{\epsilon}, H_{\epsilon}$ depending only on ϵ and a constant $K_{\epsilon, T}$ depending only on ϵ, T such that the following holds: Let G be a finite group, and let W be a faithful irreducible $G F(q) G$-module, where q is a prime power such that $(|G|, q)=1$. Suppose further that W is primitive and that $|G|>|W|^{\epsilon} / 2$. Put $Z=Z\left(F^{*}(G)\right)$.
(a) Suppose that $q>H_{\epsilon}$. Let $k \in \mathbb{N}$ be minimal subject to $|Z| \mid q^{k}-1$.
(1) If $F^{*}(G)=F(G)$, then $|G|<D_{\epsilon}|Z| k$.
(2) If $F^{*}(G) \neq F(G)$, then there is an $N \unlhd G$ such that $F^{*}(N)=G_{1} Z$ and $Z=Z(N)$ for a quasisimple group G_{1}, and $|G|<F_{\epsilon}|N| k$.
(b) If $q=p$ is a prime and $p>K_{\epsilon, T}$, then the following hold:
(1) If $F^{*}(G)=F(G)$, then $G \leq \Gamma(W)$, or $k(H W) \leq|W| / T$ for any $H \leq G$ such that also $|H|>|W|^{\epsilon} / 2$.
(2) Suppose $F^{*}(G) \neq F(G)$ and let G_{1} be as in (a). Assume in addition that if $W=V_{1} \oplus V_{2}$ for nontrivial G_{1}-modules $V_{i}(i=1,2)$, then $\max \left\{k\left(U V_{2}\right) \mid U \leq G_{1}\right\} \leq\left|V_{2}\right|$. Then if $p>K_{\epsilon, T}$, one of the following holds:
(α) $k(U) \leq|W|^{1 / 200} / 8$ for all $U \leq G$, or
(β) $\quad k(H W) \leq|W| / T$ for any $H \leq G$ such that $|H|>|W|^{\epsilon} / 2$.
NOTE. The additional hypothesis in (b) (2) is of a technical nature only and will be automatically satisfied (for large p) once the $k(G V)$-conjecture has been proved, because as W is homogeneous as G_{1}-module, clearly each $U \leq G_{1}$ acts faithfully on V_{2}.

PROOF. (a) As W is primitive, every normal abelian subgroup of G is cyclic. Hence if $Z=Z\left(F^{*}(G)\right)$, then Z is cyclic and $W_{Z}=V_{1} \oplus \cdots \oplus V_{s}$ for an $s \in \mathbb{N}$ and isomorphic irreducible Z-modules V_{i}. Put $k=(\operatorname{dim} V) / s$ so $\left|V_{1}\right|=q^{k}$, and let $K_{1}=G F\left(q^{k}\right)$. By [17, Example 2.7] k is the smallest integer such that $|Z| \mid q^{k}-1$. Then, by [9, II, Hilfssatz 3.11], G acts as a semilinear group (over $G F(q)$) on $V_{0}:=V\left(s, q^{k}\right)$, and the permutation actions of G on W and on V_{0} are equivalent. Moreover, $G_{0}:=C_{G}(Z) \leq G L\left(s, q^{k}\right)$ and $\left|G / G_{0}\right|\left|\left|\operatorname{Gal}\left(G F\left(q^{k}\right) / G F(q)\right)\right|=k\right.$. So we have $|G| \leq k\left|G_{0}\right|$ and $\operatorname{dim} W=k \operatorname{dim} V_{0}$ and $F^{*}(G)=F^{*}\left(G_{0}\right)$. Also note that as Z acts fixed point freely on V_{1}, clearly $|Z|\left|\left|K_{1}\right|-1\right.$, in particular, $| Z\left|<\left|K_{1}\right|\right.$.

Now let W_{1} be an irreducible $F^{*}(G)$-submodule of V_{0}. It is well-known that if $K=\operatorname{End}_{K_{1} F^{\bullet}(G)}\left(W_{1}\right)$ and W_{2} is an irreducible summand of $W_{1} \otimes K$, then W_{2} is an absolutely irreducible $K F^{*}(G)$-module and the permutation action of $F^{*}(G)$ on vectors of W_{1}, W_{2}, respectively, are permutation isomorphic (see, for example, [22,

Lemma 10]). In particular, $\left|W_{2}\right|=\left|W_{1}\right| \leq\left|V_{0}\right|=|W|$ and $\operatorname{dim} W \geq k \operatorname{dim} W_{1} \geq$ $k \operatorname{dim} W_{2}$. Now for the generalized Fitting subgroup $F^{*}(G)$ we have the decomposition

$$
F^{*}(G)=E(G) F(G)=\left(G_{1} \cdots G_{m}\right)\left(P_{1} \times \cdots \times P_{l_{1}}\right)\left(P_{l_{1}+1} \times \cdots \times P_{l}\right)
$$

as the elementwise-commuting product of the components G_{i} and the Sylow subgroups P_{1}, \ldots, P_{l} of $F(G)$, where by [17, Corollary 1.4] the $P_{i} \leq Z\left(F^{*}(G)\right)\left(i=l_{1}+1\right.$, $\ldots, l)$ are cyclic of prime order, and the $P_{i}\left(i=1, \ldots, l_{1}\right)$ are extraspecial of exponent an odd prime, or the central product of an extraspecial 2-group of exponent 4 and a group T which is dihedral, quaternion or semidihedral. Hence $\left|P_{j} / \Phi\left(P_{j}\right)\right| \leq p_{j}^{2 m_{i}+2}$ $\left(j=1, \ldots, l_{1}\right)$ for suitable primes p_{j} and nonnegative integers m_{j}, and $\left|P_{j}\right|=p_{j}$ $\left(j=l_{1}+1, \ldots, l\right)$ for suitable primes p_{j}. Note that $\prod_{j=l_{1}+1}^{l} P_{j} \leq Z$.

Now by $[1,(3.16)(2)]$ we obtain that $W_{2} \cong X_{1} \otimes \cdots \otimes X_{m} \otimes Y_{1} \otimes \cdots \otimes Y_{l_{1}}$, where each $X_{i} \leq W$ is an absolutely irreducible $K G_{i}$-module and each $Y_{i} \leq W$ is an absolutely irreducible $K P_{i}$-module. Write $x_{i}=\operatorname{dim}_{K} X_{i}$ and $y_{j}=\operatorname{dim}_{K} Y_{j}$. Then clearly $x_{i} \geq 2$ for all i and $y_{j} \geq p_{j}^{m_{j}}$ with $m_{j} \geq 1$ for all j and

$$
\operatorname{dim} W \geq k \operatorname{dim} W_{2}=k\left(\prod_{i=1}^{m} x_{i}\right)\left(\prod_{j=1}^{l_{1}} y_{j}\right) \geq k\left(\prod_{i=1}^{m} x_{i}\right)\left(\prod_{j=1}^{l_{1}} p_{j}^{m_{j}}\right) .
$$

Also note that $\prod_{j=1}^{l} p_{j}| | Z\left|<\left|K_{1}\right| \leq|K|\right.$.
Now if $G^{*}=\bigcap_{i=1}^{m} N_{G_{0}}\left(G_{i}\right)$, then $F^{*}(G) \leq G^{*} \unlhd G_{0}$ and $G_{0} / G^{*} \leqq S_{m}$, and as $\prod_{j=l_{1}}^{l} P_{j} \leq Z$ and $G_{0}=C_{G}(Z)$, we further have

$$
G^{*} / F(G) \lesssim\left(\chi_{i=1}^{m} \operatorname{Aut}\left(\bar{G}_{i}\right)\right) \times\left(\chi_{j=1}^{\ell_{1}} \operatorname{Aut}\left(\bar{P}_{j}\right)\right),
$$

where $\bar{G}_{i}=G_{i} / Z\left(G_{i}\right)$ is simple and $\bar{P}_{j}=P_{j} / \Phi\left(P_{j}\right)$ for all i, j (see, for example, [16, Proposition 6.1]). Hence

$$
\begin{aligned}
|G| & =\left|G / G_{0}\left\|G_{0} / G^{*}\right\| G^{*} / F(G)\|F(G) / Z\| Z\right| \\
& \leq k m^{m}\left(\prod_{i=1}^{m}\left|\operatorname{Aut}\left(\bar{G}_{i}\right)\right|\right)\left(\prod_{j=1}^{l_{1}}\left|G L\left(2 m_{j}+2, p_{j}\right)\right|\right)\left(\prod_{j=1}^{l_{1}} p_{j}^{2 m_{j}+2}\right)|Z| .
\end{aligned}
$$

As $|Z|<|K|$, we further obtain

$$
\begin{align*}
|G| & \leq k m^{m}\left(\prod_{i=1}^{m}\left|\operatorname{Aut}\left(\bar{G}_{i}\right)\right|\right)\left(\prod_{j=1}^{l_{1}} p_{j}^{\left(2 m_{j}+2\right)^{2}}\right)\left(\prod_{j=1}^{t_{1}} p_{j}^{2 m_{j}+2}\right)|Z| \tag{1}\\
& <k m^{m}\left(\prod_{i=1}^{m}\left|\operatorname{Aut}\left(\bar{G}_{i}\right)\right|\right)\left(\prod_{j=1}^{l_{1}} p_{j}^{4 m_{j}^{2}+6 m_{j}+6}\right)|K|
\end{align*}
$$

Therefore by hypothesis we have

$$
\begin{aligned}
& k m^{m}\left(\prod_{i=1}^{m}\left|\operatorname{Aut}\left(\bar{G}_{i}\right)\right|\right)\left(\prod_{j=1}^{l_{1}} p_{j}^{4 m_{j}^{2}+6 m_{j}+6}\right)|K| \\
& \quad>\frac{1}{2}|W|^{\epsilon} \geq \frac{1}{2}\left|W_{2}\right|^{\epsilon} \geq \frac{1}{2}|K|^{\left(\prod_{i=1}^{m} x_{i}\right)\left(\prod_{j=1}^{l_{i}} p_{j}^{m_{j}}\right) \epsilon}
\end{aligned}
$$

Now from the Atlas [2] one can derive that for some constant C we have

$$
\begin{equation*}
|\operatorname{Aut}(H)|<C|H| \ln ^{2}|H| \tag{2}
\end{equation*}
$$

for any finite simple group H (see [19, Section 6]).
Moreover, since our actions are all coprime, we have $\left|\bar{G}_{i}\right| \leq\left|G_{i}\right| \leq\left|X_{i}\right|^{2}$, and this yields $\left|\operatorname{Aut}\left(\bar{G}_{i}\right)\right|<C\left|X_{i}\right|^{2} \ln ^{2}\left(\left|X_{i}\right|^{2}\right) \leq 4 C\left|X_{i}\right|^{3}=4 C|K|^{3 x_{i}}$. Using this estimate in the above formula yields

$$
\begin{equation*}
k m^{m} 4^{m+1} C^{m}|K|^{1+3 \sum_{i=1}^{m} x_{i}}\left(\prod_{j=1}^{l_{1}} p_{j}^{4 m_{j}^{2}+6 m_{j}+6}\right)>|K|^{\left(\prod_{i=1}^{m} x_{i}\right)\left(\prod_{j=1}^{l_{j}} p_{j}^{m_{j}}\right) \epsilon} \tag{3}
\end{equation*}
$$

Note that $k \leq \log _{2}|K|$. Hence from (3) it is easy to see that there is a constant A_{ϵ} (depending only on ϵ) such that

$$
\begin{equation*}
\prod_{j=1}^{l_{1}} p_{j}^{m_{j}} \leq A_{\epsilon} \tag{4}
\end{equation*}
$$

no matter what $|K|$ and m and the x_{i} are.
Suppose that $m \geq 1$. We may assume that $x_{1} \geq x_{2} \geq \cdots \geq x_{m}$. Hence from (3) we get

$$
|K|^{1+3 m x_{1}} \log _{2}|K|\left(m^{m} 4^{m+1} C^{m} \prod_{j=1}^{l_{1}} p_{j}^{4 m_{j}^{2}+6 m_{j}+6}\right)>|K|^{x_{1}\left(\prod_{i=2}^{m} x_{i}\right)\left(\prod_{j=1}^{l_{1}} p_{j}^{m_{j}}\right) \epsilon}
$$

Since $x_{i} \geq 2$ for all i and by (1), clearly $\prod_{j=1}^{l_{1}} p_{j}^{4 m_{j}^{2}+6 m_{j}+6} \leq B_{\epsilon}$ for some B_{ϵ} depending only on ϵ, we see that there is a C_{ϵ} depending only on ϵ such that

$$
\begin{equation*}
\prod_{i=2}^{m} x_{i} \leq C_{\epsilon} \tag{5}
\end{equation*}
$$

From (1), (4) and (5) it follows that there are constants $D_{\epsilon}, E_{\epsilon}$ such that if $m=0$, then

$$
\begin{equation*}
|G|<D_{\epsilon} k|Z| \leq D_{\epsilon}|K| \log _{2}|K| \tag{6}
\end{equation*}
$$

and if $m \geq 1$, then as $|G|>|W|^{\epsilon} / 2$, we see from (1), (4) and (5) that we can choose H_{ϵ} such that for $q>H_{\epsilon}$ we have that \bar{G}_{1} is not isomorphic to any of the \bar{G}_{i} for $i \geq 2$. Hence $G_{1} \unlhd G$ and thus for $M:=\left(\prod_{i=2}^{m} G_{i}\right)\left(\prod_{j=1}^{h_{1}} P_{j}\right) \unlhd G$ we have $|M Z / Z| \leq E_{\epsilon}$, and as

$$
G^{*} / C_{G^{*}}(M) \lesssim \operatorname{Aut}(M) \lesssim \bigcup_{i=2}^{m} \operatorname{Aut}\left(\bar{G}_{i}\right) \times X_{j=1}^{l_{1}} \operatorname{Aut}\left(P_{j}\right),
$$

with [17, Lemma 1.5] we obtain $\left|C_{G_{0}}\left(P_{j} Z / Z\right)\right| \leq\left|P_{j} Z / Z\right|=\left|P_{j} / Z\left(P_{j}\right)\right|$ and hence

$$
\begin{aligned}
\left|G_{0} / C_{G_{0}}(M)\right| & \leq m^{m} \prod_{i=2}^{m}\left|\operatorname{Aut}\left(\bar{G}_{i}\right)\right| \prod_{j=1}^{l_{1}}\left(\left|\operatorname{Aut}\left(P_{j} Z / Z\right)\right|\left|C_{G_{0}}\left(P_{j} Z / Z\right)\right|\right) \\
& \left.\leq m^{m} \prod_{i=2}^{m}\left|\operatorname{Aut}\left(\bar{G}_{i}\right)\right| \prod_{j=1}^{l_{1}}\left(\left|\operatorname{Aut}\left(P_{j} Z / Z\right)\right| \mid P_{j} / Z\left(P_{j}\right)\right) \mid\right) \\
& \leq F_{\epsilon}
\end{aligned}
$$

for a constant F_{ϵ} depending on ϵ only. Therefore in this case we obtain, using (2), that $|G|=\left|G / G_{0}\left\|G_{0} / C_{G_{0}}(M)\right\| C_{G_{0}}(M)\right| \leq k F_{\epsilon}\left|C_{G_{0}}(M)\right|$. Put $N=C_{G_{0}}(M)=$ $C_{G}(M) \unlhd G$ and observe that $F^{*}(N)=G_{1} Z$. So (a) is proved.
(b) Let $H \leq G$ such that $|H|>|W|^{\epsilon} / 2$ and put $H_{0}=H \cap G_{0}, Z_{0}=H \cap Z$. Next observe that since the permutation action of G on W and V_{0} are equivalent and $G_{0}=C_{G}(Z)$ acts linearly on V_{0}, we have $k\left(H_{0} W\right)=k\left(H_{0} V_{0}\right)$ and hence $k(H W) \leq k \cdot k\left(H_{0} W\right)=k \cdot k\left(H_{0} V_{0}\right)$.

First assume $m=0$, that is, $F^{*}(G)=F(G)$. Now as Z acts fixed point freely, we have $k\left(Z_{0} W\right)=(|W|-1) /\left|Z_{0}\right|+\left|Z_{0}\right|$. Suppose that G is not isomorphic to a subgroup of $\Gamma(W)$. Then $F(G)$ is not cyclic, and thus $l_{1} \geq 1$ and $|Z| \leq|W|^{1 / 2}$. Therefore

$$
k\left(Z_{0} W\right)=\frac{|W|+\left|Z_{0}\right|^{2}-1}{\left|Z_{0}\right|} \leq \frac{|W|+|W|}{\left|Z_{0}\right|} \leq \frac{2|W|}{\left|Z_{0}\right|}
$$

and so

$$
k(H W) \leq k\left((H W) /\left(Z_{0} W\right)\right) k\left(Z_{0} W\right) \leq\left|H / Z_{0}\right| k\left(Z_{0} W\right) \leq \frac{2 k D_{\epsilon}}{\left|Z_{0}\right|}|W| .
$$

As $D_{\epsilon}\left|Z_{0}\right| k \geq|H| \geq|W|^{\epsilon} / 2$ and $k \leq \log _{2}|W|$, we see that $\left|Z_{0}\right| \geq|W|^{\epsilon} / 2 D_{\epsilon} k$ and

$$
k(H W) \leq \frac{2 k^{2} D_{\epsilon}^{2}}{|W|^{\epsilon}}|W| \leq 2 D_{\epsilon}^{2} \frac{\left(\log _{2}|W|\right)^{2}}{|W|^{\epsilon}}|W| .
$$

As $|W|>p$, it is clear from this that if $K_{\epsilon, T}$ is chosen large enough, then for any $p>K_{\epsilon, T}$ we will have $k(H W) \leq|W| / T$, and the first part of (b) is proved.

So now suppose that $m \geq 1$, that is, $F^{*}(G) \neq F(G)$. First suppose that $\bar{G}_{1}=$ $G_{1} / Z\left(G_{1}\right) \cong A_{n}$ for some $n \in \mathbb{N}$; clearly $n \geq 5$. Also $N / Z \leqq \operatorname{Aut}\left(\bar{G}_{1}\right)$. It is
well-known that then $\operatorname{dim} V_{0} \geq n-1$ (see [24]). Hence $\left|V_{0}\right| \geq\left|K_{1}\right|^{n-1}=\left(p^{k}\right)^{n-1}$. Suppose that $n \leq 1000$. Then there is a constant $D \in \mathbb{R}$ such that $|G| \leq F_{\epsilon} D|Z| k$, and $|Z| \leq\left|K_{1}\right| \leq|W|^{1 / 2}$, as $n-1 \geq 2$. So just as above in the case $m=0$ we can deduce that $k(H W) \leq|W| / T$ if $p>K_{\epsilon, T}$ and $K_{\epsilon, T}$ has been chosen large enough. Thus now we may assume that $n \geq 1000$. Then $N / Z \leqq \operatorname{Aut}\left(A_{n}\right)=S_{n}$ and thus $k(L / Z) \leq 2^{n-1}$ for any $Z \leq L \leq N$. Thus for $U \leq G$ we have $k(U) \leq k F_{\epsilon} 2^{n-1} p^{k} \leq$ $F_{\epsilon} 2^{n-1}\left|K_{1}\right|^{2}$. Hence if $K_{\epsilon, T}$ is sufficiently large, then for $p>K_{\epsilon, T}$ it follows that $k(U) \leq \frac{1}{8}\left|K_{1}\right|^{(n-1) / 200} \leq \frac{1}{8}\left|V_{0}\right|^{1 / 200}$ for all $U \leq G$, and we are done in this case.

So for the rest of the proof we may assume that \bar{G}_{1} is not an alternating group.
Suppose that G_{1} acts irreducibly on W. Then choose $K_{\epsilon, T}$ large enough so that $K_{\epsilon, T} \geq \max \left\{(2 T+2)^{1 / \epsilon}, f\left(T^{2}\right), 3\right\}$, where f is as in Lemma 3.2 and suppose that $p>K_{\epsilon, T}$. Then $|H|>|W|^{\epsilon} / 2 \geq p^{\epsilon} / 2 \geq T+1$ and hence

$$
T^{2}+1=(T-1)(T+1)+2 \leq(T-1)(T+2) \leq(T-1)|H|,
$$

so that $\left(T^{2}+|H|+1\right) /\left(T^{2}|H|\right)<1 / T$. Now by Lemma 3.2 (a)

$$
k(H W) \leq \frac{T^{2}+|H|+1}{T^{2}|H|}|W| \leq \frac{|W|}{T},
$$

as wanted.
Therefore, now we may assume that G_{1} does not act irreducibly on W. Then we can write $W=W_{1} \oplus W_{2}$ for nontrivial G_{1}-modules W_{1}, W_{2}, and we may assume that W_{1} is irreducible, and clearly it is faithful as G_{1}-module.

Suppose that W_{1} is not primitive as G_{1}-module. Then $W_{1}=X_{1} \oplus \cdots \oplus X_{t}$ for a $1<t \leq \operatorname{dim} W$ and subspaces X_{i}, which are transitively permuted by G_{1}, and if $Z_{1} \unlhd G_{1}$ is the kernel of that permutation action, then $Z_{1} \leq Z\left(G_{1}\right)$ and $G_{1} / Z_{1} \lesssim S_{t}$ and $t \geq 5$. If $t \leq 1000$, then there is a constant $E \in \mathbb{R}$ such that

$$
|G| \leq k F_{\epsilon}|N / Z||Z| \leq k F_{\epsilon} C\left|\bar{G}_{1}\right|\left(\ln ^{2}\left|\bar{G}_{1}\right|\right)|Z| \leq k F_{\epsilon} E|Z|
$$

and as $|Z| \leq\left|K_{1}\right| \leq|W|^{1 / 2}$ (since $t \geq 5$), once again just as above in the case $m=0$ we deduce that $k(H W) \leq|W| / T$ for $p>K_{\epsilon, T}$ and sufficiently large $K_{\epsilon, T}$. So let $t>1000$. Then for any $U \leq G$ we obtain

$$
k(U) \leq k F_{\epsilon} C \ln ^{2}\left|G_{1}\right| k\left(G_{1} / Z_{1}\right)\left|Z_{1}\right| \leq k F_{\epsilon} C \ln ^{2}\left(|W|^{2}\right) 2^{t}\left|Z_{1}\right|
$$

and as $k \leq \log _{2}\left|K_{1}\right| \leq \log _{2}|W|$ and $\left|Z_{1}\right| \leq\left|X_{1}\right| \leq\left|W_{1}\right|^{1 / 1000}$, we further see that $k(U) \leq F_{\epsilon} C \ln ^{3}\left(|W|^{2}\right) 2^{\operatorname{dim} W}|W|^{1 / 1000}$, which implies our assertion in (b) (2) (α) for $p>K_{\epsilon, T}$ if $K_{\epsilon, T}$ is chosen large enough. So we are done in this case and henceforth assume that W_{1} is a primitive G_{1}-module.

If as above again we write $Z_{0}=H \cap Z$, then, as seen earlier, $k\left(Z_{0} W\right) \leq 2|W| / Z_{0}$, and as $k(H W) \leq\left|H / Z_{0}\right| k\left(Z_{0} W\right)$ and $\left|H / Z_{0}\right| \leq k F_{\epsilon} C\left|\bar{G}_{1}\right| \ln ^{2}\left|\bar{G}_{1}\right|$, we may assume that $\left|Z_{0}\right| \leq 2 T k F_{\epsilon} C\left|\bar{G}_{1}\right| \ln ^{2}\left|\bar{G}_{1}\right|$, because otherwise we are done. Hence

$$
\begin{equation*}
|H|=\left|H / Z_{0}\right|\left|Z_{0}\right| \leq 2 T k^{2} F_{\epsilon}^{2} C^{2}\left|\bar{G}_{1}\right|^{2} \ln ^{4}\left|\bar{G}_{1}\right| . \tag{7}
\end{equation*}
$$

Now remember from the beginning of the proof that $G_{0}=C_{G}(Z) \leq \mathrm{GL}\left(s, p^{k}\right)$, and clearly $G_{1} \leq G_{0}$. Now as $p^{k \epsilon} / 2 \leq|W|^{\epsilon} / 2 \leq|H|$, by (7) we see that by choosing p large, then also $\left|\bar{G}_{1}\right|$ must get large, and as $\left|\bar{G}_{1}\right|$ is large, then by Jordan's Theorem as proved by Blichfeldt (see [3, Theorem 30.4]) also s gets large (as p does not divide $|G|$. So we may choose $K_{\epsilon, T}$ large enough such that for $p>K_{\epsilon, T}$ we have

$$
s \geq 200\left(F_{\epsilon}+C+4000 / \epsilon+5\right)
$$

and

$$
F_{\epsilon} C\left|\bar{G}_{1}\right|^{\epsilon / 320} \ln ^{2}\left|\bar{G}_{1}\right| \leq \frac{1}{2 T} \min \left\{\left|G_{1}\right|^{\epsilon / 8},\left|G_{1}\right|^{1 / 160}\right\} .
$$

Consider the case that $|Z| \leq\left|\bar{G}_{1}\right|^{/ / 640}$ and write $H_{1}=H \cap G_{1}$. Then we have

$$
|G|=|G / Z||Z| \leq k F_{\epsilon} C\left|\bar{G}_{1}\right|\left(\ln ^{2}\left|\bar{G}_{1}\right|\right)\left|\bar{G}_{1}\right|^{\epsilon / 640},
$$

and so, as $k \leq|Z|$ (by Fermat's little theorem), we see that

$$
\begin{aligned}
\left|H / H_{1}\right| \leq\left|G / G_{1}\right| & \leq \frac{|G|}{\left|\bar{G}_{1}\right|} \leq k F_{\epsilon} C\left|\bar{G}_{1}\right|^{\mid / 640} \ln ^{2}\left|\bar{G}_{1}\right| \\
& \leq F_{\epsilon} C\left|\bar{G}_{1}\right|^{\epsilon / 320} \ln ^{2}\left|\bar{G}_{1}\right| \leq \frac{1}{2 T} \min \left\{\left|G_{1}\right|^{/ / 8},\left|G_{1}\right|^{1 / 160}\right\} .
\end{aligned}
$$

Next observe that we may assume that $\left|H_{1}\right| \geq\left|G_{1}\right|^{\epsilon / 8}$, because otherwise

$$
\begin{aligned}
\frac{1}{2}|W|^{\epsilon} & <|H| \leq k F_{\epsilon}|(N \cap H) /(Z \cap H)||Z| \\
& \leq k F_{\epsilon} C\left|H_{1}\right|\left(\left|\ln ^{2}\right| \bar{G}_{1} \mid\right)|Z| \leq F_{\epsilon} C\left|G_{1}\right|^{\epsilon / 8} \ln ^{2}\left|\bar{G}_{1}\right||Z|^{2} \\
& \leq F_{\epsilon} C\left|G_{1}\right|^{(/ 8+\epsilon / 320} \ln ^{2}\left|G_{1}\right| \leq F_{\epsilon} C\left|W_{1}\right|^{\epsilon / 4 \epsilon \epsilon / 160} \ln ^{2}\left(\left|W_{1}\right|^{2}\right),
\end{aligned}
$$

which for $K_{\epsilon, T}$ sufficiently large and $p>K_{\epsilon, T}$ leads to a contradiction. Hence, for $p>K_{\epsilon, T}$, by Lemma 3.1 we have $n\left(H_{1}, W_{1}\right) \leq 2\left|W_{1}\right| / \min \left\{\left|G_{1}\right|^{\epsilon / 8},\left|G_{1}\right|^{1 / 160}\right\}$. So together with Lemma 3.3 and our hypothesis we get

$$
k\left(H_{1} W\right) \leq n\left(H_{1}, W_{1}\right) \max _{v_{1} \in W_{1}} k\left(C_{H_{1}}\left(v_{1}\right) W_{2}\right) \leq \frac{2 T}{\min \left(\left|G_{1}\right|^{\epsilon / 8},\left|G_{1}\right|^{1 / 160}\right\}} \frac{|W|}{T} .
$$

Thus altogether $k(H W) \leq\left|H / H_{1}\right| k\left(H_{1} W\right) \leq|W| / T$, and so we are done in this case.

It remains to consider the case that $|Z|>\left|\bar{G}_{1}\right|^{\epsilon / 640}$. As $|Z| \leq p^{k}$, we then have $\left|\bar{G}_{1}\right| \leq|Z|^{640 / \epsilon} \leq p^{1280 k / \epsilon}$, and so we obtain

$$
\begin{aligned}
|G| & \leq k F_{\epsilon} C\left|\bar{G}_{1}\right|\left(\ln ^{2}\left|\bar{G}_{1}\right|\right)|Z| \leq F_{\epsilon} C\left|\bar{G}_{1}\right|^{3}|Z|^{2} \\
& \leq F_{\epsilon} C p^{4000 k / \epsilon} p^{2 k} \leq p^{\left(\mathrm{Fog}_{2} F_{\epsilon}+\log _{2} C+4000 / \epsilon+2\right) k}
\end{aligned}
$$

Hence as $|W|=p^{s k}$ and $s \geq 200\left(F_{\epsilon}+C+4000 / \epsilon+5\right)$, we see that $|G| \leq \frac{1}{8}|W|^{1 / 200}$, and so $k(U) \leq \frac{1}{8}|W|^{1 / 200}$ for all $U \leq G$. This concludes the proof of the theorem.

4. The main result

We are now ready to prove the $k(G V)$-problem for large primes.
THEOREM 4.1. There is a constant K with the following property: If G is a finite group and V is a finite faithful $G F(p) G$-module, where p is a prime not dividing $|G|$ such that $p>K$, then $k(G V) \leq|V|$.

Proof. Let (G, V) be a counterexample with $|G||V|$ minimal. It is routine to show that we may assume that V is irreducible (see, for example, the proof of [11, Theorem 4.8]).

Next suppose that G acts primitively on V. Let $J \unlhd G$ be the product of $F(G)$ and all components of G which are not alternating groups of degree at least 10 . Note that this is the same J that is defined in the proof of [7, Proposition 2.8]. Put $B=C_{G}(J) \unlhd G$. Then as in the proof of [7, Proposition 2.8] we conclude that with $\epsilon_{0}:=79 / 80$ we have $\left|C_{V}(g)\right| \leq|V|^{\epsilon_{0}}$ for all $g \in G-B$.

Now suppose that $B<G$. First suppose that $k(U) \leq|V|^{\epsilon_{1}} / 2$ for all $U \leq G$, where $\epsilon_{1}=\left(1-\epsilon_{0}\right) / 2=1 / 160$. Let P be the goodness property of [11, Example 3.4 (a)]. Then by induction we have $|V| \geq k(B V)=\alpha_{P}(B, V)$, and so [11, Remark 3.9] yields $k(G V)=\alpha_{P}(G, V) \leq|V|$, contradicting our choice of G and V.

So now assume $k(U)>|V|^{\epsilon_{1}} / 2$ for some $U \leq G$, and assume the notation of Theorem 3.5 and suppose that $K>H_{\epsilon_{1}}$. If $K>K_{\epsilon_{1}, 1}$, then as $k(G V)>|V|$ we conclude by induction and Theorem 3.5 that $G \leq \Gamma(V)$ in which case it is well known that $k(G V) \leq|V|$. (This follows most easily from Knörr's early result that if there is a $v \in V$ with $C_{G}(v)$ abelian, then $k(G V) \leq|V|$, but for large p it is also not too difficult to establish this using elementary estimates for $k(G V)$.) This contradicts our choice of G and V.

So now suppose that $B=G$. Hence $J=Z(G)=: Z$, and so there are an $l \in \mathbb{N} \cup\{0\}$ and $n_{i} \in \mathbb{N}(i=1, \ldots, l)$ with $n_{i} \geq 10$ for all i such that $F^{*}(G)=Z \times X_{i=1}^{l} A_{n_{i}}$, and so if G_{0} is the normalizer of all the components of G, then we have $G / G_{0} \lesssim S_{l}$ and $G_{0} / Z \lesssim X_{i=1}^{l} S_{n_{i}}$. Let $k \in \mathbb{N}$ be minimal such that $|Z| \mid p^{k}-1$ and let $K=G F\left(p^{k}\right)$.

Then let V_{0} be as in the proof of Theorem 3.5, but this time, as $G=C_{G}(Z)$, we see by [9, II, Hilfssatz 3.11] that $k(G V)=k\left(G V_{0}\right)$ and Z acts on V_{0} by scalar multiplication.

Assume that $l \geq 2$ and put $s=\lfloor l / 2\rfloor$, so $1 \leq s<l$. Clearly we may assume that $\sum_{i=1}^{s} n_{i} \leq \sum_{i=s+1}^{l} n_{i}$. Let $T=Z \times X_{i=s+1}^{l} A_{n_{i}} \unlhd G_{0}$. Then as by [24] the least degree of a faithful linear representation of the alternating group A_{n} over a field of positive characteristic not dividing n is $n-1$, we see that if X is an irreducible T-submodule of V_{0}, then V_{0} is the direct sum of at least

$$
\frac{\operatorname{dim}_{K} V_{0}}{\operatorname{dim}_{K} X} \geq \prod_{i=1}^{s}\left(n_{i}-1\right)=: m>1
$$

irreducible T-modules. Hence, by induction and Lemma 3.4, we conclude that

$$
\begin{aligned}
k(G V)=k\left(G V_{0}\right) & \leq k\left(G / G_{0}\right) k\left(G_{0} / T\right) k\left(T V_{0}\right) \\
& \leq k\left(G / G_{0}\right) k\left(G_{0} / T\right) \frac{2}{\min \left\{|T|, p^{k(m-1)}\right\}}\left|V_{0}\right|
\end{aligned}
$$

Now as $k\left(G / G_{0}\right) \leq 2^{l-1}$ and $k\left(G_{0} / T\right) \leq 2^{l} \prod_{i=1}^{s} 2^{n_{i}-1}$, we see that

$$
t:=2 k\left(G / G_{0}\right) k\left(G_{0} / T\right) \leq 2^{2 l} \prod_{i=1}^{s} 2^{n_{i}-1}=2^{2(2 s+1)} \frac{1}{2^{s}} \prod_{i=1}^{s} 2^{n_{i}} \leq 2^{\sum_{i=1}^{s}\left(n_{i}+5\right)}
$$

As $n_{i} \geq 10$ for all i, observe that $\left(n_{i}!\right) / 2 \geq 2^{n_{i}+5}$, and therefore

$$
|T|=|Z| \prod_{i=s+1}^{l}\left(\frac{n_{i}!}{2}\right) \geq \prod_{i=s+1}^{l} 2^{n_{i}+5}=2^{\sum_{i=s+1}^{l}\left(n_{i}+5\right)} \geq 2^{\sum_{i=1}^{\prime}\left(n_{i}+5\right)} \geq t
$$

Moreover as $n_{i} \geq 10$ for all i, we also have $2 m \geq \sum_{i=1}^{s}\left(n_{i}+5\right)$, and so for $p \geq 16$ we get $p^{k(m-1)} \geq 2^{4 m-4} \geq 2^{2 m} \geq 2^{\sum_{i=1}^{i}\left(n_{i}+5\right)} \geq t$, so that altogether $k(G V) \leq\left|V_{0}\right|=|V|$, a contradiction.

Hence $l \leq 1$. If $l=0$, then $G=Z$ and clearly $k(G V) \leq|V|$ in this case. So $l=1$ and $G \leq S_{n_{1}} \times Z \leq S_{n_{1}} \times \Gamma\left(p^{k}\right)$. But then using induction and Lemma 2.2 (with $\delta=1$) we easily obtain $k(G V) \leq|V|$, a contradiction. This concludes the case that V is primitive.

So now assume that V is an imprimitive G-module. Hence we can write $V=$ $V_{1} \oplus \cdots \oplus V_{n}$ for an $n>1$ and subspaces V_{i} such that G transitively permutes the V_{i} and if $H=N_{G}\left(V_{1}\right)$, then V_{1} is a primitive (and thus irreducible) H-module. Hence if $N=\bigcap_{g \in G} H^{g}$, then $G / N \lesssim S_{n}$. Define successively $N_{0}=N$ and $N_{i}=N_{i-1} / C_{N_{i-1}}\left(V_{i}\right)$ for $i=1, \ldots, n$. Then

$$
\begin{equation*}
k(G V) \leq k(G / N) \prod_{i=1}^{n} k\left(N_{i} V_{i}\right) \leq 2^{n-1} \prod_{i=1}^{n} k\left(N_{i} V_{i}\right) \tag{8}
\end{equation*}
$$

Clearly by induction $k\left(N_{i} V_{i}\right) \leq\left|V_{i}\right|$ for all i, and also $\left|N_{i}\right| \leq\left|V_{i}\right|^{2}$. Moreover, $k(G) \leq 2^{n-1} \prod_{i=1}^{n} k\left(N_{i}\right)$.

Assume that we have $k(U) \leq\left|V_{1}\right|^{1 / 16} / 4$ for all $U \leq N_{i}$ for $\lceil 31 n / 32\rceil$ values of i. Then for any $U \leq G$ we have

$$
\begin{aligned}
k(U) & \leq 2^{n-1}\left(\frac{\left|V_{1}\right|^{1 / 16}}{4}\right)^{[31 n / 327}\left(\left|V_{1}\right|^{2}\right)^{n-[31 n / 32]} \\
& \leq \frac{1}{2}|V|^{(1 / 16)(31 / 32)+1 / 16} \leq \frac{1}{2} \frac{|V|^{1 / 8}}{|V|^{1 / 512}} \leq \frac{1}{2} \frac{1}{\sqrt{n+1}}|V|^{1 / 8},
\end{aligned}
$$

where the last inequality holds if $p>K$ and K is chosen sufficiently large. So by induction and Lemma 2.2 (with $\delta=1$) we obtain $k(G V) \leq|V|$, a contradiction.

Therefore there are at least $n-(\lceil 31 n / 32\rceil-1) \geq n / 32$ values of i such that there is a $U_{i} \leq N_{i}$ with $k\left(U_{i}\right)>\left|V_{1}\right|^{1 / 16} / 4 \geq\left|V_{1}\right|^{1 / 32} / 2$ (for large p). Let $I \subseteq\{1, \ldots, n\}$ be the set of those indices i. In particular, $\left|N_{1}\right|>\left|V_{1}\right|^{1 / 32} / 2$, and as V_{1} is a primitive faithful N_{1}-module, Theorem 3.5 applies. So let the notation (as far as possible) be as in that lemma.

If $N_{1} \leq \Gamma\left(V_{t}\right)$, then we are done by Lemma 2.3.
Hence by Theorem 3.5 there are two cases to consider:
(1) $k(U) \leq\left|V_{1}\right|^{1 / 200} /$ for all $U \leq N_{1}$; or
(2) $k\left(U V_{1}\right) \leq\left|V_{1}\right| / T$ for all $U \leq N_{1}$ with $|U|>\left|V_{1}\right|^{1 / 32} / 2$, if $p>K_{1 / 32, T}$.

Observe that $N_{i} \leqq N_{1}$ for all i, and so as $I \neq \emptyset$, Case (1) cannot occur. Hence suppose (2) and put $T_{0}=2^{32}$. Clearly $\left|N_{i}\right| \geq\left|U_{i}\right| \geq k\left(U_{i}\right)>\left|V_{i}\right|^{1 / 32} / 2$ for $i \in I$. Therefore, (8) yields

$$
k(G V) \leq 2^{n-1} \prod_{i \in I} k\left(N_{i} V_{i}\right) \prod_{i \notin I} k\left(N_{i} V_{i}\right) \leq 2^{n-1}\left(\frac{\left|V_{1}\right|}{T_{0}}\right)^{|n|}\left|V_{i}\right|^{n-|I|} \leq \frac{2^{n-1}}{T_{0}^{n / 32}}|V| \leq|V|,
$$

contradicting our choice of (G, V). This final contradiction completes the proof of the theorem.

References

[1] M. Aschbacher, 'On the maximal subgroups of the finite classical groups', Invent. Math. 76 (1984), 469-514.
[2] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, Atlas of finite simple groups (Clarendon Press, Oxford, 1985).
[3] L. Dornhoff, Group representation theory. Part A: Ordinary representation theory (Marcel Dekker, New York, 1971).
[4] D. Frohardt and K. Magaard, 'Composition factors of monodromy groups', Ann. of Math. (2) 154 (2001), 327-345.
[5] P. X. Gallagher, 'The number of conjugacy classes in a finite group', Math Z. 118 (1970), 175-179.
[6] A. Gambini Weigel and T. S. Weigel, 'On the orders of primitive linear p^{\prime}-groups', Bull. Austral. Math. Soc. 48 (1993), 495-521.
[7] D. Gluck and K. Magaard, 'Base sizes and regular orbits for coprime affine permutation groups', J. London Math. Soc. 58 (1998), 603-618.
[8] D. Gluck, K. Magaard, U. Riese and P. Schmid, 'The solution of the $k(G V)$-problem', J. Algebra 279 (2004), 694-719.
[9] B. Huppert, Endliche Gruppen I (Springer, Berlin, 1967).
[10] —_, Character theory of finite groups (deGruyter, Berlin, 1998).
[11] T. M. Keller, 'A new approach to the $k(G V)$-problem', J. Austral. Math. Soc. 75 (2003), 193-219.
[12] -_, 'Orbits in finite group actions', in: Groups St. Andrews 2001 in Oxford, London Math. Soc. Lecture Notes Series 305 (Cambridge University Press, 2003) pp. 306-331.
[13] M. W. Liebeck, 'Regular orbits of linear groups', J. Algebra 184 (1996), 1136-1142.
[14] M. W. Liebeck and L. Pyber, 'Upper bounds for the number of conjugacy classes of a finite group', J. Algebra 198 (1997), 538-562.
[15] M. W. Liebeck and A. Shalev, 'Diameters of finite simple groups: sharp bounds and applications', Ann. of Math. (2) 154 (2001), 383-406.
[16] R. Lyons, Finite group theory, Notes for Math. 555, unpublished, 1999.
[17] O. Manz and T. R. Wolf, Representations of solvable groups, London Math. Soc. Lecture Notes Series 185 (Cambridge University Press, 1993).
[18] G. Navarro, Characters and blocks of finite groups, London Math. Soc. Lecture Notes Series 250 (Cambridge University Press, 1998).
[19] I. Pak, 'On probability of generating a finite group', unpublished manuscript, 1999.
[20] P. P. Pálfy and L. Pyber, 'Small groups of automorphisms', Bull. London Math. Soc. 30 (1998), 386-390.
[21] U. Riese, 'On the number of irreducible characters in a block', Algebra Colloq. 10 (2003), 381-390; see www-math.mit.edu/~pak/research.html.
[22] G. R. Robinson and J. G. Thompson, 'On Brauer's $k(B)$-problem', J. Algebra 184 (1996), 11431160.
[23] A. Shalev, 'Fixed point ratios, character ratios, and Cayley graphs', in: Combinatorial and computational Algebra (Hong Kong, 1999), Contemp. Math. 264 (2000) pp. 49-59.
[24] A. Wagner, 'The faithful linear representations of least degree of S_{n} and A_{n} over a field of odd characteristic', Math. Z. 154 (1977), 103-114.

Department of Mathematics

Texas State University
601 University Drive
San Marcos, TX 78666
USA
e-mail: keller@txstate.edu

