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1. Introduction

If X/F is a smooth projective variety over a finite field I of characteristic p > 0 and
X =X ®F, there is a cycle class map CH!(X) — H?(X, Q(i)) for £ # p from
the Chow group of codimension i cycles on X to étale cohomology. The image
of this map lies in the subspace of Hff(Y, Q,(i)) which is invariant under the natural
Galois action. In [T3], Tate conjectures that, in fact, this subspace is actually
generated by the image of this cycle class map.

This conjecture has been proven only in a very small number of special cases, e.g.
for divisors on Abelian varieties [T2], certain Fermat hypersurfaces [T1], and
non-supersingular or elliptic K3 surfaces [N, NO, ASD]. Here we will prove Tate’s
conjecture for codimension two cycles of ordinary cubic hypersurfaces in P°.
(A result of Illusie [I] shows that the set of ordinary cubic fourfolds is a dense open
set in the moduli space.)

The central idea of the proof is the construction of a lifting of the variety to
characteristic zero, where we can use the fact the Hodge conjecture is known for
this class of varieties. To be more precise, let X;/T be an ordinary cubic hypersurface
in P°. Let Xy be a lifting of X; to the Witt vectors W of F. An embedding W < C
then gives a complex cubic fourfold X. We thus have the following diagram:

Xy, ——s Xy —— X

| l |

SpeciF ——— SpecW <«—— SpecC
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where both squares are pullback diagrams. This produces natural vector space
isomorphisms

He(Xo, Qi) = Hy(Xc, Q) = Hp (Xe, Q@)D

between the étale cohomology of X, and the singular cohomology of X, tensored
with Q,.

However, this isomorphism is not generally compatible with the extra structure on
these cohomology groups. In particular, the Frobenius map on H2 (X, Q,(i)) does
not usually respect the Hodge structure on H, éi,g(X@, Q()) (even after tensoring with
Qe).

The proof of the Tate conjecture described here then begins by finding a special
lifting of X, which has the property that the Frobenius map acts as an endomorphism
of the rational Hodge structure of H, fing(X@, Q(2)). It has the additional property that
the subspace of H, fing(X@, @Q(2)) that is fixed under the action of Frobenius lies in the
(0,0) part of the Hodge structure. Since the Hodge conjecture is known for
codimesion 2 cycles on a cubic fourfold [Z], this implies that the Galois invariant
subspace of H* (X, Q4(2)) is generated by algebraic cycles.

Now let Xy be an arbitrary lifting of Xy to W. The de Rham cohomology of Xy
has a natural Hodge filtration and a semilinear Frobenius action induced by the
natural isomorphism with the crystalline cohomology of Xj. A lifting satisfying
the property described in the previous paragraph must at least have the property
that the Frobenius map preserves the Hodge filtration. (A general lifting will
not have this property.)

This lifting is then produced by constructing a ‘p-adic period map’ from the
universal deformation space of X, to a ‘period’ space that, loosely speaking,
parameterizes admissible filtrations that can be placed on the crystalline cohomology
of Xy. However, the construction of this period map is not as straightforward as it is
in Hodge theory. One constructs a p-divisible group P defined over F out of the
crystalline cohomology of Xj. The period map then arises as a map between the
universal deformation space of X, and the universal deformation space of P.
We can then use the fact that deformations of p-divisible groups are parameterized
(roughly) by the Hodge filtrations induced on their associated Dieudonneé
module [M].

Once the map is constructed, it is not too hard to show that it is isomorphism.
Now, p-divisible groups over a finite field can be written as a direct sum of a
connected part and an étale part. The desired lifting X, of Xy then corresponds
to the lifting of P that preserves this direct sum structure.

In fact more can be said. The connected and étale pieces of P are rigid (i.e they
have no non-trivial deformations), so deformations of P are entirely determined
by extension data. This gives a canonical group structure on the universal
deformation space of Xj. The required lifting of X; then corresponds to the origin
of this group structure. This is completely analogous to the situation described
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by Deligne and Illusie [DI] and Nygaard [N] for ordinary K3 surfaces. This is not
surprising, since the middle cohomology of a cubic fourfold looks very similar
to that of a K3 surface (its Hodge numbers are /%4 =hp*0 =0, p'3 =p3l =1,
and #>? = 21). In fact, the methods of this paper can be used to give another proof
of these results as well.

To conclude the proof of the Tate conjecture, one now only has to show that the
Frobenius map actually induces an endomorphism of the Hodge structure on
the rational cohomology of the complex cubic fourfold X associated to X,4,. This
follows by using the fact that complex cubic fourfolds have an associated
Kuga—Satake—Deligne Abelian variety and using an absolute Hodge cycles
argument as in [N].

2. Preliminaries

Let F denote a perfect field, 49 = F[[71, ..., ], and A = W([[ty, ..., t,]], where W
denotes the Witt vectors of . Let S = SpecA4 and Sy = SpecAy. Let ¢ denote a lifting
of the absolute Frobenius map oy on 4y to 4.

DEFINITION 2.1. An ¢-F-crystal on A4 is a triple (E, V, F), where

() Eisa ﬁmtely generated free 4-module.

2) V:E— E®QA/W is a nilpotent, integrable connection, where QA/W is the
module of p-adically complete differentials.

(3) F:0"(E,V)— (E,V)is a horizontal morphism which becomes an isomorphism
after tensoring with Q.

We can construct several useful filtrations on such a crystal. Let E¥) = ¢*E,
Ey=E® Ay, and E(()”) = E?” ® A;. We then define the filtrations:

MFEP = (x € EV: F(x) € p“E
M*EP = Im[M*EP — Eg’n,
NiE = {p7*F(x): x € MFEW)Y,
NiEy = Im[NxE — Ep),

where N Ej is an increasing filtration called the conjugate filtration on Ey and M* E®)
is a decreasing filtration. If we regard E, as a submodule of ao*Eg’ ) via the adjunction
map, we can also construct a Hodge filtration

Fill, = Eyn MFE?.

odge

The names for the Hodge and conjugate filtrations can be justified in the following
way. Let X be a smooth proper variety over Sy and let X be a lifting of Xj to S, (i.e.
X is smooth over S and Xo = X xg8p). Recall that we can construct the crystalline
cohomology groups (Xo/S) which have the property that H',(Xo/S)/

(HX
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(torsion) is a crystal over over 4 and there is a canonical isomorphism
H! . (Xo/S) = Hir(X/S). Note that this implies that the de Rham cohomology
of X depends only on its reduction mod p and that it inherits a Frobenius action
from H!_(Xo/S). We then have the following theorem, due to Mazur and

Ogus [O, 2.2

THEOREM 2.2 (Mazur, Ogus). Suppose that X is a smooth, proper variety over Sy,
that all the modules H! . (X,/S) are locally free, and that for every point s € Sy, the
Hodge to de Rham spectral sequence of X(s)/k(s) degenerates at E\. Then if we
let E = H!, (Xo/S) we obtain:

Filfyy g0 Eo = Filly, g0 H p(Xo/S0),
NiEy = Fil,”} Hp, p(X0/S0),

odge

where the filtrations on the right-hand side are the usual Hodge and conjugate
filtrations.
Let

gk EY = MFED /M*EY) and @ik By = NyEy/Ny_1 Eo.

Suppose that grk E? is a free 49 module for all k (i.e., the case 49 = ). We define
the Hodge numbers of E to be h' = rkygri, E?. Note that if we are in the situation

of Theorem 2.2, we have o*(Fily, 4, Eo) = MEY), so

' = 1K g, Filly g0 H g (X0/ S0)/ Fill g H r(X0/ S0)

= I‘kAOHnii(Xo, Qé{o/so)'

The set of the i’s which are non-zero are called the Hodge slopes of E. Define the
Hodge polygon of E to be the convex polygon is the plane whose left-most point
is the origin and which has slope i on the interval [A° + - + A1, 10 + ... + K]

Suppose we are in the case 49 = [F. Let K be the maximal unramified extension of
the fraction field of W(IF), let E be a crystal over 4, and let Ex = E® K. We
can regard Ex as a module over the noncommutative polynomial ring K[7T] with
o(x)T = Tx for x € K. It is then a classical theorem of Dieudonné and Manin that
Ex can be written uniquely as a direct sum of K[7]-modules:

EK = @?zlEr[,s,-v (1)

where r; > 0 and s; > 1 are integers, r;/s; < riy1/Siv1, 9oy i = rkx Ex and E, ; is the
module K[T]/(T° — p"). The numbers r;/s; are called the Newton slopes of E and
are said to occur with multiplicity s;. The Newton polygon of E is the convex polygon
in the plane whose left-most point is the origin and which has slope r;/s; over the
interval [s; + -+ s;_1, 51 + -+ 57].

In the case where E is an ordinary crystal (described below) over W, the Newton
slopes of E are actually integers and we can write the decomposition (1) over W
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itself rather than its fraction field. In this case we can define a filtration on E, called
the slope filtration, by Fi[ﬁlopeE = @;E,, 5, where r;/s; > i.
The following theorem was proven by Deligne and Illusie [DI, 1.3.2]

THEOREM 2.3 (Deligne, Illusie). Let E be a o-F-crystal over A such that
Ni1Ey/N:Ey is a free Ay-module for all i. Then the following conditions are
equivalent:

(1) The Newton and Hodge polygons of the crystal s* E induced by E at the closed point
s: Ay — T coincide.

(2) The Hodge and conjugate filtrations of Ey are opposed, i.e. Ey = N;Ey ® F ilgoldgeEg
for every i

(3) There exists a unique filtration of E by subcrystals

OcUicUyc---cU CUy;---

such that the Newton and Hodge polygons of U;and U;/ U, are constant for every i
and such that U; ® Ay = N;E

DEFINITION 2.4. We say a crystal E is ordinary if it satisfies any of the above
conditions. If X is a smooth projective variety over SpecA4, we say X is ordinary
if all of its crystalline cohomology groups are ordinary is the above sense.

THEOREM 2.5 (Newton-Hodge decomposition [K2]). Suppose E is a crystal on A.
Suppose that (a,b) € 7. x 7 is a break point of the Newton polygon at every point
of S, and that (a, b) lies on the Hodge polygon at every point of S. Then there exists
a unique subcrystal P of E, locally free of rank a, and a quotient crystal
Q = E/P locally free of rank r — a such that

— at every point of S, the Hodge (resp. Newton) slopes of P are the a smallest of the
Hodge (resp. Newton) slopes of E.

— at every point of S, the Hodge (resp. Newton) slopes of Q are the a largest of the
Hodge (resp. Newton) slopes of E.

Furthermore, when A = T, the exact sequence of crystals

0->P—->E—->Q0—0
admits a unique splitting.

THEOREM 2.6. Suppose that E and U; are as in Theorem 2.3 with gry Ey free
Ag-modules for all k. Let Q = E/U,;. Then the Hodge filtration on Qy is determined
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by the Hodge filtration on Ey, i.e.

-1k -1k
FllH()dgeEO —> FllH()dgEQO'

Proof. Tt is obvious from the definition of M* that M¥E — M*Q. which implies
that M*Ey — M*Q. This implies that the image of Filf;,;, Eo in Qo is contained
in Fill;{odgeQO'

On the other hand, the fact that gry, Ey is free implies that grX, Qg’) is free by [O,
1.6.2] which implies that M"E((]” ) is free for all kK and is in fact a direct summand
of E” (by induction, since M* is a finite filtration). But 0" Filly, 40 E0 = M*EY
and since o is faithfully flat, we must have that Fil’,‘,odgeEg is a direct summand
of Ey (c.f. [0, 1.12.1]).

Condition 2 of Theorem 2.3 and the fact that gry, E is free implies that gry, Qo is
free, which implies that Fil’,;odger is a direct summand of Qy, as above. Condition
2 then implies that FilzroldgeEo maps isomorphically onto Qp, which implies that
the image of each Filf,, deeE0 10 Qo 1s a direct summand. The theorem then follows
from comparing the Hodge numbers of £y and Qp and using the Newton—-Hodge
decomposition described in Theorem 2.5.

DEFINITION 2.7. Let E be a crystal over 4 and let FFE, be a filtration of
E, = E/p"*'E. We say that FFE, is an admissible filtration if each FXE, is a direct
summand of E, and if FKE, ® Ay = Filﬁ,odgeEo.

DEFINITION 2.8. A Dieudonné module over A4 is a crystal £ which possesses a
horizontal A4-linear map V: E — ¢*E which satisfies

FV = VF = multiplication by p

and whose Hodge filtration Fil' Ey C Ej is a direct summand. A filtered Dieudonné
module 1s a Dieudonné module endowed with an admissible filtration H C E.

Remark 2.9. This is equivalent to the definition given by De Jong(see [dJ, 2.5.2]).

The importance of Dieudonné modules for us is their connection to p-divisible
groups via the Dieudonné functor D from the category of p-divisible groups to
the category of Dieudonné modules. More specifically, we have the following
theorem:

THEOREM 2.10 (Bloch-Kato, de Jong). Assume char I # 2 and let S = SpecA and
So = SpecAy. Then the (covariant) Dieudonné functor 1D induces an equivalence
of categories between the category of p-divisible groups over Sy and the category
of Dieudonné modules over S and between the category of filtered Dieudonné modules
and p-divisible groups over S.
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Proof. The equivalence for Dieudonné modules is proven in [dJ, 4.1.1, 2.4.4, and
2.4.8.1]. The proof for filtered Dieudonné modules then follows from Messing’s
description of deformations of p-divisible groups in terms of the induced Hodge
filtration on their Dieudonné modules [M, V.1.6]. The restriction on the
characteristic of I arises because if char[F = 2, the ideal generated by p” in W does
not have nilpotent divided powers.

Remark 2.11. We will denote the inverse functor by M.

Remark 2.12. De Jong uses the contravariant Dieudonné functor as opposed to the
covariant functor in his paper, but this poses no difficulties (see [BBM, 5.3.3]).

Remark 2.13. For later use, we note that if G is a divisible group, then ID(G), fits
into the exact sequence:

0 — wg = D(G)) — Lie(G) — 0 2)

where Lie(G) is the Lie algebra of G and wg- is the group of invariant differentials of
the dual of G.

3. Deformation Theory

Let Xy be a cubic fourfold over a perfect field . In this section, we will describe the
formal moduli space parameterizing deformations of Xy to Artin local W-algebras.
In order to do this, we first need a few general facts about the cohomology of cubic
fourfolds.

THEOREM 3.1. Let X be a smooth cubic fourfold defined over an affine scheme S.
Then the de Rham cohomology H} (X /S) is torsion free with Hodge numbers:

Wt =nt"=0, WP =r'=1 r?=2L

Furthermore, the Hodge to de Rham spectral sequence degenerates at E).
Proof. This follows from [SGA7, Exposé II] and [R, section 2]. O

Remark 3.2. If X is a cubic fourfold over a perfect field, the above description of
the Hodge numbers implies that the only non-zero Hodge slopes of H. (X/W)
are 1, 2 and 3.

Let Ty denote the tangent space to X.

LEMMA 3.3. H(X,Qs|x(3)) = H*(P°, Q) if 0 <i < 4.
Consider the exact sequence of sheaves on P°:

0> 7Z=20ps(=3)— Ops > Oy = 0, 3)

https://doi.org/10.1023/A:1017532821467 Published online by Cambridge University Press


https://doi.org/10.1023/A:1017532821467

8 NORMAN LEVIN

where 7 is the ideal in P° which defines X. We can tensor this sequence with Q}S 3)to
get the long exact sequence:

— H'(P°,Q5(3)) > H'(X,Qs]x(3)) » HT'(P°, QL) > H™(P°, Q15(3))

]PS
“4)
But now H(P°, Qj]fﬁ (n)) = 0if i £ 0, 5and n # 0 (Bott Vanishing) so both ends of the
above exact sequence vanish. This proves the lemma. O

Let H(X, Q’;()pn-m denote the primitive part of H/(X, Q).
THEOREM 3.4. The cup product map induces an isomorphism
H'(X, Ty) = Hom(H' (X, Q). H* (X, Q})prim)-
Proof. 1t is sufficient to show that the natural pairing

H'(X, Ty)® H'(X, Q%) — H*(X, Q%

)prim

is an isomorphism. Since X is a cubic hypersurface in P°, we know that the canonical
bundle wy is isomorphic to Oy(—3), and the normal bundle N is isomorphic to
Ox(3). We can the write the normal bundle sequence as:

0—> Ty = Tpsly > N =0 (%)
and its dual
0 — Ox(=3) = Qusly - Qx' >0, (6)

where Ty and Tps p denote the tangent spaces of X and P> respectively. Taking
exterior powers of (6) and tensoring with Ox(3) then gives:

0= Qx> Q) [x(3) > Qx’(3) > 0. )

On the other hand we have the natural isomorphism Ty ® wy = Qg( which allows us
to write (7) as

0— Qx* — Qs|x(3) > Ty — 0. ®)

This, in turn, induces the long exact sequence

)
— H'(X,Q%51x(3)) — H'(X, Ty) > dHX(X, Q%) — H*(X,Q5]x(3)) —,

©)

where ¢ is induced by cup product with the extension class of (6) via its identification
with the extension class of (7).
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But now the previous lemma implies that

H'(X, Qs |x(3)) = HX (P, Q) =0, (10)

H(X, QL1 () = H(PF, 03 = T, (1)

so ¢ induces an isomorphism H'(X, Ty) = H*(X, Q% Since

)prim‘
Ext'(Q}, Ox(=3)) = Ext'(Oy, Tx(-3))
~ Ext!(Oy, Q3) =~ H'(X, Q3),

the theorem is proved.

THEOREM 3.5. Let X be a cubic fourfold over a field k. Then

1) H'X,Ty)=0
(2) rkeHY (X, Tx) =20
(3) H(X,Ty)=0,i>2

Proof. The Kodaira—Akizuk—Nakano vanishing theorem (which is valid for
hypersurfaces over an arbitrary field [SGA7]) implies that H(X,Qx*(—s5)) =0
for s > 0 and and i + k < 4. By Serre duality we have

H'(X, Ty) = H"(X,Qx' ® Ox(-3))

so H(X, Ty) =0if4—i+1 < 4,i.e.i > 1. This proves (3). (2) follows immediately
from Theorem 3.4, so it remains to show (1).
Consider the following classical exact sequences:

0— Ty — Tpsly = Ox(3) = 0, (12)

0 — Ops = Ops(1)® — Tps — 0. (13)

These sequences give relationships between the Euler characteristics y of the sheaves
involved as follows:

21X, Ty) = (X, Tpsly) — 1(X. Ox(3)), (14)
2P, Tos) = (P2, Ops(1)®) — 7(P°, Ops) (15)
= 6;(P°, Ops(1)) — 1(P°, Ops).

Twisting 13 also gives
1(P3, Tps(=3)) = 67(P°, Ops(=2)) — 7(P%, Ops(=3)). (16)

We want to use the sequence (3) to relate these two equations. If we tensor the
sequence (3) with Ops(3) we get:

21X, 0x(3)) = 1(P°, Ops(3)) — 2(IP°, Ops). (17)
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If we tensor (3) with T'»s we get

2(X, Tpsly) = 2(P°, Tps) — 7(P°, Tps(=3)). (18)

But now we can calculate these numbers by by using the fact that

H'(P°, 0ps(k)) =0if 0 <i <, (19)
5+k
2(P°, Ops(k)) = ( 5 ) (20)
Putting all this together implies that
(X, Ty) = —20. 21
But we know that rk; H'(X, Ty) = 20 if i = 1 and is equal to 0 if i > 1. This implies
that H(X, Ty) = 0. ]

From now on we will assume that X7y is a cubic fourfold over a perfect field . We
want to consider the formal moduli space of deformations of Xy to Artin rings over
W = W(IF), the Witt vectors of F. Since H(Xy, Ty,) = H*(Xr, Tx,) = 0, classical
deformation theory implies that there exists a smooth formal scheme S and a formal
scheme X — S such that any deformation X4 of Xy to an Artin W -algebra 4 is given
by pulling back & — & along a uniquely determined map Spec4 — S. Furthermore,
the tangent space Ts of S is isomorphic to H'(Xy, Ty,), so we can conclude:

COROLLARY 3.6. S = Spf W[[t1...t20]].

COROLLARY 3.7. The Kodaira—Spencer map induces isomorphisms.
Ts = H'(Xp, Ty,) = Hom(H' (X5, Q%) H* (X5, Q%) prim)-

Itis a bit inconvenient to work with formal schemes, and it turns out in this case we
don’t have to. Recall that the obstructions to lifting an ample line bundle from Xy to
X lives in H*(Xy, Oy,). Since Xj is a hypersurface in IP3, this cohomology group
vanishes, so any ample line bundle can be lifted. Grothendieck’s existence theorem
then tells us that X is algebraizable, i.e., that there is a formally smooth cubic
fourfold X — S = SpecW/[[t; ... ty]] with X = S xg X.

4. Construction of the Period Map

We will keep the notation of the previous section, but we will now assume that Xy is
ordinary. By definition, this means that H*  (Xy/W) is an ordinary crystal. We will
actually want to consider the primitive cohomology P*.(Xy/W), which is a
subcrystal of H* (Xp/W), and hence also ordinary. The Hodge polygon and the
Newton polygon of P?. (Xp/W) then coincide, so by Theorem 2.5 we can find a

subcrystal P C P*. (Xy/W) such that the Newton and Hodge slopes of P are equal

cris
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to 1 and a quotient crystal Q with all slopes > 1 which fit in the exact sequence:

0— P— P*

cris

Xp/W)— Q— 0. (14)

Furthermore, since I is perfect, this sequence splits canonically, so we can regard Q
as a subcrystal of P4, (Xp/W) in a natural way. Examination of the Hodge polygon
shows that rky P = 1 and rk;y Q = 21 with all slopes equal to 2 or 3. Thus the crystal
0(2) has all its slopes equal to 0 or 1, so by [O, 1.6.4] it must be a Dieudonné module.
So by Theorem 2.10, there is a unique p-divisible group Py over [ with
D(Pr) = 0(2).

Let 7 be the fine formal moduli space parameterizing deformations of Py to Artin
rings over W. This is isomorphic to SpfAd, where A = WI][t;...t50]] (where
20 = rkyHom(wps , Lie(Py))). We would like to show that the deformation theories
of Xy and Pp are the same. To do this we need to construct a ‘period map’
S — 7 and show it is an isomorphism. The categories of p-divisible groups over
SpecA and Spf A are equivalent [dJ, 2.4.4], so we can work in the category of schemes,
rather than formal schemes.

To construct a map, it is then sufficient to construct a p-divisible group P on S
which reduces to Py at the closed point. This would give a map S — T = SpecA4
(and henceamap S — 7). Let Sy = S ® . We will first construct a p-divisible group
Py over Sy with the required properties and then show that it lifts canonically to S.

Let Xo = X xs So. we want to repeat the above argument using P* . (X,/S). By the
base change theorems for crystalline cohomology, P?.(X,/S) specializes to
P* . (Xy/W) at the closed point of Sp, so P* . (Xo/S) is ordinary by Theorem 2.3.
Again by Theorem 2.3, we can write an exact sequence of crystals

0—>P —>pP*

i(X0/S) > O — 0, (23)
with P’ and Q' satisfying the same slope conditions as P and Q. By uniqueness, these
must pull back via the specialization map to P and Q. Just as before, Q(2) is a
Dieudonné module and there is a unique p-divisible group P, over Sy with
D(Py) = O(2)". (The fact that the Hodge filtration on Q(2); is a direct summand
follows from Theorem 2.6; see Theorem 4.4 below for more details.) Since the
Dieudonné functor commutes with base change, Py will specialize to Py at the closed
point of Sy.

In order to construct a p-divisible group over S, it suffices to put a Hodge filtration
on Q(2)'. To simplify notation, we will identify P*_(Xy/S) with P} (X /S) in (23),
i.e., we will regard P’ and Q' as a submodule and a quotient module respectively
of P}R(X/S). We begin with the following result.

LEMMA 4.1. Phx(X/S) = P' @ Fil3,

odge

Phr(X/S).
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Proof. Since all of the cohomology groups of X are free, and since the Hodge to
de Rham spectral sequence degenerates at E;, we know that

Ppr(X/S) ® Sy 22 Ph(Xo/So), (24)

1k
FllHodge

Pha(X/S)® S = Fil’;,adgeP}‘,R(Xg /80). (25)

Since P} (X /S) is ordinary, we know from Theorem 2.3 and Theorem 2.2 that the
theorem holds true mod p. Nakayama’s lemma then implies that

P+ Fil}, g4,

But now both P and Filf,,,,,Ppr(X/S) are direct summands of Pjp(X/S) with

Phr(Xo/S) = PHR(X/S).

rk P+ rk 4 Filly, 10, Ppp(X /S) = rk 4 Pl p(X/S).
so we must have

P NFil3,

adgeP%R(X/S) = @,

since it is true after tensoring with the fraction field of A. This proves the lemma. []

COROLLARY 4.2. The exact sequence (23) induces an isomorphism
Fil}, 0 Pr(X/S) = Q.

COROLLARY 4.3. The image of Fil};, 4, Ppr(X/S) in Q' is a direct summand.

Let H be the image of Fil}y, ., Phr(X/S) in Q' and let Hy denote its reduction mod
p. Since Fil},odgePﬁ)R(Xg/So) =0 for all i > 3, Theorem 2.6 implies that the entire
Hodge filtration on Q) is given by Q) D Hy D 0 with Fil3, 1ee@0 = Ho. Since twisting

by 2 lowers the Hodge slopes by 2, we then get that Fil,‘,odg(, 0(2) = H,. This proves:
THEOREM 4.4. H C Q(2) is an admissible filtration.

By Theorem 2.10, there exists a p-divisible group P over S with the property that
D(P) = Q(2). Furthermore, P has the property that it specializes to Py over the
closed point of S. We have finally proven:

THEOREM 4.5. There exists a map f:S — T.

THEOREM 4.6. The map S — T is smooth.
Proof. Tt is sufficient to show the induced map on tangent spaces is surjective.
Corollary 3.7 implies that the Kodaira—Spencer map induces an isomorphism

Ts = Hom(H' (X7, Q). H* (X7, Q),

rim)~

https://doi.org/10.1023/A:1017532821467 Published online by Cambridge University Press


https://doi.org/10.1023/A:1017532821467

THE TATE CONJECTURE FOR CUBIC FOURFOLDS 13

On the other hand, we have already mentioned that the tangent space 77 to 7 is
isomorphic to Hom(wp;, LiePy) But now the Dieudonné module 0(2) was
constructed in such a way that

wp: 2 Filly, 1, 0(2)g 22 Filyy, 0, PpR(Xw/F) 22 H' (X5, Q). (26)

LiePF = gr(l){odgeQ(z)O = grilodgeP“[.)R(XF/F) = HZ(XF’ Q%(W)prim)’ (27)

and so that the map S — 7 induces the now obvious map on tangent spaces. This
proves the theorem.

Remark 4.7. Tt is probably worth elaborating on what is really going on here. Let
X, be a deformation of Xy to the dual numbers Specl[¢] Since SpeclF < SpeclF[e]
is a divided power extension, there is a canonical isomorphism between
Php(X./Te]) and P} (Xy/Fle]) = P*. (Xp/ W) ® Fle], which implies that there is

a canonical isomorphism

Fill 40 Phr(X:/FleD) = 0(2), = 0(2) ® F[el.

Lemma 3.4 then implies that giving deformation X as above is equivalent to giving a
one step filtration on Q(2), which reduces to the usual filtration under the reduction
map.

On the other hand, a theorem of Messing [M, V.1.6] implies that giving a
deformation of Pr to Specl¢] is equivalent to putting an admissible filtration on

D(Pr) ® Fle] = 0(2),..

But now X, is given by a map f: Spec[F[¢] — S. If we pull back O(2)' via this map we
get an admissible filtration on Q(2), induced by the de Rham cohomology of X,
which gives us a deformation of Py to Speck[e]. But it is clear that this is exactly
the p-divisible group that arises by pulling back P along f. Since all possible
admissible filtrations occur in this manner, it is easy to see that the period map
induces a surjective map on tangent spaces, and hence must be a isomorphism.

THEOREM 4.8. There is a unique lift X q, of Xt to W with the property that that the
slope filtration on the crystalline cohomology group Hfm(Xyp/ W) agrees with the
Hodge filtration on de Rham cohomology group H}p(Xean/ W) via the canonical
isomorphism between the two cohomology theories.

Proof. Consider the p-divisible group Pr and its Dieudonné module [D(Pr) that we
constructed before. Q(2) is ordinary and only has Hodge slopes of 0 and 1, so by
Theorem 2.5 there are subcrystals M and N of Q(2) such that Q(2) = M & N, where
M has all Hodge slopes equal to 0 and N has all Hodge slopes equal to 1. This
decomposition corresponds to the splitting of Pp into a connected part

Pr.comn = M(M) and an étale part Pr . = M(N).
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We want to consider liftings of Py cony, and Py, to W. By Theorem 2.10, this is
equivalent to putting an admissible filtration on their Dieudonné modules, M
and N. But Fil},odgeMo =0 so the only possible admissible filtration on M is
Fil}y,40,M = 0. Similarly, Fil};,;,,No = No so the only admissible filtration on N
is Fil}{adgeN = N. Thus Py conn and Py ., have unique liftings to W, which we denote
by Peonn and P,, respectively.

Let Pean = Peonn @ Pe;. This is clearly a lifting of P with D(Py) = Q(2) and with
Fil};,4,,0(2) = N. On the other hand, by construction we have Fily,,,0(2) = N,
so the Hodge and slope filtrations coincide on Q(2). Since the Dieudonné functor
is an equivalence of categories, this is the only lifting of Py with this property.

Since the period map of Theorem 4.5 is an isomorphism, P, corresponds to a
unique cubic fourfold over W, which we denote by X.,. By construction, it
has the property that Fil}y,Hpr(Xean/ W) = Fil3y,,,Hpp(Xean/W). But now
FilyygeeHpr(Xean/ W) is the orthogonal complement of Fil}y, . .Hpr(Xean/ W) in
Hpp(Xean/W) under the cup product pairing, and Fily,,, Hpg(Xean/ W) is the
orthogonal complement to Fil;,apeHéR(Xw,,/W) in H} z(Xcan/W) under the cup
product pairing, so we have

Fil, Hpr(Xean/ W) = Fily,

slope odggHéR(Xt‘al‘l/ W)

Since both filtrations are three step filtrations with

Fill)yp Hb g Xean/ W) = Filly g Hp g (Xean/ W) = Hipp(Xean/ W)

odge
we are done. O

Remark 4.9. We can get a little more information out of our construction. One can
show that Pr comn = G,zn(?F and Py, = Q,/Z,. Both of these groups are rigid (i.e. they
have no nontrivial deformations), so the deformations of P, are entirely
determined by the possible extensions between them. This gives a canonical group
structure on 7, and hence on S. The canonical lift X, then corresponds to the unit
of this group structure, i.e the split extension.

Remark 4.10. There is analogous notion of a canonical liftings for Abelian
varieties. Suppose A is an ordinary Abelian variety over SpecZ/pZ. There is then
a unique lifting 4., of 4 to Spec W (7 /p7) which has the property that the Frobenius
map on H} p(Acan/ W) preserves the Hodge filtration (c.f. Katz’s appendix to [DI]).
By a result of Messing [M, Appendix, cor. 1.2], this is equivalent to having a lifting
of the Frobenius endomorphism to A..,. It is interesting to note that this can never
happen for cubic fourfolds.

THEOREM 4.11. Let Xy be a cubic fourfold over a perfect field F and let X be a lifting
of Xp to W. Then the Frobenius map on Xy admits no lifting to a map on X.
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Proof. By (9) and the isomorphism T, = QXN3(3) we see that H'(X, QXJ‘3(3)) # 0.
So X does not satisfy Bott Vanishing. Thus by [BT, theorem 3] Frobenius does not
lift.

Remark 4.12. It would follow from the Hodge conjecture for self products of cubic
fourfolds and Theorem 6.3, that the Frobenius map does lift to a correspondence (up
to homolgical equivalence) on X4, X X4 Since any lifting of Xy with this property
would also have the property that the Hodge and slope filtrations agree, this is
enough to characterize the cannonical lifting. In any case, one can show
(using [A, 1.5.3]) that the Frobenius map lifts to a ‘motivated’, hence absolute
Hodge, cycle on X,u X Xean.

Remark 4.13. Period maps analogous to the one constructed here can be
constructed under quite general circumstances. They exist for any ordinary variety
over a perfect field whose deformation space is sufficiently nice (smooth, for
example). In particular, one can perform this construction on ordinary K3 (where
the period map is again an isomorphism) surfaces and construct the canonical lift
of [DI, NJ using these techniques.

5. The Kuga—Satake—Deligne Abelian Variety

Let A be an integral domain and let V' be a free 4-module with a non-degenerate
quadratic form ¢g. Let C(}") denote the Clifford algebra of V" constructed with respect
to the quadratic form ¢ and let C* (V) denote the even part of the Clifford algebra.
Let CSpin(V) denote the Clifford group of V. This is the subgroup of invertible
elements g in C*(V) with the property that gVg~' = V, where V is regarded as
a subspace of C(V) via the natural inclusion.

We have two representations of CSpin(}) on C(V'), one given by multiplication on
the left, which we will denote by C(V),, and one given by conjugation, which we will
denote by C(V'),,;. Right multiplication is compatible with the action of CSpin(}') on
C(V), so we get the following isomorphism of representations:

THEOREM 5.1. Let A= C(V). Then C(V),; =2 End(C(V),) where C(V), is
regarded as a right A-module.

Proof. Send x € C(V),, to the element L, € Endc(y)(C(V),) corresponding to left
multiplication by x. O

If A4 is a field, then the action of CSpin(}’) by conjugation on ¥ induces a short
exact sequence

1 > G = CSpin(V) 5> SOV, q) — 1 (28)
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and the spinor norm N: CSpin(V) — G,, induces a map

1 — Spin(V) — CSpin(V) = Gy — 1, (29)

where #(x) = ﬁ
Now assume V is a free Z-module of rank n + 2 underlying a polarized Z-Hodge
structure of weight 0 such that:

(I) The Hodge structure on V is of type {(—1, 1), (0, 0), (1, —1)}.
(2) The index of the bilinear form underlying the polarization is (n+,2—)

Let S be the group C* regarded as a real algebraic group. We have maps
w: G, — S given by the natural inclusion and .S — G, given by the inverse to
the norm. The Hodge structure on V' then gives a map : S — SO(V, g).

We have the following theorem of Deligne [D, 4.2-4.3]:

THEOREM 5.2 (Kuga—Satake-Deligne). For V satisfying the above conditions,
there is a unique map p:S — CSpin(VR) such that mop =h and such that the
following diagram commutes:

Gm w S w Gm

o =

Gn wo CSpin(Vy) ~+ Gy
(Note: m is the map defined in (28).)
The map p then induces a polarizable Hodge structure of type {(0, 1), (1, 0)} on
C(V),, which in turn defines a complex Abelian variety 4 of dimension 2"+! (called

the Kuga—Satake Abelian variety) with the property that H'(4, Z) = C(V), [D, 2.8].
Substituting in (5.1) then gives the following isomorphism of Hodge structures:

2n+2 i

CMay =P \ V = Enda(H' (4. 2)). (31)
i=0

(We again take A= C(V).) Furthermore, right multiplication of C(V), by A
preserves the Hodge structure, which gives A C End(4).

Remark 5.3. The Abelian variety constructed here is actually isogenous to the
product of two copies of the Abelian variety constructed by Deligne (see [A, 4.1.3])

6. The Tate Conjecture

Let X, be an ordinary cubic fourfold over the finite field Iy, and X, is its canonical
lift to W. Let K, be the fraction field of W and fix an embedding Ky — C with the
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property that Ky = C. This embedding lets us associate a complex cubic fourfold X
to X.sn. We can then apply the results of the previous section to get an Abelian
variety A.., with the property that H' (A4 .,, Q) = CP*( X, Q(2)) as Q-vector spaces.
Furthermore, our choice of embedding enables us to assume that 4., is defined over
some finite extension K of Kj.

Let A= CP*Xc, Q(2)) and A, = CP*(X¢, Q(2)) ® Q,. Applying the results of
the previous section gives us isomorphisms

® /\ P*(Xc, 02)) = End4(H" (Aean, ©)) C H*(Acan X Acans Q) (32)

as Hodge structures. This isomorphism is actually induced by an absolute Hodge
cycle (see [A, 1.7.1 and 4.1.3]), which gives the isomorphism of Gal/(K/K)-modules:

@ /\Pjt(XCv Qé(z)) = EndAg(Hgt(Acanv QZ)) C H?[(Acan X Acan» QZ) (33)

after possibly replacing K by a finite extension.

THEOREM 6.1 (Deligne). A.., has potentially good reduction.

Proof. Let I C Gal(K/K) be the inertia subgroup and choose £ to be prime to the
characteristic of the residue field of K. Since X, is smooth, we know (by
Grothendieck’s monodromy theorem) that I acts trivially on P* (X, Q,(2)). The
isomorphism (33) then implies that 7 acts trivially on End 4, (H] (4, Qy)).

Since A, € Endg(A4.q,) (see[A, 6.51]), the action of A, on Hjt(Aam, Q) commutes
with the Galois action. So each element g €  is an element in End 4,(H] (4, Q;)) and
hence can be regarded as acting on H!,(Acqn, Q) by left multiplication by an element
of CP%(X¢, Qy(2)). Since I acts trivially on End 4,(H},(4, Q,)), we can even assume
that g acts by an element in the center of CP#(X¢, Q(2)).

But Grothendieck’s monodromy theorem says that there is a subgroup of finite
index I; C I such that the action of I on H L}t(Aam, Q) is unipotent. Since the center
of CP?I(X@, @Q,(2)) is a field and thus contains no non-trivial unipotent elements,
it follows that /; must act trivially on H;,(Am, Q). Thus we can replace K by a
finite extension which will insure that the action of the inertia group on
H(},(A(,an, @Q,) is trivial, which is enough to insure that A.,, has good reduction. []

Assume K is large enough to insure that 4.,, has good reduction and let 4y denote
the reduction.

Remark 6.2. Using [A, 9.3.1], one can show that 4., has good reduction, not just
potentially good reduction.

THEOREM 6.3. End(4¢)®Q C End(A4¢4n)®@Q

Proof. Let CP!(Xc, Q,(2)) = A,, where p = charl,. PH(Xc, Qy(2)) is even
dimensional, so CP#(X¢, Q,(2)) is a simple ring. Thus, there is a unique simple left
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CP* (X, Q,(2))-module M up to isomorphism. The structure theorem for simple
rings then implies that there exists a division algebra D C CP?,(X c» Q,(2)) such that

CPjI(XC7 Qp(z)) = El’ldD(M)

as (Q,-algebras and
CP(Xc, Q,2) = &M

as left CP (X, Q,(2))-modules. Substituting in (5.1) then gives the isomorphism
Endp(M) = End 4 (@ M), (34)

where the map is given by g — @g. If we then use the isomorphism H,(4 Q) =
CP! (X, Q,(2)) the above equation becomes

EndD(M) = EndAp (Hgl(Acanv Qp)) (35)

Now suppose g € Gal(K/K). A, C Endg(Acan) so the action of g on H.(Acan, Q)
commutes with the action of .4, and thus gives rise to an element
gu € Endp(M). This gives a Galois action (via conjugation) on Endp(M) which
makes (35) an isomorphism of Galois modules. The diagonal map

A:Endp(M) —End(®&M) (36)

given by gy — Dgy then induces a Galois module structure on End(@M) which
makes the square:

Endp(M) —> End A, (H (Aean, Q)

Al l (37)

End(@M) —>  End(H(Awn, Q)

a commutative diagram of Galois modules.
This tells us that

End(H},(Acan, Q))) = End(®M) = & @ End(M) = &CPL(Xc, Q,(2)
as Galois modules. But we also know that
End(H; (Aeans Qp)) = Hy(Acans Q) ® H}(Acan, Q,)(1)
and
CPl(Xc, Q)(2) = @ A P(Xc, Q,)(2)
as Galois modules so we get the isomorphism
H}((Acans Q) ® H(Acan, Qp)(1) = & 2 A PY(Xe, Q,(2). (38)

Recall that Fontaine has constructed a functor from a subcategory of the category of
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p-adic Gal(K/K)-representations to a subcategory of the category of filtered
K-vector spaces endowed with a Frobenius action. When this functor is applied
to the étale cohomology of an algebraic variety Y over K with good reduction,
its output is the de Rham cohomology of Y with the induced Frobenius action. This
functor is compatible with direct sums and all tensor constructions, so when it is
applied to (38) we get

Hpp(Acan/ K) ® Hpp(Acan/ K)(1) = & o A Hipp(Xean ® K/K)(2). (39)

This isomorphism preserves the natural filtrations on both sides and the natural
Frobenius action induced by crystalline cohomology.

Since we know that H} (X ,u, ® K/K)(2) has the property that the Hodge filtration
coincides with the slope filtration, we must have that the same property holds for
>0 A H} o(Xean ® K/K)(2) and hence for

Hpp(Acan/K) ® Hpp(Acan/ K1) C Hpp(Acan X Acan/ K)(1D).
But now every endomorphism of 4, gives rise to an element in

Fil!

slopengis(Acan X Acan/W)

(Frobenius acts by multiplication by p), so it must live in
Flrodee Hpr(Acan X Acan/ K).

Since every cycle on 4y x Ay whose image in H%R(Amn X Aean/K) 1s in
Ftoaee Hi(Acan X Acan/ K)

has some multiple that lifts to A.u, X Acan by [BO2, 3.8], we have proven the
theorem. 0

COROLLARY 6.4. 4., is of CM-type.

THEOREM 6.5. The Tate conjecture holds for ordinary cubic fourfolds over I,
Proof. As a consequence of the Tate and Hodge conjectures for Abelian varieties
we have

End(4ean) ® Q = End(H' (Acan, O)*”, (40)

End(4p) ® Q; 2 End(H,), (4o, Q)7 "e/T0)

_ 41)
= End(H;[ (A cans QZ))Gal(K/K)

where the endomorphisms on the right-hand side are those preserving the Hodge
structure and the Galois-module structure respectively.
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So the previous theorem tells us that

End(H (A an, ) KI5 ¢ End(H" (A an, 0) 000,

So every Galois invariant class in End(H (},(Amn, Qy)) comes from a Hodge class in
End(H'(Acan, Q)). But we have

P(Xc, 02)) = End(H' (4ean, Q) (42)

Pl (Xc, Qp(2) —End(H! (A can, Qp)) (43)

which preserve the appropriate structures. Thus since all of the Galois invariant
classes of End(HL},(Am, Q,)) come from Hodge classes, the same must be true
for P*(Xc, Q(2)). But we know that the Hodge conjecture is true for cubic
fourfolds [Z], so these classes must correspond to algebraic cycles. O

Remark 6.6. The proof of the Tate conjecture in this section only requires the
existence of a canonical lifting of the variety from I'y to W(IF,), the existence of
a suitable Kuga—Satake variety (see [A] for other examples of varieties with this
property), and the truth of the Hodge conjecture for the lifted variety. In particular,
the same proof works for ordinary K3 surfaces. Theorem 6.5 also implies the Tate
conjecture for divisors on the Fano variety of a ordinary cubic fourfold (see, for
instance, [A]).

Remark 6.7. The Tate conjecture for cubic fourfolds over a finitely generated field
of characteristic zero was proved in [A].
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