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ABSTRACT 

Periodic orbits in a fixed frame are constructed in the vicinity of non-
periodic solutions of the non perturbed problem. In a first phase, 
approximate initial conditions are found and in a second phase more 
accurate initial conditions obtained are used in order to check the 
periodic orbit by numerical integration of the three-body problem. Some 
peculiar solutions are found, for example, orbit with nearly zero 
angular momentum. A study of stability of periodic solutions is proposed 
with an approximation of the monodromy matrix 0 (T,o),not requiring 
numerical integration of the 6x6 variational linear system. Finally, 
some numerical problems of period determination are outlined. 

INTRODUCTION 

This paper refers to the' construction of solutions of period T of a non
linear integrable system disturbed by T-periodic or autonomous pertur
bation, leading to an implicit system for the initial state vector. The 
non-integrable and non-linear perturbed system may be related to a 
quasi-linear one by Taylor expansion near a reference orbit. Then we 
can obtain rigorous periodicity conditions (Roseau 1966). Suppose now 
that the generating solution verifies the unperturbed integrable system, 
thus it is a polyparametric family where time occurs explicitely. But 
if this orbit is T-periodic, then periodicity conditions are singular. 
It is the critical case as it has been studied by I. Stellmacher (1976, 
1977, 1979, 1981). Here a non-T-periodic solution is chosen to avoid 
singularities. It is the non critical case. The periodicity conditions 
lead to an implicit system for the initial state vector. For such a 
system solution series, relative to a small parameter of perturbation, 
exist if certain conditions are satisfied as demonstrated by Poincare' 
(1892). The method is semi-numerical; in a first step approximate 
initial conditions are found, in a second step more accurate conditions 
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are obtained by an iterative differential corrector. Finally to each 
particular non-T-periodic solution of the unperturbed system 
corresponds a T-periodic one of the perturbed motion. Therefore, a 
"polyparametric" family of T-periodic perturbed orbits is obtained. 

This method is applicable to various perturbed problems with simplifi
cation for Hamiltonian systems. Here, numerical investigations are made 
to the elliptical spatial restricted three-body problem for the Sun-
Jupiter system in a heliocentric (or planetocentric for lunar case) 
inertial frame. The generating orbit is an hyperbolic of parabolic 
comet.Later we will study capture orbits for these comets by this 
method. Several "curious" solutions are obtained: orbits almost 
rectilinear, near collisions, orthogonal to the orbit of the perturbing 
body, orbit of period T/k where k is an integer. A study of linear 
stability is proposed; the monodromy matrix is analytically approximated 
to avoid numerical integration of variational equations. Finally,some 
problems of period determination are outlined. 

We need analytical solutions for the variational system: 

1) of the unperturbed motion for a non T-periodic generating 
unperturbed orbit, to construct the periodic perturbed 
solution 

2) of the perturbed system with a T-periodic generating 
perturbed orbit for the linear stability analysis. 

We have analytical solutions for the unperturbed integrable system while 
for the perturbed non integrable system only an approximation is 
available. 

2. EQUATIONS 

The perturbed system has the form: 

x = X (x,t,E) , (1) 

and the unperturbed integrable system is 

z = X (z,t,o) , (2) 

where X(x,t,e) is a T-periodic function of time t satisfying certain 
regularity conditions with respect to the state vector x of R and to 
the small parameter e describing the perturbation (Roseau 1966). 
x (x ,t,e) represents the solution of (1) with initial state vector 
x(o) = x ; thus z(t) = x(z ,t,o) is the solution of the integrable 
unperturbed system (2) with starting vector z(o)=z ; we put x = z+6 , 
6 is the solution of the system written in the form: 
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0 = x'(t)0 + x'(t)e + F(@, t,e) (3) 

where the surlining symbol means that the derivatives are evaluated for 
(0,E) = (0,0) and where F(0,t,e) are the terms of order k 2 in the 
Taylor expansion of X(z+0,t,e) with respect to (G,e) near (0,0); we 
want to study now the existence and the characterization of T-periodic 
solutions of (1). 

3. PERIODICITY CONDITIONS 

We have to solve an implicit system for the starting vector x of the 
T-periodic solution of (1): 

x = X ( X Q , T, e) (4) 

that leads to the implicit system, for 0(o) = 0 , 
o 

AW* 0 = JT W*(s) Je'x'(s) + FF0 ( O , s,e),s,e]l ds 
0 0 ] E L o ( 

(5)J 

where W(t) is a nxn fundamental matrix solution of the joint variatio
nal unperturbed system relative to a non T-periodic generating solution 
z(t) of the unperturbed system (2). The symbol * means matricial tran
sposition and Au is U(T)-U(o); if we can solve the implicit system (5) 
for 0 , then we obtain the initial state vector x of the T-periodic 
solution of (1) by : x = z + 0 , z being a known vector; this system 

0 0 0 0 
(5) will be solved semi-numerically. 

4. APPROXIMATE INITIAL CONDITIONS 

We put 0 = 0 + (3 (Roseau 1966), where 0 satisfies the explixit 
~_ o o o 

system 

AW* 0 = JT W*(s) ex' (s) ds + W* (T) Az. (6) 
0 0 e 

As z(t) is non T-periodic, AW* is non singular, thus © is easily 
obtained from (6); the associated initial state vector x is z + © ; 
if z(t) is T-periodic (critical case) then AW* is singular (Szebehely 
1967) . 

5. MORE ACCURATE INITIAL CONDITIONS 

We now have to solve an implicit system for |3: 

AW* e = J T W*(s) F [0 (0 +3,s, e) ,s,e ] ds. (7) 
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This system has solutions provided that F satisfies certain conditions 
(Poincare 1892). |3 is obtained by an iterative differential corrector. 
For a hamiltonian system f* (t) is replaced by 4>* (t) E, where 3> (t) is 
a fundamental matrix solution of the unperturbed variational system 
relative to the generating orbit z(t), and E is the nxn matrix such 
that E = -I, I being the nxn unit matrix. 

6. LINEAR STABILITY ANALYSIS 

The linear stability of the periodic solution x(t) is related to the 
eigen values of the monodromy matrix, (Hennawi 1980, Wiesel 1980). This 
matrix is approximated by a time averaging; the approximation is an 
analytical expression of the components of x(o) and x(T) (for the 3-body 
restricted problem); therefore we dont need numerical integration of 
the variational system of the perturbed motion. 

7. APPLICATION TO THE RESTRICTED THREE-BODY PROBLEM 

For this particular case: n=6, (2) is the two-body problem, E is the 
mass of the disturbing body for the planetary case, and the mean motions 
ratio for the lunar case. The two primaries are the Sun and Jupiter, 
therefore T is Jupiter's period. 

Finally, to each hyperbolic or parabolic cometary orbit z(t) is asso
ciated a T-periodic solution x(t) of the three-body problem. It should 
be a capture orbit for only quasiperiodic solution x(t) if: 
1) x(- <») = z(- oo) , 2) x(T)-x(o) is small, 3) x(t) is linearly stable. 
Several kinds of periodic solutions are found: orbits of period T/k 
where k is an integer, with various inclinations and eccenctricities. 
For these orbits, the osculating elements change slowly with time near 
the mean elements. Other orbits are almost rectilinear and orthogonal 
to Jupiter's orbit. Their osculating elements drastically vary; but for 
these orbits the periodicity of the first approximation is good. 

Period determination 

Solutions of period slightly different from T can be obtained by the 
procedure below: by (6) we have an approximated state vector x and the 
corresponding osculating elements give a period T . Now, we apply (6) 
with this period T +T and so on; we have a series of periods: T , T. , 
..., T ; this series is convergent for some solution and we get by 
(7) an initial state vector x for a perturbed solution of the three-
body restricted problem of period T + T. 

Numerical investigations 

Many numerical investigations have been done for various generating non 
T-periodic orbits z (t). The numerical integration procedure of the 
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equations of motion have been performed by P. Rocher (Rocher, 1981). 
The differential corrector used to solve (8) is similar to that of 
Markellos (Markellos, 1980). For parabolic orbit we utilize Subbotin's 
formulae (Subbotin, 1968) to obtain an analytical expression for a 
fundamental solution of the variational equations of the two-body 
problem. 
The numerical results and further details will be published elsewhere. 
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