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Abstract

Suppose that the finite group G acts faithfully and irreducibly on the finite G-module V of characteristic
p not dividing |G|. The well-known/t(GV)-prob!em states that in this situation, if k(GV) is the number
of conjugacy classes of the semidirect product GV, then k(GV) < | V|. For p-solvable groups, this
is equivalent to Brauer's famous k(B)-problem. In 1996, Robinson and Thompson proved the k(GV)-
problem for large p. This ultimately led to a complete proof of the k(G V)-problem. In this paper, we
present a new proof of the k( G V)-problem for large p.

2000 Mathematics subject classification: primary 20C15, 20C20.

1. Introduction

The subject of this paper is a classical open problem in the modular representation
theory of finite groups, known as Brauer's &(Z?)-problem and dating back to the 1950s.

Recall that in modular representation theory, for a given prime p and a finite
group G, the set of all irreducible complex and p-Brauer characters of G is partitioned
into subsets called the p -blocks of G, and one assigns to each p -block B a certain
p -subgroup D of G, called the defect group of B, which is uniquely determined up to
conjugacy. If \D\ — pd(B\ then d(B) is called the defect of B. (For an introduction
to the subject, we refer the reader to [18].)

With these notions Brauer's Jfc(B)-problem states that for any p-block B of G the
number k(B) of irreducible complex characters in B is bounded above by the order of
the defect group D of B, that is, k(B) < pd(B).

The best general bound to date is due to Brauer and Feit and states that k(B) <
n2d(B)-2
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258 Thomas Michael Keller [2]

If G is p-solvable, it has been known for a long time that Brauer's ik(B)-problem
is equivalent to the following conjecture which is known as the k(GV)-problem.

k(G V)-PROBLEM. If the group G acts faithfully and irreducibly on the finite
G-module V and if {\G\, \V\) = 1, then the number k(GV) of conjugacy classes of
the semidirect product GV is bounded above by the order of V, thatis, k(GV) < \V\.

Over the past two decades this conjecture attracted the interest of a number of
mathematicians, and in a huge effort its proof has finally been completed in [8]. For
a detailed history of this fascinating problem, we refer the reader to [12] and [21].
We point out, however, that the whole line of attack on the problem is based on some
fundamental ideas introduced by R. Knorr in the 1980s, which eventually led to the
celebrated paper [22] by Robinson and Thompson, where they were able to settle the
conjecture for large primes p (more precisely, for p > 530). All subsequent work on
the problem is based on the results in [22].

In this paper, we will provide a new proof of the it (G V)-problem for large p, that
is, for p > K where K is a suitable constant. Our approach is independent of [22]
and more straightforward, and the new proof in many instances gives bounds stronger
than k(G V) < \V\. It turns out to be yet another application of character and fixed
point ratio estimates (see, for example, [4, 15, 23] for other important examples), thus
demonstrating once again their usefulness and power. Some of the ideas behind this
approach to the k(G V)-problem were already developed in [11], but the proof in that
paper was long and worked only for solvable groups.

Our strategy is as follows: We proceed by induction on \GV\. Clearly V is
induced from a submodule W that is a primitive and faithful TV -module, where N =
NG(W)/CC(W) (possibly W = V). We will reduce the problem to one of the
following situations:

(1) k(NW) < | W\/T for some T e N or
(2) W < V and k(N) is small relative to |W| or
(3) N 5 r(q), where g is a power of/? and V(q) is the semilinear group on GF(q).

This reduction process involves an analysis of the structure of coprime primitive
linear groups which are large relative to the module they act on (see Theorem 3.5).
The results obtained in this context are of independent interest and can be understood
as qualifying the general result of Gambini and Gambini-Weigel [6] on the order of
such groups. The proof is based on character ratio estimates which were proved by
Gluck and Magaard in [7] for different purposes, and it ultimately makes use of an
argument of Liebeck [13] that already had proved useful in the Robinson-Thompson
paper. Thus the reduction to Cases (1), (2) and (3) depends on CFSG.

In Case (1), if V = W, we are done, and if W < V, an easy induction argument
will show that k(GV) < | V\. In Case (2), an elementary induction (see Lemma 2.2)
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will do the job. In Case (3), if W = V, the conclusion can be shown directly. The
inductive arguments used up to this point are of an elementary and purely group
theoretical nature. We are left with Case (3) and W < V. This case not surprisingly
requires a more sophisticated inductive treatment presented in Lemma 2.3. While
formally similar to Lemma 2.2, it requires some basic character theory and also a
technical argument from [11] on stabilizers in the action of a group on the set of
conjugacy classes of a subgroup.

The paper is organized as follows: Section 2 contains the inductive arguments,
Section 3 deals with the structure of primitive linear groups. In Section 4, we prove
the main theorem.

Note that since the focus of the paper is on the methods and in order to keep the
tedious parts of the proofs short, no effort has been made to keep the constant K small.

The notation used is standard and is as in [11]. In particular, n(G, V) denotes
the number of orbits of G on V. If F is a field, by the natural F-module V for Sn

respectively An we mean the deleted permutation module of Sn respectively An, that
is, V = {(JCI, . . . , xn) \ Xj e F for all i, £ " = 1 xt = 0} with components permuted
naturally by Sn respectively An.

We will frequently use the fact that k{G) < 2"~' for any subgroup G of the
symmetric group Sn (see [14]), and that if V is an Sn- or An-module for n > 6 with
char(V) > n, then dim V > n — 1 (see [24]). Also basic estimates for k(G) such
as k(G) < k(G/N)k(N) for N < G and the basic formulas for k(GV) (see, for
example, [11]) will freely be used, as well as the fact that if G acts faithfully on V
with(|G|, |V|) = l.then \G\ < | V|2 (see [20]).

2. The key lemmas

We begin with an auxiliary result.

LEMMA 2.1. Let G be a group acting on a finite set Q. Suppose that | Cn (g) I >
|£21/2/orall g e G. Then there exists ana) e £2 such thata>g = coforall g 6 G.

PROOF. This is immediate from the Cauchy-Frobenius orbit counting formula. •

Now we can prove a crucial lemma in the spirit of [11, Lemma 3.8 and Remark 3.9].

LEMMA 2.2. Let G be a finite group and V be a finite G-module with (| G\, | V|) = 1.
Suppose that N <1 G and V^ = V\ © • • • © Vnfor ann e N, where the Vj are N -modules,
and assume that G/N permutes the Vj transitively and faithfully. Put H = ^ G ( VI).

Let W < V be a G-submodule with \ W\ > \ Vf for some 0 < 8 < 1. Moreover,
suppose that the following hold:
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(i) k(HW)< \W\\
(ii) k(U) < (l/VnTT)\ W\1/2~i/m for all U < G.

Thenk(GW) < \W\.

PROOF. We may assume that n > 2. Let M = [g e G | g normalizes at least n/2
of the V;} and observe that N c. M and M is a normal subset of G, that is, M8 = M
for all g € G. Let T = {vG | v a W and CG(v) g M}; so vG € T means that there
is a g € G — M such that g fixes an element of vG, that is, t>G n Cv(g) i=- 0. Hence
vG n CvCg*) 7̂  0 for all h € G. This shows that if g,, / = 1 , . . . , t are representatives
of the conjugacy classes of G which are not in M, then

<
T c | J{ i ; G | v e V and vG n Cv(g,) ^ 0}

i=i

and thus |T| < rmax1=1 ,\Cv(gt)\-
Now by definition of M clearly if g e G — M, then g normalizes at most n/2 of

the V; which immediately implies that |Cv(g) | < I V|3/4. Thus

|T| < k(G)\V\V4 < k(G)\W\V(4S).

Now consider v e W with vG i T. Thus CG(u) c M, so that CG(v)N/N is
a permutation group on {VI, . . . , Vn} —: Q. and all elements of CG(V)N/N have
at least n/2 fixed points on £2. By Lemma 2.1, there is an i e {1, . . . , n] with
CG(V) < NG(Vi), so by replacing v by another representative of vG we may assume that
CG(v) < H. T h u s CG(v) = CH(v), a n d s o | u G | > \vH\. T h e r e f o r e , ifwu...,wke

vG are representatives of the orbits of H on vG with W\ = v, then k > 2, and if
we write wt = v*' for some g, e G (i = 2 , . . . , &), then by [5, Formula (2)] for
i = 2, ... ,k we have

< |Cc(u>,) :

and hence k(CH(Wj)) > (l/n)k(CH(v)) for i = 2, . . . , Jt. With this we obtain that

-l)-k(CH(v))
n

the last inequality being true as k > 2.
Since the above considerations hold for any v e W with vG g T, we conclude

that if D, € W (i = 1, . . . , n(G, WO) are representatives of the orbits of G on W and
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for any i the Wy (j = 1, . . . , &,) are representatives of the orbits of H on vf (so that
clearly the Wy for all i, j are representatives of all orbits of H on W), then we may
assume that for all i with vf g T we have CG(i>,) < H, and then the above yields

k{CG(v,))=
i with u

n(G,H0

Hence altogether with our hypotheses we obtain

k(GW)=

as desired. •

We next prove another lemma of a similar flavor. For this we will need Gallagher's
goodness property. Recall that in [5] Gallagher defines, for N < G, V 6 Irr(N) and
g e Cdit) (the inertia group of ^ in G), that g is good for /̂r if an extension xfr0 of ^
to N(g) is invariant under CG(Vf) H L, where L = (A e G | (g^V)* = g^V}- Goodness
is independent of the choice of \)r0 and depends only on the conjugacy class of gN in
Cc(f)/N. Then as in [11, Example 3.4 (b)] for N < U < G v/e define

P(U/N, f) = {M e cl(CC//JV(Vf)) I there i s a g e M that is good for V),

then P is a goodness property in the sense of [11, Definition 3.1] which we call
Gallagher's goodness property, and from [11, Example 3.4 (b)] we know that for any
N < U < G we have

«U)=aP(U/N,Irr(N))=
xeirr(N)

where kp(Cu/N(x)) is the number of conjugacy classes of elements of CU/N(X) which
are good for x-
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LEMMA 2.3. Let G be a finite group and V be a finite faithful G-module. Suppose
that N <G and VN = V\ © • • • © Vn where the VtareN -modules, and assume that G/N
permutes the V* transitively and faithfully. Furthermore assume that N /CN(V\) ^
T( V,) and write q = | V,|. Let W < V be a G-submodule with \W\ > \ V|15/16. Put
H = NQ( V\) and suppose that the following hold:

(i) k(HW)<\W\;
(ii) q > 2400.

Thenk(GW) < \W\.

PROOF. We may assume that n > 1. Write T(q) = T(V1). Clearly

N <

Identifying N with its isomorphic subgroup in r(q)n, we write T = ro(q)n and
M = N fl T\ so that M is an abelian normal subgroup of G and \N/M\ < (log2 q)n.

We consider the action of G/M on Q := Irr(M W). If at e Q, we will write coc

for the orbit of <x> under G and a> t c for the induced character. Let P be Gallagher's
goodness property with respect to this action. Then we have k{H W) = aP(H/M, Q)
and k(GW) = aP(G/M,£2). Now let R = {gM e G/M | gM normalizes at
least n/2 of the Vt}, so fl is a normal subset of G/M. Let T = {wc/M | a; e fi and
CG/M(W) 2 /?},soo;G/M e 7 means that there is a gM e G/M -R such that gM fixes
an element of <DG/M, that is, wG'M D Cn(gM) ^ 0. Hence OJG/W n Cn(g

hM) £ 0 for
all h € G. This shows that if g,M, i = 1 , . . . , t, are representatives of the conjugacy
classes of G/M which are not in R, then

T c [J {< and wG/M n Ca(giM) £ 0}

and thus |T| < rmax,=1 , |Cn(g,M)| < k(G/M)ma\gMeG/M^R \Cn(gM)\. Now as
G/7V S Sn, we have )t(G/M) < k(G/N)k(M/N) < 2n-'(log29)n. Furthermore,
if gM € G/M — fl, then gM has at most n/2 fixed points in its permutation action
on {Vi,..., Vn}. Hence we may apply [11, Lemma 4.7 (c)] to the action of (g, N)
on V which yields that if £2i = cl(M V) is the set of conjugacy classes of M V, then
\Cn,(g)\ < 4 V / 8 - Let ^o = Irr(MV). Since there is a G-module W such that
V = W © W, clearly MW = MV/W and hence fi c fi0. Now G/M acts on ft,
and £2o by conjugation, and so Brauer's permutation lemma (see, for example, [10,
Theorem 18.5 (b)]) yields

\Ca(gM)\ < \Cno(gM)\ = \Ca,(gM)\ = |C ll%

Hence we conclude that
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Now consider co with coG/M g T. Then CG/M(eo) c R, so all elements of CG(co)N/N
have at least n/2 fixed points on {V\,..., Vn). By Lemma 2.1 there is an i e { 1 , . . . , n]
withCc(<w) < NG (Vj), and so we may assume that CG(co) < H. AsH < G, it follows
that \coG/M\ > \coH/M\, and so if a>\,..., a>k € (oG/M are representatives of the orbits
of H/M on coG/M with a>i = co, then k > 2, and by the theorem in [5] and [10,
Exercise E17.2] we see that, for i = 2 , . . . , k, we have

kP(CH/M(co)) = kP(CG/M(a>)) =

= 1 ( ^ 6 Irr(Ccv(^i)) I & is a constituent of the induced
characters, TCov(»,)j|

< |Ccv(<w<) : CnV(a>t)\

x |{0 € Irr(CHV(tt>i)) I © is a constituent of cot ^c"v{a»)}\

<\G:H\- kP(CH/M(io,)) =

Hence, as in the previous lemma, we obtain

TkP(CH/M(a>j)) > " + ' * ~ l kP(CH/M(co)) >
U n n

Since these considerations hold for any coG/M & T, we conclude that if <y, € £2
(i = 1 , . . . , n(G/M, Q)) are representatives of the orbits of G/M on £2 and the <Wy
(j = 1 , . . . , &,) are representatives of the orbits of H/M on coG/M, then we may
assume that for all i with a>G/M & T we have C G /M(^I) < #/Af» and then the above
yields

n<

n

Hence altogether with hypothesis (i) we obtain

= aP(G/M,Sl)=

max kP(CG/M(cod) + -^— k(HW)

< 2n-l(log2q)n4nqln/8 max
U<G/
max A:(LO + r

U<G/M n + 1
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Since for any U < G/M we have k(U) < 2"-x\N/M\ < 2"-'(log2?)
n, we further

conclude that

k(GW) < (2n-1(log29)n)24"^8 + ( l - —L-) \W\,
\ n + lj

which implies k(GW) < \W\ whenever 22n-2{\og2q)lnAnqlnll < \W\/(n + l). As
| W| > | V|15/16 = ql5n/x\ for this it suffices that 24"-2(log2 q)2n(n + 1) < q"'16. This
will be satisfied whenever 25n(\og2 q)2n < qn/16 or, equivalently, 32(log2g)2 < g1/16.
But this is the case since, by our hypothesis, q > 2400, and so the lemma is proved. •

3. Primitive linear groups

The next lemma is essentially from [7].

LEMMA 3.1. Let G be a finite group, and let W be a faithful irreducible GF(q)G-
module, where q is a prime power such that (|G|, q) = 1. Suppose further that W
is primitive and that G has no component which is an alternating group of degree at
least 10. Then for every 1 ^ g e G we have \Cw(g)\ < \ W|79/8°- In particular, for
every 8 > 0 and for every H < G with \H\ > \G\S, we have

PROOF. The first assertion follows immediately from the proof of [7, Proposi-
tion 2.8] (note that the assumption dim W > 88 in that proof is not needed for the
argument). Now by Cauchy-Frobenius we have

- \H\ \H\ ~ \\H\

As | G\ < | W\2, we further conclude that

1 1

which implies the assertion. D

Next we need to slightly generalize Liebeck's well-known regular orbit theorem.
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LEMMA 3.2. Let 7 > 1. There exists a function f : [1, oo) ->• N SMC/I ffcaf rte
following holds: If p is a prime with p > f (T) and G is a p'-group and V is a
faithful GF(p)G-module such that G has a quasisimple normal subgroup H which
is irreducible on V, then one of the following holds:

(a> Etec-{i\\Cv(g)\ < W\/T; in particular, k(UV) < (T+\U\ + 1)\V\/T\U\
for any U < G.
(b) H = Ac, c < p, and V is the natural GF(p)-module for H.

PROOF. This can be shown by slightly adjusting the proof of the main theorem in
[13] in an obvious way as follows (we use the notation of that paper): The assump-
tion (t) now reads \V\/T < Z^e G_( 1 ) |CV(g)|. Lemma 1 reads q < 6 7 | Aut(tf)|,
and Lemma 2 (iii) and (iv) read q1 < 6 7 | Aut (#) | and q < (37 | Aut(/7)|) r / ( n- r '+ r ) ,
respectively, with the obvious adjustments in their proofs. Most of the changes to be
made in the proof of Lemma 4 are obvious; the inequality on page 1140 needs to be
changed to 2c! > ( 1 / T)q5n/ic+22) - ••• (the rest is not modified), and right after that
it should read: Since q > c > 20 and n > c(c — 3)/2, for q > f (T) (given that
/ (T) has been chosen large enough) the second, third, fourth, and fifth terms of the
right-hand side are all less than (l/ST)q5n/ic+22\ and hence, (l/T)q5n/(c+22) < 4c!.
Hence for c > 20 we obtain, as n > c(c - 3)/2, that g

5c<c-3)/2 < (47cc)c+22 which
for q > f (T) and f (T) large enough yields a contradiction. Therefore c < 20.
( . . . ) Then Lemma 2 (iii) gives p2 < 6T c\ < 6(19!)T, whence p < 5307\ a con-
tradiction if / (7) is chosen greater than 53O7\ And if c < 12, then Lemma 1 gives
p < 6(12!) T < 5307\ again a contradiction. To complete the proof, suppose now that
t > 1. We know that if / (7) is large enough, then c ^ 6 (by Lemma 1), . . . The
remaining modifications of the proof of Lemma 4 are obvious.

The first line of the proof of Lemma 5 should read: By Lemma \,p < 6 7 | Aut(/ /) | ;
hence i f / ( 7 ) > 5307, then 6|Aut(/7)| > 530. The remaining modifications are
obvious; the last line of the proof should read: Then Lemma 2 (iv) shows that p
is bounded by a function of 7, so i f / ( 7 ) is greater that that function, we get a
contradiction.

Similar adjustments are needed in the proof of Lemma 6, and then the proof of the
main result is complete.

The bound for k(UV) in Case (a) is easily obtained with the elementary argument
demonstrated in the proof of [12, Lemma 5.3], namely

k(UV) = £ ^ p n(Cu(g), Cv(g))

\Cu(g)\ n(Cu(g), Cv(g))
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IVI IE/1 + 1 ^ ,r ,oV< W\ \U\+±\V\

from which the assertion follows. •

The next lemma is probably well known.

LEMMA 3.3. Suppose that G is a finite group and V is a finite GF(q)G-module
for a prime power q not dividing \G\. Suppose that V = VI © Vifor G-modules V,
(i = 1, 2). Then k(GV) < n(G, V,) max,,,^, *(Cc(ui) V2).

PROOF. First note that the formulas in [11, Corollary 3.7] are also true (with
essentially the same proof) in the more general situation that G acts coprimely on an
abelian group V, and using this we obtain

k(G V) = — V* |Cc(w, + v2)\k(CG(v] + v2))

E
| Cf i !! ' ) l f A , V,),

as wanted. D

We need another easy lemma.

LEMMA 3.4. Let q be a prime power, m € N, G a finite group and let Vt {i =
1 m) be finite, faithful GF(q) G-modules. Write Vo = ©7=1 V,. Then the
following hold:

(a) n(G, M,) < ((<7m + \G\ - l)/(9
m|G|)) | Vo|.

(b) //(|G|, q) = 1 andm&x{k(UVx)\U < G] < | V,|, then

^ T T T ^ l v « l - . ,.n. m ,JMil-qm~l\G\ min{|G|, qm~x)

PROOF, (a) Clearly CVi(g) ^ V, for all i and g € G - {1}, so |d , (g) | < | Vt\lq for
all i and g ^ 1, and thus
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(b) By Lemma 3.3 and the hypothesis we have k(GV0) < \ Vx\n(G, 0™=2 Vj) which
with (a) implies the assertion. •

THEOREM 3.5. Let e > 0 and T € N with T > 2. There exist constants D(, F(, H(

depending only on € and a constant Ke< T depending only one, T such that the following
holds: Let G be a finite group, and let W be a faithful irreducible GF {q)G-module,
where q is a prime power such that (| G\, q) = 1. Suppose further that W is primitive
and that \G\ > \W\(/2. Put Z = Z(F*(G)).

(a) Suppose that q > H(. Let k € N be minimal subject to \Z\ \ qk — 1.

(1) IfF*(G) = F(G),then\G\ < D,\Z\k.
(2) IfF*(G) ^ F(G), then there is an N < G such that F*(N) = G\Z and

Z = Z(N)for a quasisimple group G\, and \G\ < F(\N\k.

(b) If' q = p is a prime and p > KeT, then the following hold:

(1) IfF*(G) = F(G),thenG< r(W), ork(H W) < | W\/Tforany H < G
such that also \H\ > \W\f/2.

(2) Suppose F*(G) ^ F(G) and let G\ be as in (a). Assume in addition
that if W = VI © V2 for nontrivial G\-modules V, (/ = 1,2), then
max{k(UV2)\U < d } < \V2\. Then if p > Ke,T, one of the follow-
ing holds:

(a) k(U)< \W\1/200/Sforall U < G, or
06) k(H W) < | W\/ Tfor any H < G such that \H\>\ W\e/2.

NOTE. The additional hypothesis in (b) (2) is of a technical nature only and will
be automatically satisfied (for large p) once the k(G V)-conjecture has been proved,
because as W is homogeneous as G\ -module, clearly each U < G\ acts faithfully
on V2.

PROOF, (a) As W is primitive, every normal abelian subgroup of G is cyclic.
Hence if Z = Z(F*(G)), then Z is cyclic and Wz = VI © • • • © Vs for an s e M
and isomorphic irreducible Z-modules Vt. Put it = (dim V)/s so | Vi| = qk, and let
Kx = GF{qk). By [17, Example 2.7] it is the smallest integer such that \Z\ | qk - 1.
Then, by [9, II, Hilfssatz 3.11], G acts as a semilinear group (over GF(q)) on
Vo := V(s, qk), and the permutation actions of G on W and on Vo are equivalent.
Moreover, Go := CG(Z) < GL(s,qk) and |G/G0| | \Gal(GF(qk)/GF(q))\ = k.
So we have \G\ < k\G0\ and dim W = kdim Vo and F*(G) = F*(G0). Also note
that as Z acts fixed point freely on V), clearly |Z| | |#i | — 1, in particular, \Z\ < \K\\.

Now let W\ be an irreducible F*(G)-submodule of V̂ . It is well-known that if
K = EndKlf.(G)(W\) and W2 is an irreducible summand of W\ ® K, then W2 is
an absolutely irreducible K"F*(G)-module and the permutation action of F*(G) on
vectors of W\, W2, respectively, are permutation isomorphic (see, for example, [22,
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Lemma 10]). In particular, | W2\ = \ Wx\ < |VOI = I W\ and dim W > it dim W, >
k dim W2. Now for the generalized Fitting subgroup F* (G) we have the decomposition

F*(G) = E(G)F(G) = (G, • • • Gm){P, x • • • x P,,)(P,1+1 x • • • x P,)

as the elementwise-commuting product of the components G, and the Sylow subgroups
Pi,..., Pi of F(G), where by [17, Corollary 1.4] the P, < Z(F*(G)) (i = /, + 1,
. . . , / ) are cyclic of prime order, and the P, (i = 1 , . . . , /i) are extraspecial of exponent
an odd prime, or the central product of an extraspecial 2-group of exponent 4 and a
group T which is dihedral, quaternion or semidihedral. Hence \Pj/Q(Pj)\ < pf"'+2

(j = 1 , . . . , Zj) for suitable primes p7 and nonnegative integers wij, and |P; | = p ;

0' = /i + 1, . . . , /) for suitable primes p 7 . Note that ]~lj=j,+i pi ^ z-

Now by [1, (3.16) (2)] we obtain that W2 = Xx ® •' • ® Xm <g) K, ® • • • ® Yh,
where each X, < W is an absolutely irreducible KG,-module and each Yt < W is an
absolutely irreducible ATP,-module. Write JC, = dim* X, and y, = dim^ }^. Then
clearly *, > 2 for all i and yj > p™' with m; > 1 for all j and

dim W > A: dim W2 = k (f\x\ \f[yj) > * (f l^j (11^) •

Also note that nj=iPy I |Z | < l^il < 1^1-
Now if G* = ( X i NGo(Gi), then F*(G) < G" < Go and Go/G* < 5m, and as

n j = / l Pj < Z and Go = CG(Z), we further have

G*/F(G) S ( 5 Aut(C,-))

where G, = Gi/Z(Gj) is simple and P, = Pj/<&(Pj) for all i,y (see, for example,
[16, Proposition 6.1]). Hence

\G\ = |G /Go | |Co/G* | |G*/F(G) | |F (G) /Z | |Z |

< fcm"1 (f]|Aut(G,)|j m \GL(2mj +2,Pj)\

As |Z | < | Jf |, we further obtain

(1) |G| < km' (f\ I Aut(G()|

https://doi.org/10.1017/S144678870001048X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870001048X


[13] The *( G Vyproblem revisited 269

Therefore by hypothesis we have

> | W | > | y y 2 | > I | j f | ( ; >

Now from the Atlas [2] one can derive that for some constant C we have

(2) |Aut(//)| < C\H\ln2\H\

for any finite simple group H (see [19, Section 6]).
Moreover, since our actions are all coprime, we have |G,| < |G,| < |X,|2, and this

yields |Aut(G,)| < C|X,|2ln2(|A-,|2) < 4C|X,|3 = 4C\K\ix'. Using this estimate in
the above formula yields

0)

Note that k < log2 \K\. Hence from (3) it is easy to see that there is a constant A(

(depending only on e) such that

(4) f\p?J<Att

no matter what \K\ and m and the *, are.
Suppose that m > 1. We may assume that xi > x2 > • • • > xm. Hence from (3)

we get

\K\l+*">iog2\K\ L ^ ^ f ^ ^ X ; ^ )

Since xt > 2 for all i and by (1), clearly |~jj'=1 pp + "'+ < Bf for some B( depending
only on e, we see that there is a C( depending only on e such that

1=2

From (1), (4) and (5) it follows that there are constants Df, Ee such that if m = 0,
then

(6) |G |<
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and if m > 1, then as | G\ > \ W\'/2, we see from (1), (4) and (5) that we can choose H(

such that for q > He we have that G\ is not isomorphic to any of the G, for i > 2.
Hence G, < G and thus for M := (["17=2 G«)(nj'=i pj) < G we have |MZ/Z| < E(,
and as

G7CG.(M) £ Aut(M) 5 J Aut(G,) x X Aut(P,),

with [17,Lemma 1.5] we obtain |CGo(P,Z/Z)| < \PjZ/Z\ = \Pj/Z(Pj)\ and hence
m /i

|G0/CCo(M)| < mmYl\Aut(Gi)\Y\(\AMt(PjZ/Z)\\CGo(PjZ/Z)\)

| Aut(G,)|

i=2

i=2

for a constant F€ depending on e only. Therefore in this case we obtain, using (2),
that \G\ = |G/Go||Go/CCo(M)||CGo(M)| < kF(\CCo(M)\. Put N = CGo(M) =
CG(M) < G and observe that F*(N) = GXZ. So (a) is proved.

(b) Let H < G such that \H\ > | W|72 and put Ho = H D Go, Zo = H n Z.
Next observe that since the permutation action of G on W and Vo are equivalent
and Go = CG(Z) acts linearly on V̂>, we have k(H0W) = k(HQVo) and hence
k(H W) < k • k(H0 W) = k • k(H0 Vo).

First assume m = 0, that is, F*(G) = F(G). Now as Z acts fixed point freely,
we have k(Z0W) = (\W\ — 1)/|ZO| + |Z0|. Suppose that G is not isomorphic to a
subgroup of r(W). Then F(G) is not cyclic, and thus lx > 1 and \Z\ < \W\l/2.
Therefore

and so

) < k«HW)/(Z0W))k(Z0W) < \H/Z0\k(Z0W) <

AsD€|Z0|* > | / / | > | W|72 and it < log21 W|, we see that |Z0| > |W|72DfA:and

' - |W|* f |W|«

As | W| > /?, it is clear from this that if Kfj is chosen large enough, then for any
p > K(T we will have k(H W) < \ W\/ T, and the first part of (b) is proved.

So now suppose that m > 1, that is, F*(G) ^ F(G). First suppose that Gx =
G,/Z(Gi) = An for some n € N; clearly n > 5. Also N/Z 5 Aut(Gi). It is
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well-known that then dim Vo > n - 1 (see [24]). Hence | Vo| > l*Mn~' = (p*)""1-
Suppose that n < 1000. Then there is a constant D e OS such that \G\ < F(D\Z\k,
and |Z| < \KX\ < \ W\l/2, as n — 1 > 2. So just as above in the case m = 0 w e can
deduce that £(// W) < | W|/ 7 if p > ^ r and K(T has been chosen large enough.
Thus now we may assume that n > 1000. Then N/Z ^ Aut(An) = Sn and thus
fc(L/Z) < 2""1 for any Z < L < Â . Thus for (/ < G weliave Jt(f/) < kF(2

n~xpk <
F(2

n~l\Ki\2. Hence if Af€>7- is sufficiently large, then for p > KeT it follows that
*(£/) < ||A:i|('I-1>/200 < l\ V0l

1/20° for all [/ < G, and we are done in this case.
So for the rest of the proof we may assume that G\ is not an alternating group.
Suppose that G\ acts irreducibly on W. Then choose K(T large enough so that

K(,T > max{(27 + 2)1 / € , / (72) , 3}, where/ is as in Lemma 3.2 and suppose that
p > K(J. Then \H\ > \ W\(/2 > p(/2 > T + 1 and hence

T2 + 1 = (T - 1)(7 + 1) + 2 < (T - 1)(T + 2)<(T-

sothat (T2 + |f/| + l)/(T2\H\) < \/T. Now by Lemma 3.2 (a)

> s m s .

as wanted.
Therefore, now we may assume that G\ does not act irreducibly on W. Then we

can write W = W\ © W2 for nontrivial G\ -modules Wj, W2, and we may assume
that W\ is irreducible, and clearly it is faithful as Gi-module.

Suppose that W\ is not primitive as Gi-module. Then W\ — X\ © • • • © X, for
a 1 < f < dim W and subspaces Xt, which are transitively permuted by G\, and if
Z\ < Gi is the kernel of that permutation action, then Z\ < Z(Gi) and G\/Z\ 5 5,
and f > 5. If t < 1000, then there is a constant E e IR such that

|G| < kFt\N/Z\ \Z\ < ^

and as \Z\ < \Ki\ < \ W\l/2 (since t > 5), once again just as above in the case m = 0
we deduce that &(// HO < | W\/ T for p > KeJ and sufficiently large K(J. So let
r > 1000. Then for any U < G we obtain

*(l/)<*FeCln2|G,|Jfc(Gi/Z,)|Z,| </tFfCln2(|

and as *: < Iog2|^i| < log21 W\ and |Zj| < |X,| < | W/,|1/100°, we further see that
k(U) < F(Cln3(| H/|2)2dim>v| Wl'/1000, which implies our assertion in (b) (2) (a) for
p > K(T if /sr€>r is chosen large enough. So we are done in this case and henceforth
assume that W\ is a primitive G\ -module.
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If as above again we write Zo = H D Z, then, as seen earlier, k(Z0 W) < 2| W\/Zo,
andas*(HW0 < \H/Z0\k(Z0W) and \H/Z0\ < kFeC\~Gx\ In

2 |Gi|, we may assume
that |Z0| < 27itFf C|Gi| In2 |Gi|, because otherwise we are done. Hence

(7) \H\ = \H/Z0\\Z0\ < 2Tk2F2C2\G,\2\^\Gx\.

Now remember from the beginning of the proof that Go = CG(Z) < Gh(s, pk),
and clearly G\ < Go. Now as pk(/2 < | W\f/2 < \H\, by (7) we see that by choosing
p large, then also | d | must get large, and as \G\\ is large, then by Jordan's Theorem
as proved by Blichfeldt (see [3, Theorem 30.4]) also s gets large (as p does not
divide |G|). So we may choose K(T large enough such that for p > K(T we have

s > 200(F€ + C + 4000/e + 5)

and

Consider the case that \Z\ < \GX |€/64° and write W, = W n G,. Then we have

\G\ = \G/Z\ \Z\ < kFtQG^ln2 IG^I

and so, as it < |Z| (by Fermat's little theorem), we see that

\H/HX\ <

< F,C|G,r/32Oln2|G,| < ^ {

Next observe that we may assume that \HX\ > \G\ \e/i, because otherwise

^'* In2 \Gi\\Z\2

< F€C|G,|6/8+e/320ln2|G,| < F . q W J ^ ^ ^ l n ' d l V . I 2 ) ,

which for K(%T sufficiently large and p > K(j leads to a contradiction. Hence, for
p > KfJ, by Lemma 3.1 we have n(Hu Wt) < 2|WJ/mindGil^8, IGJI17160}. SO

together with Lemma 3.3 and our hypothesis we get

rrun{|Gi|€/8, |Gi|1/160} T

Thus altogether *(//W0 < |/////,|it(//i W) < |W|/7, and so we are done in this
case.
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It remains to consider the case that \Z\ > |G]|€/64°. As \Z\ < pk, we then have
|G,| < IZI640^ < p i a « / « , and so we obtain

1 si I ^* 1 17 /'•'I /"< I / I 2 I y-» I \ I ^71 ^ 17 /-H /-t 13 I ^ 1 2

\(j\ < kr(L\(j\\ym |Oi|j|Z| < r(C\Lr\\ \Z\

< F CpWOOk/ep2k < n(rog2F«+log2C+4000/€+2)*

Hence as | W\ =pskands > 200(F( + C + 4000/e + 5), we see that \G\ < ±|W|1/200,
and so k(U) < | | W|1/200 for all U < G. This concludes the proof of the theorem. •

4. The main result

We are now ready to prove the k(G VO-problem for large primes.

THEOREM 4.1. There is a constant K with the following property: If G is a finite
group and V is a finite faithful GF(p)G-module, where p is a prime not dividing \G\
such thatp > K, then k{GV) < | V|.

PROOF. Let (G, V) be a counterexample with |G|| V| minimal. It is routine to
show that we may assume that V is irreducible (see, for example, the proof of [11,
Theorem 4.8]).

Next suppose that G acts primitively on V. Let J < Gbe the product of F(G) and all
components of G which are not alternating groups of degree at least 10. Note that this
is the same J that is defined in the proof of [7, Proposition 2.8]. Put B = C c (7) < G.
Then as in the proof of [7, Proposition 2.8] we conclude that with e0 := 79/80 we
have |CV(g)| < I VT° for all geG-B.

Now suppose that B < G. First suppose that k(U) < | V|e'/2forall U < G, where
€\ = (1 — eo)/2 = 1/160. Let P be the goodness property of [11, Example 3.4 (a)].
Then by induction we have | V| > k(B V) = aP(B, V), and so [11, Remark 3.9] yields
k(GV) =aP(G, V) < | V|, contradicting our choice of G and V.

So now assume k(U) > \ V\e'/2 for some U < G, and assume the notation of
Theorem 3.5 and suppose that K > Hft. If K > K(u\, then as Jfc(GV) > | V| we
conclude by induction and Theorem 3.5 that G < F( V) in which case it is well known
that k(GV) < \V\. (This follows most easily from Knorr's early result that if there
is a v 6 V with CG(v) abelian, then k(G V) < \ V\, but for large p it is also not too
difficult to establish this using elementary estimates for k(G V).) This contradicts our
choice of G and V.

So now suppose that B — G. Hence./ = Z(G) =: Z, and so there are an/ e NU{0}
and n, e N (/ = 1, . . . , /) with «, > 10 for all i such that F*(G) = Z x X '=i Ann

 a n d

so if Go is the normalizer of all the components of G, then we have G/ Go ^ S< and
5i X Li Sn,. Let k e N be minimal such that \Z\ \ pk - 1 and let K = GF(pk).
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Then let Vo be as in the proof of Theorem 3.5, but this time, as G = CG(Z), we see by
[9, n, Hilfssatz 3.11] that k(GV) = k(GV0) and Z acts on Vo by scalar multiplication.

Assume that / > 2 and put s = [1/2], so I < s < I. Clearly we may assume that
E!=i "' ^ E L + i "i- Let 7 = Z x X L+i A"i ^ Go- Then as by [24] the least degree
of a faithful linear representation of the alternating group An over a field of positive
characteristic not dividing n is n — 1, we see that if X is an irreducible T-submodule
of Vo, then Vo is the direct sum of at least

dimy Vo T ^
> I l(n, - 1) =: m > 1dim* X J

irreducible 7-modules. Hence, by induction and Lemma 3.4, we conclude that

k(GV) = k(GVQ) < k(G/G0)k(G0/ T)k(TVo)

<k(G/G0)k(G0/T) . 2

mi

Now as k(G/ Go) < 2'"1 and k(G0/ T) < 2l Y\'M 2"'"1, we see that

t := 2k(G/G0)k(G0/T) < 22'
i=i i=i

As n, > 10 for all i, observe that (n,!)/2 > 2"i+5, and therefore

=|Z| n (~) - n
i=s+\ ^ ' i=s+l

Moreover as nt > 10 for all i, we also have 2m > E L i (n< + ^), and so for /> > 16 we
get pkim-l) > 24m~4 >22m> 2^'='(/"+3) > t, so that altogether &(G V) < | Vo| = I V|,
a contradiction.

Hence / < 1. If I = 0, then G = Z and clearly it(GV) < | V| in this case. So
/ = 1 and G < 5n, x Z < Sn, x V(pk). But then using induction and Lemma 2.2
(with S = 1) we easily obtain k(G V) < | V|, a contradiction. This concludes the case
that V is primitive.

So now assume that V is an imprimitive G-module. Hence we can write V =
VI © • • • © Vn for an n > 1 and subspaces V, such that G transitively permutes
the Vj and if H = NG( Vj), then Vj is a primitive (and thus irreducible) //-module.
Hence if N = Pl«€G / /* ' t n e n G / ^ ^ 5«- Define successively No = N and
N, = ^ , - i / Q . , (V,) for j = 1 n. Then

(8) HGV)<
1=1
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Clearly by induction &(N,K) < |Vj-| for all i, and also \Nt\ < \Vt\
2. Moreover,

k(G) < 2"-1 n;_, km-
Assume that we have k(U) < | V,|1/16/4 for all U < Nt for [31«/321 values of i.

Then for any U < G we have

F31n/321

v-|1 /8,

where the last inequality holds if p > K and K is chosen sufficiently large. So by
induction and Lemma 2.2 (with 8 = 1) we obtain A:(G V) < | V\, a contradiction.

Therefore there are at least n — (f31n/32] — 1) > n/32 values of i such that there
is a U,• < Nt with k(Ud > | Vj|1/16/4 > | V,11/32/2 (for large p). Let / c { 1 , . . . , n)
be the set of those indices i. In particular, [Â i | > | VI11/32/2, and as Vi is a primitive
faithful iVi-module, Theorem 3.5 applies. So let the notation (as far as possible) be as
in that lemma.

If Â i < F( Vj), then we are done by Lemma 2.3.
Hence by Theorem 3.5 there are two cases to consider:

(1) k{U) < |V,|1/200/forall £ / < # , ; or
(2) k(UVi) < im/Tforal l U < Nt with \U\ > | Vj|1/32/2,if/? > £1,32,7-.

Observe that Â , 5 Â i for all i, and so as / 5̂  0, Case (1) cannot occur. Hence
suppose (2) and put To = 232. Clearly \Nt\ > \U,\ > k(Ui) > | V,|1/32/2 for i e I.
Therefore, (8) yields

|Vi|—"'» 1 V| < | V | ,

contradicting our choice of (G, V). This final contradiction completes the proof of
the theorem. D
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