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Abstract. We prove theTate conjecture for codimension 2 cycles on an ordinary cubic fourfold
over a ¢nite ¢eld. The proof involves the construction of canonical coordinates on the formal
deformation space via a crystalline period map.

Mathematics Subject Classi¢cations (2000). 14-XX, 11-XX.

Key words. Tate conjecture, algebraic cycles, canonical coordinates, period maps

1. Introduction

If X=F is a smooth projective variety over a ¢nite ¢eld F of characteristic p > 0 and
X � X 
 F, there is a cycle class map CHi�X � ! H2i

et �X ;Q`�i�� for ` 6� p from
the Chow group of codimension i cycles on X to ëtale cohomology. The image
of this map lies in the subspace of H2i

et �X ;Q`�i�� which is invariant under the natural
Galois action. In [T3], Tate conjectures that, in fact, this subspace is actually
generated by the image of this cycle class map.

This conjecture has been proven only in a very small number of special cases, e.g.
for divisors on Abelian varieties [T2], certain Fermat hypersurfaces [T1], and
non-supersingular or elliptic K3 surfaces [N, NO, ASD]. Here we will prove Tate's
conjecture for codimension two cycles of ordinary cubic hypersurfaces in P5.
(A result of Illusie [I] shows that the set of ordinary cubic fourfolds is a dense open
set in the moduli space.)

The central idea of the proof is the construction of a lifting of the variety to
characteristic zero, where we can use the fact the Hodge conjecture is known for
this class of varieties. To be more precise, letX0=F be an ordinary cubic hypersurface
in P5. Let XW be a lifting of X0 to the Witt vectors W of F. An embedding W ,!C
then gives a complex cubic fourfold XC. We thus have the following diagram:

X0 ÿÿÿÿ! XW  ÿÿÿÿ XC???y ???y ???y
SpecF ÿÿÿÿ! SpecW  ÿÿÿÿ SpecC
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where both squares are pullback diagrams. This produces natural vector space
isomorphisms

H2i
et �X 0;Q`�i�� � H2i

et �XC;Q`�i�� � H2i
sing�XC;Q�i��
Q`

between the ëtale cohomology of X0 and the singular cohomology of XC tensored
with Q`.

However, this isomorphism is not generally compatible with the extra structure on
these cohomology groups. In particular, the Frobenius map on H2i

et �X0;Q`�i�� does
not usually respect the Hodge structure onH2i

sing�XC;Q�i�� (even after tensoring with
Q`).

The proof of the Tate conjecture described here then begins by ¢nding a special
lifting ofX0 which has the property that the Frobenius map acts as an endomorphism
of the rational Hodge structure ofH4

sing�XC;Q�2��. It has the additional property that
the subspace of H4

sing�XC;Q�2�� that is ¢xed under the action of Frobenius lies in the
�0; 0� part of the Hodge structure. Since the Hodge conjecture is known for
codimesion 2 cycles on a cubic fourfold [Z], this implies that the Galois invariant
subspace of H4

et�X0;Q`�2�� is generated by algebraic cycles.
Now let XW be an arbitrary lifting of X0 to W . The de Rham cohomology of XW

has a natural Hodge ¢ltration and a semilinear Frobenius action induced by the
natural isomorphism with the crystalline cohomology of X0. A lifting satisfying
the property described in the previous paragraph must at least have the property
that the Frobenius map preserves the Hodge ¢ltration. (A general lifting will
not have this property.)

This lifting is then produced by constructing a `p-adic period map' from the
universal deformation space of X0 to a `period' space that, loosely speaking,
parameterizes admissible ¢ltrations that can be placed on the crystalline cohomology
of X0. However, the construction of this period map is not as straightforward as it is
in Hodge theory. One constructs a p-divisible group P de¢ned over F out of the
crystalline cohomology of X0. The period map then arises as a map between the
universal deformation space of X0 and the universal deformation space of P.
We can then use the fact that deformations of p-divisible groups are parameterized
(roughly) by the Hodge ¢ltrations induced on their associated Dieudonnë
module [M].

Once the map is constructed, it is not too hard to show that it is isomorphism.
Now, p-divisible groups over a ¢nite ¢eld can be written as a direct sum of a
connected part and an ëtale part. The desired lifting Xcan of X0 then corresponds
to the lifting of P that preserves this direct sum structure.

In fact more can be said. The connected and ëtale pieces of P are rigid (i.e they
have no non-trivial deformations), so deformations of P are entirely determined
by extension data. This gives a canonical group structure on the universal
deformation space of X0. The required lifting of X0 then corresponds to the origin
of this group structure. This is completely analogous to the situation described
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by Deligne and Illusie [DI] and Nygaard [N] for ordinary K3 surfaces. This is not
surprising, since the middle cohomology of a cubic fourfold looks very similar
to that of a K3 surface (its Hodge numbers are h0;4 � h4;0 � 0, h1;3 � h3;1 � 1,
and h2;2 � 21). In fact, the methods of this paper can be used to give another proof
of these results as well.

To conclude the proof of the Tate conjecture, one now only has to show that the
Frobenius map actually induces an endomorphism of the Hodge structure on
the rational cohomology of the complex cubic fourfold XC associated to Xcan. This
follows by using the fact that complex cubic fourfolds have an associated
Kuga^Satake^Deligne Abelian variety and using an absolute Hodge cycles
argument as in [N].

2. Preliminaries

Let F denote a perfect ¢eld, A0 � F��t1; :::; tn��, and A �W ��t1; :::; tn��, where W
denotes the Witt vectors of F. Let S � SpecA and S0 � SpecA0. Let s denote a lifting
of the absolute Frobenius map s0 on A0 to A.

DEFINITION 2.1. An s-F -crystal on A is a triple �E;r;F �, where
(1) E is a ¢nitely generated free A-module.
(2) r:E ! E 
bOA=W is a nilpotent, integrable connection, where bOA=W is the

module of p-adically complete di¡erentials.
(3) F : s��E;r� ! �E;r� is a horizontal morphism which becomes an isomorphism

after tensoring with Q.

We can construct several useful ¢ltrations on such a crystal. Let E�p� � s�E,
E0 � E 
 A0, and E�p�0 � E�p� 
 A0. We then de¢ne the ¢ltrations:

MkE�p� � fx 2 E�p�:F �x� 2 pkEg;
MkE�p�0 � Im�MkE�p� ! E�p�0 �;
NkE � fpÿkF �x�: x 2MkE�p�g;
NkE0 � Im�NkE ! E0�;

whereNkE0 is an increasing ¢ltration called the conjugate ¢ltration onE0 andMkE�p�

is a decreasing ¢ltration. If we regard E0 as a submodule of s0�E
�p�
0 via the adjunction

map, we can also construct a Hodge ¢ltration

FilkHodgeE0 � E0 \MkE�p�0 :

The names for the Hodge and conjugate ¢ltrations can be justi¢ed in the following
way. Let X0 be a smooth proper variety over S0 and let X be a lifting of X0 to S, (i.e.
X is smooth over S and X0 � X �S S0). Recall that we can construct the crystalline
cohomology groups Hi

cris�X0=S� which have the property that Hi
cris�X0=S�=
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�torsion� is a crystal over over A and there is a canonical isomorphism
Hi

cris�X0=S� � Hi
DR�X=S�. Note that this implies that the de Rham cohomology

of X depends only on its reduction mod p and that it inherits a Frobenius action
from Hi

cris�X0=S�. We then have the following theorem, due to Mazur and
Ogus [O, 2.2]:

THEOREM 2.2 (Mazur, Ogus). Suppose that X0 is a smooth, proper variety over S0,
that all the modules Hi

cris�X0=S� are locally free, and that for every point s 2 S0, the
Hodge to de Rham spectral sequence of X�s�=k�s� degenerates at E1. Then if we
let E � Hn

cris�X0=S� we obtain:

FilkHodgeE0 � FilkHodgeH
n
DR�X0=S0�;

NkE0 � FilconnÿkH
n
DR�X0=S0�;

where the ¢ltrations on the right-hand side are the usual Hodge and conjugate
¢ltrations.

Let

grkME�p�0 �MkE�p�0 =M
k�1E�p�0 and grkNE0 � NkE0=Nkÿ1E0:

Suppose that grkME�p� is a free A0 module for all k (i.e., the case A0 � F). We de¢ne
the Hodge numbers of E to be hi � rkFgriME�p�. Note that if we are in the situation
of Theorem 2.2, we have s��FiliHodgeE0� �MiE�p�0 , so

hi � rkA0Fil
i
HodgeH

n
DR�X0=S0�=Fili�1HodgeH

n
DR�X0=S0�

� rkA0H
nÿi�X0;O

i
X0=S0
�:

The set of the i's which are non-zero are called the Hodge slopes of E. De¢ne the
Hodge polygon of E to be the convex polygon is the plane whose left-most point
is the origin and which has slope i on the interval �h0 � � � � � hiÿ1; h0 � � � � � hi�.

Suppose we are in the case A0 � F. Let K be the maximal unrami¢ed extension of
the fraction ¢eld of W �F�, let E be a crystal over A, and let EK � E 
 K. We
can regard EK as a module over the noncommutative polynomial ring K �T � with
s�x�T � Tx for x 2 K . It is then a classical theorem of Dieudonnë and Manin that
EK can be written uniquely as a direct sum of K �T �-modules:

EK � �n
i�1Eri;si ; �1�

where ri > 0 and si > 1 are integers, ri=si W ri�1=si�1,
Pn

i�1 si � rkKEK and Er;s is the
module K�T �=�Ts ÿ pr�. The numbers ri=si are called the Newton slopes of E and
are said to occur with multiplicity si. The Newton polygon of E is the convex polygon
in the plane whose left-most point is the origin and which has slope ri=si over the
interval �s1 � � � � � siÿ1; s1 � � � � � si�.

In the case where E is an ordinary crystal (described below) over W , the Newton
slopes of E are actually integers and we can write the decomposition (1) over W
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itself rather than its fraction ¢eld. In this case we can de¢ne a ¢ltration on E, called
the slope ¢ltration, by FilislopeE � �jErj ;sj , where rj=sj X i.

The following theorem was proven by Deligne and Illusie [DI, 1.3.2]

THEOREM 2.3 (Deligne, Illusie). Let E be a s-F-crystal over A such that
Ni�1E0=NiE0 is a free A0-module for all i. Then the following conditions are
equivalent:

(1) The Newton and Hodge polygons of the crystal s�E induced by E at the closed point
s:A0 ! F coincide.

(2) The Hodge and conjugate ¢ltrations of E0 are opposed, i.e. E0 � NiE0 � Fili�1HodgeE0

for every i
(3) There exists a unique ¢ltration of E by subcrystals

0 � U1 � U2 � � � � � Ui � Ui�1 � � �

such that the Newton and Hodge polygons of Ui and Ui=Ui�1 are constant for every i
and such that Ui 
 A0 � NiE0

DEFINITION 2.4. We say a crystal E is ordinary if it satis¢es any of the above
conditions. If X0 is a smooth projective variety over SpecA0 we say X0 is ordinary
if all of its crystalline cohomology groups are ordinary is the above sense.

THEOREM 2.5 (Newton^Hodge decomposition [K2]). Suppose E is a crystal on A.
Suppose that �a; b� 2 Z�Z is a break point of the Newton polygon at every point
of S, and that �a; b� lies on the Hodge polygon at every point of S. Then there exists
a unique subcrystal P of E, locally free of rank a, and a quotient crystal
Q � E=P locally free of rank rÿ a such that

^ at every point of S, the Hodge (resp. Newton) slopes of P are the a smallest of the
Hodge (resp. Newton) slopes of E.

^ at every point of S, the Hodge (resp. Newton) slopes of Q are the a largest of the
Hodge (resp. Newton) slopes of E.

Furthermore, when A � F, the exact sequence of crystals

0! P! E ! Q! 0

admits a unique splitting.

THEOREM 2.6. Suppose that E and Ui are as in Theorem 2.3 with grNkE0 free
A0-modules for all k. Let Q � E=Ui. Then the Hodge ¢ltration on Q0 is determined
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by the Hodge ¢ltration on E0; i.e.

FilkHodgeE0!! FilkHodgeQ0:

Proof. It is obvious from the de¢nition of Mk that MkE !!MkQ. which implies
that MkE0!!MkQ0. This implies that the image of FilkHodgeE0 in Q0 is contained
in FilkHodgeQ0.

On the other hand, the fact that grNkE0 is free implies that grkMQ�p�0 is free by [O,
1.6.2] which implies that MkE�p�0 is free for all k and is in fact a direct summand
of E�p�0 (by induction, since Mk is a ¢nite ¢ltration). But s�FilkHodgeE0 �MkE�p�0
and since s is faithfully £at, we must have that FilkHodgeE0 is a direct summand
of E0 (c.f. [O, 1.12.1]).

Condition 2 of Theorem 2.3 and the fact that grNkE0 is free implies that grNkQ0 is
free, which implies that FilkHodgeQ0 is a direct summand of Q0, as above. Condition
2 then implies that Fili�1HodgeE0 maps isomorphically onto Q0, which implies that
the image of each FilkHodgeE0 in Q0 is a direct summand. The theorem then follows
from comparing the Hodge numbers of E0 and Q0 and using the Newton^Hodge
decomposition described in Theorem 2.5.

DEFINITION 2.7. Let E be a crystal over A and let FkEn be a ¢ltration of
En � E=pn�1E. We say that FkEn is an admissible ¢ltration if each FkEn is a direct
summand of En and if FkEn 
 A0 � FilkHodgeE0.

DEFINITION 2.8. A Dieudonnë module over A is a crystal E which possesses a
horizontal A-linear map V :E ! s�E which satis¢es

FV � VF � multiplication by p

and whose Hodge ¢ltration Fil1E0 � E0 is a direct summand. A ¢ltered Dieudonnë
module is a Dieudonnë module endowed with an admissible ¢ltration H � E.

Remark 2.9. This is equivalent to the de¢nition given by De Jong(see [dJ, 2.5.2]).

The importance of Dieudonnë modules for us is their connection to p-divisible
groups via the Dieudonnë functor D from the category of p-divisible groups to
the category of Dieudonnë modules. More speci¢cally, we have the following
theorem:

THEOREM 2.10 (Bloch^Kato, de Jong). Assume char F 6� 2 and let S � SpecA and
S0 � SpecA0. Then the (covariant) Dieudonnë functor D induces an equivalence
of categories between the category of p-divisible groups over S0 and the category
of Dieudonnë modules over S and between the category of ¢ltered Dieudonnë modules
and p-divisible groups over S.
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Proof. The equivalence for Dieudonnë modules is proven in [dJ, 4.1.1, 2.4.4, and
2.4.8.1]. The proof for ¢ltered Dieudonnë modules then follows from Messing's
description of deformations of p-divisible groups in terms of the induced Hodge
¢ltration on their Dieudonnë modules [M, V.1.6]. The restriction on the
characteristic of F arises because if charF � 2, the ideal generated by pn in W does
not have nilpotent divided powers.

Remark 2.11. We will denote the inverse functor by M.

Remark 2.12. De Jong uses the contravariant Dieudonnë functor as opposed to the
covariant functor in his paper, but this poses no dif¢culties (see [BBM, 5.3.3]).

Remark 2.13. For later use, we note that if G is a divisible group, then D�G�0 ¢ts
into the exact sequence:

0! oG� !D�G�0! Lie�G� ! 0 �2�
where Lie�G� is the Lie algebra of G and oG� is the group of invariant differentials of
the dual of G.

3. Deformation Theory

Let XF be a cubic fourfold over a perfect ¢eld F. In this section, we will describe the
formal moduli space parameterizing deformations of XF to Artin local W -algebras.
In order to do this, we ¢rst need a few general facts about the cohomology of cubic
fourfolds.

THEOREM 3.1. Let X be a smooth cubic fourfold de¢ned over an af¢ne scheme S.
Then the de Rham cohomology H4

DR�X=S� is torsion free with Hodge numbers:

h0;4 � h4;0 � 0; h1;3 � h3;1 � 1; h2;2 � 21:

Furthermore, the Hodge to de Rham spectral sequence degenerates at E1.
Proof. This follows from [SGA7, Exposë II] and [R, section 2]. &

Remark 3.2. If X is a cubic fourfold over a perfect ¢eld, the above description of
the Hodge numbers implies that the only non-zero Hodge slopes of H4

cris�X=W �
are 1, 2 and 3.

Let TX denote the tangent space to X .

LEMMA 3.3. Hi�X ;O3
P5 jX �3�� � Hi�1�P5;O3

P5 � if 0 < i < 4:
Consider the exact sequence of sheaves on P5:

0! I � OP5�ÿ3� ! OP5 !OX ! 0; �3�
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where I is the ideal inP5 which de¢nesX . We can tensor this sequence with Oi
P5 �3� to

get the long exact sequence:

! Hi�P5;O3
P5 �3�� ! Hi�X ;O3

P5 jX �3�� ! Hi�1�P5;O3
P5� ! Hi�1�P5;O3

P5 �3��
�4�

But nowHi�P5;Oj
P5�n�� � 0 if i 6� 0; 5 and n 6� 0 (Bott Vanishing) so both ends of the

above exact sequence vanish. This proves the lemma. &

Let Hi�X ;Oj
X �prim denote the primitive part of Hi�X ;Oj

X �.

THEOREM 3.4. The cup product map induces an isomorphism

H1�X ;TX � � Hom�H1�X ;O3
X �;H2�X ;O2

X �prim�:

Proof. It is suf¢cient to show that the natural pairing

H1�X ;TX � 
H1�X ;O3
X � ! H2�X ;O2

X �prim
is an isomorphism. Since X is a cubic hypersurface inP5, we know that the canonical
bundle oX is isomorphic to OX �ÿ3�, and the normal bundle N is isomorphic to
OX �3�. We can the write the normal bundle sequence as:

0! TX ! TP5 jX !N ! 0 �5�

and its dual

0!OX �ÿ3� ! O1
P5 jX ! OX

1! 0; �6�

where TX and TP5=F denote the tangent spaces of X and P5 respectively. Taking
exterior powers of (6) and tensoring with OX �3� then gives:

0! OX
2! O3

P5 jX �3� ! OX
3�3� ! 0: �7�

On the other hand we have the natural isomorphism TX 
 oX � O3
X which allows us

to write (7) as

0! OX
2! O3

P5 jX �3� ! TX ! 0: �8�

This, in turn, induces the long exact sequence

! H1�X ;O3
P5 jX �3�� ! H1�X ;TX � !d dH2�X ;O2

X � ! H2�X ;O3
P5 jX �3�� !;

�9�
where d is induced by cup product with the extension class of (6) via its identi¢cation
with the extension class of (7).
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But now the previous lemma implies that

H1�X ;O3
P5 jX �3�� � H2�P5;O3

P5 � � 0; �10�

H2�X ;O3
P5 jX �3�� � H3�P5;O3

P5 � � F; �11�
so d induces an isomorphism H1�X ;TX � � H2�X ;O2

X �prim. Since

Ext1�O1
X ;OX �ÿ3�� � Ext1�OX ;TX �ÿ3��

� Ext1�OX ;O
3
X � � H1�X ;O3

X �;
the theorem is proved.

THEOREM 3.5. Let X be a cubic fourfold over a ¢eld k. Then

(1) H0�X ;TX � � 0
(2) rkkH1�X ;TX � � 20
(3) Hi�X ;TX � � 0; iX 2

Proof. The Kodaira^Akizuk^Nakano vanishing theorem (which is valid for
hypersurfaces over an arbitrary ¢eld [SGA7]) implies that Hi�X ;OX

k�ÿs�� � 0
for s > 0 and and i � k < 4. By Serre duality we have

Hi�X ;TX � � H4ÿi�X ;OX
1 
OX �ÿ3��

so Hi�X ;TX � � 0 if 4ÿ i � 1 < 4, i.e. i > 1. This proves (3). (2) follows immediately
from Theorem 3.4, so it remains to show (1).

Consider the following classical exact sequences:

0! TX ! TP5 jX !OX �3� ! 0; �12�

0!OP5 !OP5�1�6! TP5 ! 0: �13�
These sequences give relationships between the Euler characteristics w of the sheaves
involved as follows:

w�X ;TX � � w�X ;TP5 jX � ÿ w�X ;OX �3��; �14�
w�P5;TP5 � � w�P5;OP5 �1�6� ÿ w�P5;OP5� �15�

� 6w�P5;OP5 �1�� ÿ w�P5;OP5 �:
Twisting 13 also gives

w�P5;TP5 �ÿ3�� � 6w�P5;OP5 �ÿ2�� ÿ w�P5;OP5 �ÿ3��: �16�
We want to use the sequence (3) to relate these two equations. If we tensor the
sequence (3) with OP5�3� we get:

w�X ;OX �3�� � w�P5;OP5 �3�� ÿ w�P5;OP5 �: �17�
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If we tensor (3) with TP5 we get

w�X ;TP5 jX � � w�P5;TP5 � ÿ w�P5;TP5 �ÿ3��: �18�
But now we can calculate these numbers by by using the fact that

Hi�P5;OP5 �k�� � 0 if 0 < i < r; �19�

w�P5;OP5 �k�� � 5� k
5

� �
: �20�

Putting all this together implies that

w�X ;TX � � ÿ20: �21�
But we know that rkkHi�X ;TX � � 20 if i � 1 and is equal to 0 if i > 1. This implies
that H0�X ;TX � � 0. &

From now on we will assume that XF is a cubic fourfold over a perfect ¢eld F. We
want to consider the formal moduli space of deformations of XF to Artin rings over
W �W �F�, the Witt vectors of F. Since H0�XF;TXF� � H2�XF;TXF� � 0, classical
deformation theory implies that there exists a smooth formal scheme S and a formal
scheme X ! S such that any deformationXA ofXF to an ArtinW -algebraA is given
by pulling back X ! S along a uniquely determined map SpecA! S. Furthermore,
the tangent space TS of S is isomorphic to H1�XF;TXF�, so we can conclude:

COROLLARY 3.6. S � SpfW ��t1:::t20��.

COROLLARY 3.7. The Kodaira^Spencer map induces isomorphisms:

TS � H1�XF;TXF � � Hom�H1�XF;O
3
XF
�;H2�XF;O

2
XF
�prim�:

It is a bit inconvenient to work with formal schemes, and it turns out in this case we
don't have to. Recall that the obstructions to lifting an ample line bundle fromXF to
X lives in H2�XF;OXF�. Since XF is a hypersurface in P5, this cohomology group
vanishes, so any ample line bundle can be lifted. Grothendieck's existence theorem
then tells us that X is algebraizable, i.e., that there is a formally smooth cubic
fourfold X ! S � SpecW ��t1 . . . t20�� with X � S �S X .

4. Construction of the Period Map

We will keep the notation of the previous section, but we will now assume that XF is
ordinary. By de¢nition, this means that H4

cris�XF=W � is an ordinary crystal. We will
actually want to consider the primitive cohomology P4

cris�XF=W �, which is a
subcrystal of H4

cris�XF=W �, and hence also ordinary. The Hodge polygon and the
Newton polygon of P4

cris�XF=W � then coincide, so by Theorem 2.5 we can ¢nd a
subcrystal P � P4

cris�XF=W � such that the Newton and Hodge slopes of P are equal
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to 1 and a quotient crystal Q with all slopes > 1 which ¢t in the exact sequence:

0! P! P4
cris�XF=W � ! Q! 0: �14�

Furthermore, since F is perfect, this sequence splits canonically, so we can regard Q
as a subcrystal of P4

cris�XF=W � in a natural way. Examination of the Hodge polygon
shows that rkWP � 1 and rkWQ � 21 with all slopes equal to 2 or 3. Thus the crystal
Q�2� has all its slopes equal to 0 or 1, so by [O, 1.6.4] it must be a Dieudonnë module.
So by Theorem 2.10, there is a unique p-divisible group PF over F with
D�PF� � Q�2�.

Let T be the ¢ne formal moduli space parameterizing deformations of PF to Artin
rings over W . This is isomorphic to SpfA, where A �W ��t1:::t20�� (where
20 � rkFHom�oP�F ;Lie�P0��). We would like to show that the deformation theories
of XF and PF are the same. To do this we need to construct a `period map'
S ! T and show it is an isomorphism. The categories of p-divisible groups over
SpecA and SpfA are equivalent [dJ, 2.4.4], so we can work in the category of schemes,
rather than formal schemes.

To construct a map, it is then suf¢cient to construct a p-divisible group P on S
which reduces to PF at the closed point. This would give a map S! T � SpecA
(and hence a map S ! T ). Let S0 � S 
 F. We will ¢rst construct a p-divisible group
P0 over S0 with the required properties and then show that it lifts canonically to S.

Let X0 � X �S S0. we want to repeat the above argument using P4
cris�X0=S�. By the

base change theorems for crystalline cohomology, P4
cris�X0=S� specializes to

P4
cris�XF=W � at the closed point of S0, so P4

cris�X0=S� is ordinary by Theorem 2.3.
Again by Theorem 2.3, we can write an exact sequence of crystals

0! P0 ! P4
cris�X0=S� ! Q0 ! 0; �23�

with P0 and Q0 satisfying the same slope conditions as P and Q. By uniqueness, these
must pull back via the specialization map to P and Q. Just as before, Q�2�0 is a
Dieudonnë module and there is a unique p-divisible group P0 over S0 with
D�P0� � Q�2�0. (The fact that the Hodge ¢ltration on Q�2�00 is a direct summand
follows from Theorem 2.6; see Theorem 4.4 below for more details.) Since the
Dieudonnë functor commutes with base change, P0 will specialize to PF at the closed
point of S0.

In order to construct a p-divisible group over S, it suf¢ces to put a Hodge ¢ltration
on Q�2�0. To simplify notation, we will identify P4

cris�X0=S� with P4
DR�X=S� in (23),

i.e., we will regard P0 and Q0 as a submodule and a quotient module respectively
of P4

DR�X=S�. We begin with the following result.

LEMMA 4.1. P4
DR�X=S� � P0 � Fil2HodgeP

4
DR�X=S�.
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Proof. Since all of the cohomology groups of X are free, and since the Hodge to
de Rham spectral sequence degenerates at E1, we know that

P4
DR�X=S� 
 S0 � P4

DR�X0=S0�; �24�

FilkHodgeP
4
DR�X=S� 
 S0 � FilkHodgeP

4
DR�X0=S0�: �25�

Since P4
DR�X=S� is ordinary, we know from Theorem 2.3 and Theorem 2.2 that the

theorem holds true mod p. Nakayama's lemma then implies that

P0 � Fil2HodgeP
4
DR�X0=S� � P4

DR�X=S�:
But now both P0 and Fil2HodgeP

4
DR�X=S� are direct summands of P4

DR�X=S� with

rkAP0 � rkAFil2HodgeP
4
DR�X=S� � rkAP4

DR�X=S�;
so we must have

P0 \ Fil2HodgeP
4
DR�X=S� � ;;

since it is true after tensoring with the fraction ¢eld of A. This proves the lemma. &

COROLLARY 4.2. The exact sequence (23) induces an isomorphism

Fil2HodgeP
4
DR�X=S� � Q0:

COROLLARY 4.3. The image of Fil3HodgeP
4
DR�X=S� in Q0 is a direct summand.

LetH be the image of Fil3HodgeP
4
DR�X=S� in Q0 and let H0 denote its reduction mod

p. Since FiliHodgeP
4
DR�X0=S0� � 0 for all i > 3, Theorem 2.6 implies that the entire

Hodge ¢ltration on Q00 is given by Q00 � H0 � 0 with Fil3HodgeQ
0
0 � H0. Since twisting

by 2 lowers the Hodge slopes by 2, we then get that Fil1HodgeQ�2�0 � H0. This proves:

THEOREM 4.4. H � Q�2�0 is an admissible ¢ltration.

By Theorem 2.10, there exists a p-divisible group P over S with the property that
D�P� � Q�2�0. Furthermore, P has the property that it specializes to PF over the
closed point of S. We have ¢nally proven:

THEOREM 4.5. There exists a map f :S ! T .

THEOREM 4.6. The map S ! T is smooth.
Proof. It is suf¢cient to show the induced map on tangent spaces is surjective.

Corollary 3.7 implies that the Kodaira^Spencer map induces an isomorphism

TS � Hom�H1�XF;O
3
XF
�;H2�XF;O

2
XF
�prim�:
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On the other hand, we have already mentioned that the tangent space TT to T is
isomorphic to Hom�oP�F ;LiePF� But now the Dieudonnë module Q�2�0 was
constructed in such a way that

oP�F � Fil1HodgeQ�2�0 � Fil3HodgeP
4
DR�XF=F� � H1�XF;O

3
XF
�; �26�

LiePF � gr0HodgeQ�2�0 � gr2HodgeP
4
DR�XF=F� � H2�XF;O

2
XF
�prim�; �27�

and so that the map S! T induces the now obvious map on tangent spaces. This
proves the theorem.

Remark 4.7. It is probably worth elaborating on what is really going on here. Let
Xe be a deformation of XF to the dual numbers SpecF�e� Since SpecF ,!SpecF�e�
is a divided power extension, there is a canonical isomorphism between
P4
DR�Xe=F�e�� and P4

cris�XF=F�e�� � P4
cris�XF=W � 
 F�e�, which implies that there is

a canonical isomorphism

Fil2HodgeP
4
DR�Xe=F�e�� � Q�2�e � Q�2� 
 F�e�:

Lemma 3.4 then implies that giving deformationXe as above is equivalent to giving a
one step ¢ltration on Q�2�e which reduces to the usual ¢ltration under the reduction
map.

On the other hand, a theorem of Messing [M, V.1.6] implies that giving a
deformation of PF to SpecF�e� is equivalent to putting an admissible ¢ltration on

D�PF� 
 F�e� � Q�2�e:
But now Xe is given by a map f : SpecF�e� ! S. If we pull back Q�2�0 via this map we
get an admissible ¢ltration on Q�2�e induced by the de Rham cohomology of Xe,
which gives us a deformation of PF to SpecF�e�. But it is clear that this is exactly
the p-divisible group that arises by pulling back P along f . Since all possible
admissible ¢ltrations occur in this manner, it is easy to see that the period map
induces a surjective map on tangent spaces, and hence must be a isomorphism.

THEOREM 4.8. There is a unique lift Xcan of XF to W with the property that that the
slope ¢ltration on the crystalline cohomology group H4

cris�XF=W � agrees with the
Hodge ¢ltration on de Rham cohomology group H4

DR�Xcan=W � via the canonical
isomorphism between the two cohomology theories.

Proof.Consider the p-divisible groupPF and its Dieudonnë moduleD�PF� that we
constructed before. Q�2� is ordinary and only has Hodge slopes of 0 and 1, so by
Theorem 2.5 there are subcrystals M and N of Q�2� such that Q�2� �M �N, where
M has all Hodge slopes equal to 0 and N has all Hodge slopes equal to 1. This
decomposition corresponds to the splitting of PF into a connected part
PF;conn �M�M� and an ëtale part PF;et �M�N�.
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We want to consider liftings of PF;conn and PF;et to W . By Theorem 2.10, this is
equivalent to putting an admissible ¢ltration on their Dieudonnë modules, M
and N. But Fil1HodgeM0 � 0 so the only possible admissible ¢ltration on M is
Fil1HodgeM � 0. Similarly, Fil1HodgeN0 � N0 so the only admissible ¢ltration on N
is Fil1HodgeN � N. Thus PF;conn and PF;et have unique liftings to W , which we denote
by Pconn and Pet respectively.

Let Pcan � Pconn � Pet. This is clearly a lifting of PF with D�PF� � Q�2� and with
Fil1HodgeQ�2� � N. On the other hand, by construction we have Fil1slopeQ�2� � N,
so the Hodge and slope ¢ltrations coincide on Q�2�. Since the Dieudonnë functor
is an equivalence of categories, this is the only lifting of PF with this property.

Since the period map of Theorem 4.5 is an isomorphism, Pcan corresponds to a
unique cubic fourfold over W , which we denote by Xcan. By construction, it
has the property that Fil3HodgeH

4
DR�Xcan=W � � Fil3slopeH

4
DR�Xcan=W �: But now

Fil2HodgeH
4
DR�Xcan=W � is the orthogonal complement of Fil3HodgeH

4
DR�Xcan=W � in

H4
DR�Xcan=W � under the cup product pairing, and Fil2slopeH

4
DR�Xcan=W � is the

orthogonal complement to Fil3slopeH
4
DR�Xcan=W � in H4

DR�Xcan=W � under the cup
product pairing, so we have

Fil2slopeH
4
DR�Xcan=W � � Fil2HodgeH

4
DR�Xcan=W �:

Since both ¢ltrations are three step ¢ltrations with

Fil1slopeH
4
DR�Xcan=W � � Fil1HodgeH

4
DR�Xcan=W � � H4

DR�Xcan=W �

we are done. &

Remark 4.9. We can get a little more information out of our construction. One can
show that PF;conn � bG20

m;F and PF;et � Qp=Zp. Both of these groups are rigid (i.e. they
have no nontrivial deformations), so the deformations of Pcan are entirely
determined by the possible extensions between them. This gives a canonical group
structure on T , and hence on S. The canonical lift Xcan then corresponds to the unit
of this group structure, i.e the split extension.

Remark 4.10. There is analogous notion of a canonical liftings for Abelian
varieties. Suppose A is an ordinary Abelian variety over SpecZ=pZ. There is then
a unique liftingAcan ofA to SpecW �Z=pZ�which has the property that the Frobenius
map on H1

DR�Acan=W � preserves the Hodge ¢ltration (c.f. Katz's appendix to [DI]).
By a result of Messing [M, Appendix, cor. 1.2], this is equivalent to having a lifting
of the Frobenius endomorphism to Acan. It is interesting to note that this can never
happen for cubic fourfolds.

THEOREM4.11. Let XF be a cubic fourfold over a perfect ¢eldF and let X be a lifting
of XF to W. Then the Frobenius map on XF admits no lifting to a map on X.
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Proof. By (9) and the isomorphism TXF � OXF
3�3� we see thatH1�X ;OXF

3�3�� 6� 0.
So X does not satisfy Bott Vanishing. Thus by [BT, theorem 3] Frobenius does not
lift.

Remark 4.12. It would follow from the Hodge conjecture for self products of cubic
fourfolds and Theorem 6.3, that the Frobenius map does lift to a correspondence (up
to homolgical equivalence) on Xcan � Xcan. Since any lifting of XF with this property
would also have the property that the Hodge and slope ¢ltrations agree, this is
enough to characterize the cannonical lifting. In any case, one can show
(using [A, 1.5.3]) that the Frobenius map lifts to a `motivated', hence absolute
Hodge, cycle on Xcan � Xcan.

Remark 4.13. Period maps analogous to the one constructed here can be
constructed under quite general circumstances. They exist for any ordinary variety
over a perfect ¢eld whose deformation space is suf¢ciently nice (smooth, for
example). In particular, one can perform this construction on ordinary K3 (where
the period map is again an isomorphism) surfaces and construct the canonical lift
of [DI, N] using these techniques.

5. The Kuga^Satake^Deligne Abelian Variety

Let A be an integral domain and let V be a free A-module with a non-degenerate
quadratic form q. LetC�V � denote the Clifford algebra ofV constructed with respect
to the quadratic form q and let C��V � denote the even part of the Clifford algebra.
Let CSpin�V � denote the Clifford group of V . This is the subgroup of invertible
elements g in C��V � with the property that gVgÿ1 � V , where V is regarded as
a subspace of C�V � via the natural inclusion.

We have two representations of CSpin�V � on C�V �, one given by multiplication on
the left, which we will denote by C�V �s, and one given by conjugation, which we will
denote by C�V �ad . Right multiplication is compatible with the action of CSpin�V � on
C�V �s so we get the following isomorphism of representations:

THEOREM 5.1. Let A � C�V �. Then C�V �ad � EndA�C�V �s� where C�V �s is
regarded as a right A-module.

Proof. Send x 2 C�V �ad to the element Lx 2 EndC�V ��C�V �s� corresponding to left
multiplication by x. &

If A is a ¢eld, then the action of CSpin�V � by conjugation on V induces a short
exact sequence

1! Gm !w CSpin�V � !m SO�V ; q� ! 1 �28�

THE TATE CONJECTURE FOR CUBIC FOURFOLDS 15

https://doi.org/10.1023/A:1017532821467 Published online by Cambridge University Press

https://doi.org/10.1023/A:1017532821467


and the spinor norm N:CSpin�V � ! Gm induces a map

1! Spin�V � ! CSpin�V � !t Gm! 1; �29�
where t�x� � 1

N�x�.
Now assume V is a free Z-module of rank n� 2 underlying a polarized Z-Hodge

structure of weight 0 such that:

(1) The Hodge structure on V is of type f�ÿ1; 1�; �0; 0�; �1;ÿ1�g.
(2) The index of the bilinear form underlying the polarization is �n�; 2ÿ�

Let S be the group C� regarded as a real algebraic group. We have maps
w:Gm ! S given by the natural inclusion and t:S! Gm given by the inverse to
the norm. The Hodge structure on V then gives a map h:S! SO�V ; q�.
We have the following theorem of Deligne [D, 4.2^4.3]:

THEOREM 5.2 (Kuga^Satake^Deligne). For V satisfying the above conditions,
there is a unique map r:S! CSpin�VR� such that m � r � h and such that the
following diagram commutes:

Gm w
ÿÿÿÿ! S w

ÿÿÿÿ! Gm������ ??yr ������
Gm w

ÿÿÿÿ! CSpin�VR� t
ÿÿÿÿ! Gm

�30�

(Note: m is the map de¢ned in (28).)

The map r then induces a polarizable Hodge structure of type f�0; 1�; �1; 0�g on
C�V �s, which in turn de¢nes a complex Abelian variety A of dimension 2n�1 (called
the Kuga^Satake Abelian variety) with the property thatH1�A;Z� � C�V �s [D, 2.8].
Substituting in (5.1) then gives the following isomorphism of Hodge structures:

C�V �ad �
M2n�2
i�0

î

V � EndA�H1�A;Z��: �31�

(We again take A � C�V �:) Furthermore, right multiplication of C�V �s by A
preserves the Hodge structure, which gives A � End�A�.

Remark 5.3. The Abelian variety constructed here is actually isogenous to the
product of two copies of the Abelian variety constructed by Deligne (see [A, 4.1.3])

6. The Tate Conjecture

Let X0 be an ordinary cubic fourfold over the ¢nite ¢eld Fq, and Xcan is its canonical
lift to W . Let K0 be the fraction ¢eld of W and ¢x an embedding K0 ,!C with the
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property that K0 � C. This embedding lets us associate a complex cubic fourfold XC

to Xcan. We can then apply the results of the previous section to get an Abelian
varietyAcan with the property thatH1�Acan;Q� � CP4�XC;Q�2�� asQ-vector spaces.
Furthermore, our choice of embedding enables us to assume thatAcan is de¢ned over
some ¢nite extension K of K0.

Let A � CP4�XC;Q�2�� and A` � CP4�XC;Q�2�� 
Q`. Applying the results of
the previous section gives us isomorphisms

�
î

P4�XC;Q�2�� � EndA�H1�Acan;Q��� � H2�Acan � Acan;Q� �32�

as Hodge structures. This isomorphism is actually induced by an absolute Hodge
cycle (see [A, 1.7.1 and 4.1.3]), which gives the isomorphism of Gal�K=K�-modules:

�
î

P4
et�XC;Q`�2�� � EndA` �H1

et�Acan;Q`�� � H2
et�Acan � Acan;Q`� �33�

after possibly replacing K by a ¢nite extension.

THEOREM 6.1 (Deligne). Acan has potentially good reduction.
Proof. Let I � Gal�K=K� be the inertia subgroup and choose ` to be prime to the

characteristic of the residue ¢eld of K . Since X0 is smooth, we know (by
Grothendieck's monodromy theorem) that I acts trivially on P4

et�XC;Q`�2��. The
isomorphism (33) then implies that I acts trivially on EndA` �H1

et�A;Q`��.
SinceA` � EndK �Acan� (see [A, 6.51]), the action ofA` onH1

et�Acan;Q`� commutes
with the Galois action. So each element g 2 I is an element in EndA` �H1

et�A;Q`�� and
hence can be regarded as acting onH1

et�Acan;Q`� by left multiplication by an element
of CP4

et�XC;Q`�2��. Since I acts trivially on EndA`�H1
et�A;Q`��, we can even assume

that g acts by an element in the center of CP4
et�XC;Q`�2��.

But Grothendieck's monodromy theorem says that there is a subgroup of ¢nite
index I1 � I such that the action of I1 on H1

et�Acan;Q`� is unipotent. Since the center
of CP4

et�XC;Q`�2�� is a ¢eld and thus contains no non-trivial unipotent elements,
it follows that I1 must act trivially on H1

et�Acan;Q`�. Thus we can replace K by a
¢nite extension which will insure that the action of the inertia group on
H1

et�Acan;Q`� is trivial, which is enough to insure that Acan has good reduction. &

Assume K is large enough to insure thatAcan has good reduction and let A0 denote
the reduction.

Remark 6.2. Using [A, 9.3.1], one can show that Acan has good reduction, not just
potentially good reduction.

THEOREM 6.3. End�A0�
Q � End�Acan�
Q
Proof. Let CP4

et�XC;Qp�2�� � Ap, where p � charFq. P4
et�XC;Qp�2�� is even

dimensional, so CP4
et�XC;Qp�2�� is a simple ring. Thus, there is a unique simple left
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CP4
et�XC;Qp�2��-module M up to isomorphism. The structure theorem for simple

rings then implies that there exists a division algebra D � CP4
et�XC;Qp�2�� such that

CP4
et�XC;Qp�2�� � EndD�M�

as Qp-algebras and

CP4
et�XC;Qp�2�� � �M

as left CP4
et�XC;Qp�2��-modules. Substituting in (5.1) then gives the isomorphism

EndD�M� � EndAp��M�; �34�
where the map is given by g!�g. If we then use the isomorphism H1

et�Acan;Qp� �
CP4

et�XC;Qp�2�� the above equation becomes

EndD�M� � EndAp�H1
et�Acan;Qp��: �35�

Now suppose g 2 Gal�K=K�. Ap � EndK �Acan� so the action of g on H1
et�Acan;Qp�

commutes with the action of Ap and thus gives rise to an element
gM 2 EndD�M�. This gives a Galois action (via conjugation) on EndD�M� which
makes (35) an isomorphism of Galois modules. The diagonal map

D: EndD�M� ,!End��M� �36�
given by gM !�gM then induces a Galois module structure on End��M� which
makes the square:

EndD�M� ÿ!� EndAp�H1
et�Acan;Qp��

D
??y ??y

End��M� ÿ!� End�H1
et�Acan;Qp��

�37�

a commutative diagram of Galois modules.
This tells us that

End�H1
et�Acan;Qp�� � End��M� � � � End�M� � �CP4

et�XC;Qp�2��
as Galois modules. But we also know that

End�H1
et�Acan;Qp�� � H1

et�Acan;Qp� 
H1
et�Acan;Qp��1�

and

CP4
et�XC;Qp�2�� � �

i
^i P4

et�XC;Qp�2��

as Galois modules so we get the isomorphism

H1
et�Acan;Qp� 
H1

et�Acan;Qp��1� � ��
i
^i P4

et�XC;Qp�2��: �38�

Recall that Fontaine has constructed a functor from a subcategory of the category of
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p-adic Gal�K=K�-representations to a subcategory of the category of ¢ltered
K-vector spaces endowed with a Frobenius action. When this functor is applied
to the ëtale cohomology of an algebraic variety Y over K with good reduction,
its output is the de Rham cohomology of Y with the induced Frobenius action. This
functor is compatible with direct sums and all tensor constructions, so when it is
applied to (38) we get

H1
DR�Acan=K� 
H1

DR�Acan=K��1� � ��
i
^i H4

DR�Xcan 
 K=K��2�: �39�

This isomorphism preserves the natural ¢ltrations on both sides and the natural
Frobenius action induced by crystalline cohomology.

Since we know thatH4
DR�Xcan 
 K=K��2� has the property that the Hodge ¢ltration

coincides with the slope ¢ltration, we must have that the same property holds for
��

i
^i H4

DR�Xcan 
 K=K��2� and hence for

H1
DR�Acan=K� 
H1

DR�Acan=K��1� � H2
DR�Acan � Acan=K��1�:

But now every endomorphism of A0 gives rise to an element in

Fil1slopeH
2
cris�Acan � Acan=W �

(Frobenius acts by multiplication by p), so it must live in

F 1
HodgeH

2
DR�Acan � Acan=K�:

Since every cycle on A0 � A0 whose image in H2
DR�Acan � Acan=K� is in

F 1
HodgeH

2
dR�Acan � Acan=K�

has some multiple that lifts to Acan � Acan by [BO2, 3.8], we have proven the
theorem. &

COROLLARY 6.4. Acan is of CM-type.

THEOREM 6.5. The Tate conjecture holds for ordinary cubic fourfolds over Fq

Proof. As a consequence of the Tate and Hodge conjectures for Abelian varieties
we have

End�Acan� 
Q � End�H1�Acan;Q���0;0�; �40�

End�A0� 
Ql � End�H1
et�A0;Ql��Gal�Fq=Fq�

� End�H1
et�Acan;Q`��Gal�K=K�

�41�

where the endomorphisms on the right-hand side are those preserving the Hodge
structure and the Galois-module structure respectively.
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So the previous theorem tells us that

End�H1
et�Acan;Q`��Gal�K=K� � End�H1�Acan;Q���0;0�
Q`:

So every Galois invariant class in End�H1
et�Acan;Q`�� comes from a Hodge class in

End�H1�Acan;Q��. But we have

P4�XC;Q�2�� ,!End�H1�Acan;Q�� �42�

P4
et�XC;Q`�2�� ,!End�H1

e t�Acan;Q`�� �43�
which preserve the appropriate structures. Thus since all of the Galois invariant
classes of End�H1

et�Acan;Q`�� come from Hodge classes, the same must be true
for P4�XC;Q(2)). But we know that the Hodge conjecture is true for cubic
fourfolds [Z], so these classes must correspond to algebraic cycles. &

Remark 6.6. The proof of the Tate conjecture in this section only requires the
existence of a canonical lifting of the variety from Fq to W �Fq�, the existence of
a suitable Kuga^Satake variety (see [A] for other examples of varieties with this
property), and the truth of the Hodge conjecture for the lifted variety. In particular,
the same proof works for ordinary K3 surfaces. Theorem 6.5 also implies the Tate
conjecture for divisors on the Fano variety of a ordinary cubic fourfold (see, for
instance, [A]).

Remark 6.7. The Tate conjecture for cubic fourfolds over a ¢nitely generated ¢eld
of characteristic zero was proved in [A].
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