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On the Singular Behavior
of the Inverse Laplace Transforms
of the Functions In(s)

sI ′n(s)

Serguei Iakovlev

Abstract. Exact analytical expressions for the inverse Laplace transforms of the functions In(s)
sI ′n (s)

are

obtained in the form of trigonometric series. The convergence of the series is analyzed theoretically,

and it is proven that those diverge on an infinite denumerable set of points. Therefore it is shown

that the inverse transforms have an infinite number of singular points. This result, to the best of the

author’s knowledge, is new, as the inverse transforms of In(s)
sI ′n (s)

have previously been considered to be

piecewise smooth and continuous. It is also found that the inverse transforms have an infinite number

of points of finite discontinuity with different left- and right-side limits. The points of singularity and

points of finite discontinuity alternate, and the sign of the infinity at the singular points also alternates

depending on the order n. The behavior of the inverse transforms in the proximity of the singular

points and the points of finite discontinuity is addressed as well.

1 Introduction

The inverse Laplace transforms of the functions

ψL
n(s) =

In(s)

sI ′n(s)
,(1)

where In(s) is the modified Bessel function of the first kind of integer order n and a
complex argument s, and the prime denotes the first derivative with respect to the
argument, play a very important role in the analytical treatment of the problem of

the non-stationary loading on a fluid-filled circular cylindrical shell structure. These
inverse transforms are called the response functions (referred sometimes as the trans-
fer functions), and the notation ψn(t) (or ξn(t)) is adopted for them. The response
functions allow one to express hydrodynamic pressure in terms of shell deformations

in the integral form. The most important and practically useful feature of the re-
sponse functions is that they do not depend on either structure or fluid properties.
An approach based on use of the response functions seems to be very computationally
attractive because the time-consuming numerical inversion of the Laplace transform

is avoided. Once calculated and tabulated, the response functions can be used for
any other problem of the same geometry; therefore the exact values of the inverse
transforms of (1) are of both practical and theoretical interest.
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The idea of dealing with property-independent functions (applying to the con-
sidered class of problems) was initially introduced by Geers [4]: he considered the

‘exterior’ problem of the non-stationary interaction between a hydrodynamic shock
wave and a hollow submerged shell. The ‘interior’ functions (1) were first introduced
in the research monograph of Pertsev and Platonov [6]. Some results based on nu-
merical inversion were presented in that work. In particular, as a result of numerical

computations, it was found that the inverse transforms of (1) are piecewise smooth
and continuous. However, the authors did not provide any theoretical basis to sup-
port their numerical observations, and did not address the question of the total error
given by the used numerical procedure. The very similar functions were addressed

in the monograph [5], but no analytical treatment was discussed, and the authors
introduced only numerical results. Again, no singular behavior was observed.

Thus, by the late 1980s, the response functionsψn(t) were considered to be known
and tabulated, and believed to be continuous. However, working on the study of the

behavior of a fluid-filled cylindrical structure under shock loading, the author had
to calculate the response functions with higher precision, and for a wider range of n

than it was available in the published literature. While carrying out the numerical
inversion, some obvious problems with the convergence of Mellin’s integral were ob-

served at certain points t . After a very careful numerical analysis it was realized that
those problems were not just numerical effects, and the response functions seemed
to have at least a finite number of singular points. Therefore, the careful verification
of the previously published results was needed to prove or contradict the assumption

of the potential existence of singular points.
Thus, the main goal of the present paper is to obtain an analytical expression for

the response functions, and to prove that they do have singular points. The behavior
in the proximity of the singular points is of interest as well.

2 Mellin’s Integral and Singular Points

In order to obtain the inverse transform of (1), let us consider Mellin’s integral for

the function ψL
n(s)

ψn(t) =
1

2πi

∫ ε+i∞

ε−i∞

ψL
n(s)est ds,(2)

where all the singular points of the integrand lie in the half-plane Re s < ε.
First, let us determine the singular points of ψL

n . It is obvious that all the zeros of
I ′n(s) will be the singular points as well as possibly the point s = 0. We know [1]

In(s) = e−
nπi

2 Jn(is),(3)

I ′n(s) = ie−
nπi

2 J ′n(is),(4)

where Jn(s) is the Bessel function of order n and an argument s. It is also known
that all the zeros of J ′n(s) are real. Therefore, all the zeros of I ′n(s) are pure imaginary.
Noting that J ′n(−ω) = (−1)n J ′n(ω), those can be written as

sn
±k = ±iωn

k , k = 1, 2, . . . ,(5)
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where ωn
k are the positive zeros of J ′n(ω). All the zeros (5) are of first order.

Thus, ψL
n has an infinite number of simple poles defined by (5). It is easy to show

(Appendix A) that s = 0 is a pole of second order for n = 0, and a removable
singular point for n ≥ 1. In the next section we will introduce an approach based on
the theory of residues to treat Mellin’s integral.

3 Asymptotic Behavior of ψL
n(s) on a Circle of Large Radius

Let us consider a circle of a sufficiently large radius R� 1. In this case

s = Reiφ, φ ∈ [0, 2π], and |s| � 1.(6)

The asymptotic expansions for In and I ′n at large |s| are [3]

In(s) =
1√
2πs

(

es − (−1)nie−s
)(

1 + O(s−1)
)

,(7)

I ′n(s) =
1√
2πs

(

es + (−1)nie−s
)(

1 + O(s−1)
)

,(8)

and hence

ψL
n(s) ∼ es − (−1)nie−s

s
(

es + (−1)nie−s
) , |s| � 1.(9)

We will consider only odd n as the approach for even n is the same. Noting (6) we

have

|ψL
n(s)| ∼ 1

R
χ(R, φ),(10)

where

χ(R, φ) =

√

e2R cos φ + e−2R cos φ + 2 sin(2R sinφ)

e2R cos φ + e−2R cos φ − 2 sin(2R sinφ)
.(11)

The denominator in (11) becomes 0 when

R =
π

4
+ πk, k = 0, 1, 2, . . . , φ =

π

2
,(12)

and when

R =
3π

4
+ πk, k = 0, 1, 2, . . . , φ =

3π

2
.(13)

Thus, χ(R, φ) is unbounded on the family of circles

R =
π

4
+
πk

2
, k = 0, 1, 2, . . . .(14)
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Now let us choose a family of circles Rk such that, first, it does not coincide with
the family (14), and, second, Rk do not fall in the close proximity of the numbers

(

k +
n

2
− 3

4

)

π, n = 0, 1, . . . , k = 0, 1, . . . .(15)

As we will see later, (15) represents the leading term of the asymptotic expansion of
the zeros of J ′n at large n, and thus it is guaranteed that Rk do not coincide with the

poles of ψL
n . The family of circles

Rk = πk, k = 1, 2, . . .(16)

satisfies both of these conditions.
It can be shown (Appendix C) that on the family of circles (16)

χ(Rk, φ) < 2, φ ∈ [0, 2π],(17)

when k� 1. Hence

max
φ∈[0,2π]

|ψL
n(Rkeiφ)| < 2

Rk

, k� 1,(18)

and we have shown that the functions ψL
n(s) uniformly tend to zero with respect to φ

(φ = arg s) on the infinite family of circles (16).

4 Residue Theory

Let us consider the contour Γk (Figure 1)

Γk = Ck + Pk,(19)

where Ck is an arc of a circle of radius Rk (16) centered on the origin, and Pk is a
segment of the line Re s = ε. Let us now address the contour integral

∫

Γk

ψL
n(s)est ds.(20)

On the one hand, this integral can be decomposed into a sum of two contour
integrals as

∫

Γk

ψL
n(s)est ds =

∫

Ck

ψL
n(s)est ds +

∫

Pk

ψL
n(s)est ds,(21)

and, on the other hand, it can be expressed in terms of the residues of the integrand
as

∫

Γk

ψL
n(s)est ds = 2πi

∑

sn
j∈Dk

Rn
sn

j
,(22)
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Im s

Rk

0

Poles of ψL
n

Ck

Pk

ε Re s

Figure 1: Contour Γk.

where Rn
s? is the residue of the function ψL

n(s)est at the point s = s?, and Dk is the
domain bounded by the contour Γk.

When k→∞, the second term in the right-hand side of (21) becomes

∫ ε+i∞

ε−i∞

ψL
n(s)est ds,(23)

and the right-hand side of (22) is

2πi
∑

k=±1,±2,...

Rn
sn
k
.(24)

We have shown that ψL
n(s) uniformly (with respect to φ) tends to zero on the family

of circles Rk. Thus, by virtue of Jordan’s modified lemma (Appendix D),

∫

Ck

ψL
n(s)est ds→ 0 when k→∞,(25)

and finally we have

2πi
∑

k=±1,±2,...

Rn
sn
k
=

∫ ε+i∞

ε−i∞

ψL
n(s)est ds.(26)
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Looking at (2) we can write

ψn(t) =
∑

k=±1,±2,...

Rn
sn
k
,(27)

where sn
k are all the poles defined by (5), as well as s = 0 for n = 0.

It can be shown (Appendix B) that the residues of ψL
n(s)est at s = 0 and s = sn

k are

R0
0 = 2t,(28)

Rn
iωk

n, k=1,2,... =
iωn

k

n2 − (ωn
k )2
{cos(ωn

k t) + i sin(ωn
k t)},(29)

Rn
−iωn

k
, k=1,2,... = −

iωn
k

n2 − (ωn
k )2
{cos(ωn

k t)− i sin(ωn
k t)},(30)

where ωn
k , k = 1, 2, . . . , are the positive zeros of J ′n(ω). Taking into account these

formulas, the functions ψn(t) can be obtained in final form as

ψ0(t) = 2t + 2

∞
∑

k=1

sin(ω0
k t)

ω0
k

,(31)

ψn(t) = 2

∞
∑

k=1

ωn
k

(ωn
k )2 − n2

sin(ωn
k t), n ≥ 1.(32)

Now, convergence of the series (31)–(32) is of interest.

5 Convergence of the Series For ψn(t)

We will address only convergence of the series (32) as (31) is essentially a special case
of (32). It is known [1] that the asymptotic representation for the zeros of J ′n(ω) is

ωn
k = β

n
k −

µ + 1

8βn
k

+ O
( 1

k3

)

, k� 1,(33)

where

βn
k =

(

k +
n

2
− 3

4

)

π, µ = 4n2.(34)

Now

sin(ωn
k t) = sin(βn

k t) +
cos(βn

k t)(1 + 4n2)t

8πk
+ O
( 1

k2

)

, k� 1,(35)

and

ωn
k

(ωn
k )2 − n2

=
1

πk
+

(3− 2n)

4π

1

k2
+ O
( 1

k3

)

, k� 1.(36)
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Hence, the N-th remainder (N � 1) of the series in (32) can be decomposed into a
sum of two series as

∞
∑

k=N

ωn
k

(ωn
k )2 − n2

sin(ωn
k t) = S1 + S2,(37)

where

S1 =
1

π

∞
∑

k=N

sin(βn
k t)

k
,(38)

S2 =

∞
∑

k=N

ak, ak =

{

sin(βn
k t)(3− 2n)

4π
+

cos(βn
k t)(1 + 4n2)t

8π2

}

1

k2
+ O
( 1

k3

)

.

(39)

The series in (39) is absolutely convergent whereas convergence of the series in
(38) depends on t . Noting (34) we can write the series in (38) as

∞
∑

k=N

sin(βn
k t)

k
=

∞
∑

k=N

sin{(k + n
2
− 3

4
)πt}

k
.(40)

Let us consider the behavior of the series (40) at

t = 2(2 j + 1), j = 0, 1, 2, . . . .(41)

Note that at all other t , the series in (38) converges by virtue of Dirichlet’s test. When
t is as defined by (41), the numerator in the right-hand side of (40) is equal to either
−1 or 1 for all k. Hence, for these t the series in (38) is

∞
∑

k=N

sin(βn
k t)

k
= ±

∞
∑

k=N

1

k
.(42)

The series in the right-hand side of (42) diverges, and, consequently, the series in

(38), as well as the series in (32), also diverge. The sign of the infinity depends on
both n and t , and for even n and n = 0 is

ψn(t) =

{

+∞ at t = 2(4l + 1), l = 0, 1, . . . (t = 2, 10, 18, . . . )

−∞ at t = 2(4l + 3), l = 0, 1, . . . (t = 6, 14, 22, . . . )
,(43)

while for odd n we have

ψn(t) =

{

+∞ at t = 2(4l + 3), l = 0, 1, . . . (t = 6, 14, 22, . . . )

−∞ at t = 2(4l + 1), l = 0, 1, . . . (t = 2, 10, 18, . . . )
.(44)
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ψ0

4
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Pertsev and Platonov (1987)

Exact series expression

1.50 1.75 2.00 2.25 2.50
t

Figure 2: The function ψ0(t) in the proximity of the point t = 2 in comparison with the results

by Pertsev and Platonov [6].

Thus, we have shown that the functions ψn(t) have an infinite number of singular
points, and that the sign of the infinity at those alternates depending on the order n

and t according to (43) and (44). As an example, the behavior of the function ψ0(t)

in the proximity of the singular point t = 2 is shown in Figure 2. The figure also
shows the comparison of the present results to the previously published ones.

Let us now address

t = 4m, m = 1, 2, . . . .(45)

The series in (32) converges at these t since S1 = 0. However, this case needs special
treatment because the numerical results for ψn(t) in the proximity of the points (45)

look very ‘suspicious’, and it is possible that the functions have discontinuities at these
t as well. We will show that, in fact, this is truth, and ψn(t) do have different left- and
right-side limits at the points (45).

Let us consider

t = 4m± δ,(46)

where 0 < δ � 1. One might expect that S1 is close to 0 for these values of t .
However, this is not the case. To show it, let us first substitute t = 4m ± δ into the
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expression for S1. We have

S1|t=4m±δ,m=1,2,... =
1

π

∞
∑

k=N

sin
(

βn
k (4m± δ)

)

k

=























∓ 1

π

∞
∑

k=N

sin
(

δπ(k + n
2
− 3

4
)
)

k
, m = 1, 3, 5, . . .

± 1

π

∞
∑

k=N

sin
(

δπ(k + n
2
− 3

4
)
)

k
, m = 2, 4, 6, . . . .

(47)

Let us define Q(δ,N) as

Q(δ,N) =

∞
∑

k=N

sin
(

δπ(k + n
2
− 3

4
)
)

k
,(48)

then we can write

S1|t=4m±δ,m=1,2,... =











∓ 1

π
Q(δ,N), m = 1, 3, 5, . . .

± 1

π
Q(δ,N), m = 2, 4, 6, . . . .

(49)

In order to analyze the function Q(δ,N), let us make use of the transcendental
functionΦ(z, s, a) (called sometimes the Lerch transcendental function) which is de-
fined as

Φ(z, p, a) =

∞
∑

k=0

zk

(a + k)p
.(50)

Details regarding this function can be found in [2], pages 27–31 (note that the au-
thors do not use the term “Lerch function”).

It is easy to see that Q(δ,N) can be written in terms of the Lerch functions as

Q(δ,N) =
eiδπ(N+ n

2
− 3

4
)

2i
Φ(eiδπ, 1,N)− e−iδπ(N+ n

2
− 3

4
)

2i
Φ(e−iδπ, 1,N).(51)

It is known ([2], page 30, formula (13)) that Φ(z, 1, a) ∼ − log(1 − z) as z → 1.
Using this fact, for small δ we have

Q(δ,N) ∼ 1

2i
log(−e−iδπ) =

1

2
arg(−e−iδπ),(52)

and now it is obvious that

Q(δ,N)→ π

2
as δ → 0.(53)
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It follows that S1 has different one-side limits at t = 4m,

lim
t→4m−

S1 =











1

2
, m = 1, 3, 5, . . .

−1

2
, m = 2, 4, 6, . . . ,

(54)

and

lim
t→4m+

S1 =











−1

2
, m = 1, 3, 5, . . .

1

2
, m = 2, 4, 6, . . . .

(55)

In particular, it follows from these formulas that the difference between one-side
limits of S1 at t = 4m is equal to 1 for any m. Thus, we have shown that S1 has a
discontinuity with the magnitude 1, which corresponds to a discontinuity with the

magnitude 2 in ψn(t) (for any n). It should be especially noted that the one-side
limits of S1 do not depend on N : although the magnitude of S1 does decrease with
increasing N , the one-side limits at t = 4m are still the same.

However, the behavior of ψn(t) in the proximity of the points t = 4m depends

not only on S1 but also on
∑N−1

k=1
ωn

k

(ωn
k

)2−n2 sin(ωn
k t) and S2. The first term is just a

finite sum of continuous functions, and it affects only the magnitude of ψn(t), not

the discontinuity about t = 4m. However, comparing the expressions for S1 and S2,
one might expect that S2 has different one-side limits at t = 4m as well. Thus, let us
now address the behavior of S2 in the proximity of these points.

First of all, it should be noted that we have already proven ψn(t) to have a discon-

tinuity at t = 4m because of the S1 contribution. The contribution of S2 has a much
smaller magnitude, and the ‘addition’ provided by S2 is, to some extent, irrelevant: it
does not change the discontinuous nature ofψn(t) at t = 4m. However, it is desirable
to gain more certainty in this regard.

Using the same idea as for S1, it is possible to express S2 in terms of the Lerch
functions. In fact, if we consider all the terms in the asymptotic expansion for ωn

k ,
there will be a series of the Lerch functions of integer orders with n-dependent co-
efficients: Φ(e±iδπ, 2,N) will represent the infinite series with 1

k2 , Φ(e±iδπ, 3,N) will

stand for the series with 1
k3 , etc. Asymptotic analysis of this series of the Lerch func-

tions would allow one to make a conclusion about the behavior of S2. However, this
approach seems too complicated. Instead, we can apply the Cauchy criterion to the
convergent series S2 and see that S2 can be made as small as desired by choosing N

large enough. Hence, for any fixed t and n, S2 decays with increasing N , whereas S1

has a point of discontinuity with a constant difference between left- and right-side
limits. Thus, we have demonstrated that the contribution of S2 is negligible, even if it
has different one-side limits at t = 4m. However, as numerical computations show,

S2 does have the zero limit at t = 4m. Moreover, as one can observe from the graphs
of ψn(t), the magnitude of the discontinuity at t = 4m is always approximately equal
to 2, which demonstrates once again that S1 is the only (noticeable) contributor to
the discontinuous nature of ψn(t) at the points t = 4m.
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ψ0
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Exact series expression

Pertsev and Platonov (1987)

3.75 4 4.25
t

Figure 3: The function ψ0(t) in the proximity of the point t = 4 in comparison with the results

by Pertsev and Platonov [6].

Finally, we have shown that the functions ψn(t) have an infinite number of points
of finite discontinuity at t = 4m, m = 1, 2, . . . . As an example, Figure 3 shows the

behavior of the function ψ0(t) in the proximity of the point t = 4. Comparison with
the previously published results is presented as well.

Thus, we have shown that the functions ψn(t) have an infinite number of singular
points at t = 2(2 j + 1), j = 0, 1, 2, . . . , as well as an infinite number of points of

finite discontinuity at t = 4 j, j = 1, 2, . . . . The points of discontinuity and the
points of singularity alternate, and the sign of the infinity at the singular points also
alternates for specific n.

6 Numerical Results

The functions ψn(t) were calculated for n = 0 · · · 30. The number of terms in the
series (31)–(32) was chosen to ensure a final accuracy about 0.1%. Figure 4 shows

the function ψ0(t) for t = 0 · · · 15. One can clearly see the alternation of signs of
the infinity at the singular points depending on t , as well as the alternation of a type
of the singular points. The main contribution is provided by the first term in (31)
whereas the singular ‘fluctuations’ appear due to the second term. Note that the

numerical simulations based on the obtained response functions have shown that
this essentially singular behavior clearly represents the complex wave nature of the
interaction process in real structures. Figure 5 shows the functions ψn(t) for n = 1
and 2. One can see the alternation of the sign of the infinity at t = 2, as well as the
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Figure 4: The function ψ0(t).

behavior at t = 4, depending on n. Finally, Figure 6 shows the function ψn(t) for

n = 5.

7 Conclusions

An analytical procedure for the inversion of the Laplace transform for the functions
In(s)
sI ′n (s)

is established. The inverse transforms ψn(t), being the response functions of the

‘interior’ problem of fluid-circular cylindrical structure interaction, are obtained in

the form of not everywhere convergent trigonometric series. The convergence of the
series is analyzed in detail, and it is shown that the functions ψn(t) have an infinite
number of singular points as well as an infinite number of points of finite discontinu-
ity. The graphs of the response functions are presented for several n, and comparison

with the previously published results is provided, showing the substantial difference.
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Appendix A. Type of the Point s = 0

We know [1]

In(s) =
sn

2nΓ(n + 1)
+ O(sn+2), |s| � 1.(56)
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Figure 5: The functions ψ1(t) and ψ2(t).
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Figure 6: The function ψ5(t).
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We also know

I ′n(s) = In−1(s)− n

s
In(s), n ≥ 1,(57)

I ′0(s) = I1(s).(58)

Hence, the asymptotics for ψL
n(s) are

ψL
n(s) =

1

n
+ O(s2), n ≥ 1,(59)

ψL
0 (s) =

2

s2
+ O(1),(60)

and we have shown that the function ψL
n(s) has a removable singularity at s = 0 when

n ≥ 1, and a pole of second order when n = 0.

Appendix B. Residues of ψL
n(s)est

Residue at s = 0 For n = 0, s = 0 is a pole of second order, and the residue at this
point is

R0
0 = lim

s→0

d

ds

(

est I0(s)

I1(s)
s

)

= lim
s→0

{

est I0(s)

I1(s)
+ test s

I0(s)

I1(s)
+ est s

[

I ′0(s)I1(s)− I ′1(s)I0(s)

I2
1 (s)

]}

.(61)

Noting (58) and (57), the third term in (61) can be rewritten as

I ′0(s)I1(s)− I ′1(s)I0(s)

I2
1 (s)

= 1−
{

I0(s)

I1(s)

} 2

+
1

s

I0(s)

I1(s)
.(62)

At small s, I0(s)/I1(s) is

I0(s)

I1(s)
=

2

s
+ O(s),(63)

and

est I0(s)

I1(s)
+ test s

I0(s)

I1(s)
+ est s

{

1−
[

I0(s)

I1(s)

] 2

+
1

s

I0(s)

I1(s)

}

= 2t + O(s).(64)

Hence

R0
0 = 2t.(65)
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Residue at s = sn
k These points are simple poles, and the equation for the residue is

Rn
sn
k
=

In(s)
(

sI ′n(s)
) ′

est
∣

∣

∣

s=sn
k

.(66)

The denominator of (66) can be represented as

In(s)
(

s +
n2

s

)

,(67)

and we have

Rn
sn
k
=

sn
k

(sn
k )2 + n2

esn
k t .(68)

Thus, for sn
k = iωn

k the residue is

Rn
iωn

k
=

iωn
k

n2 − (ωn
k )2
{cos(ωn

k t) + i sin(ωn
k t)},(69)

and for sn
k = −iωn

k we arrive at

Rn
−iωn

k
= − iωn

k

n2 − (ωn
k )2
{cos(ωn

k t)− i sin(ωn
k t)}.(70)

Appendix C. χ(R, φ)

Let us consider the function

χ(R, φ) =

√

e2R cos φ + e−2R cos φ + 2 sin(2R sinφ)

e2R cos φ + e−2R cos φ − 2 sin(2R sinφ)
(71)

at sufficiently large R = Rk = πk, k � 1, and find its maximum when φ ∈ [0, 2π].

We will address the following two cases: (first) when the first summand in the numer-
ator and denominator of (71) is substantially large than the second one, and (second)
when the first and second summands are of the same order.

First case Let

| cosφ| > δ > 0,(72)

where

δ =
1

R
.(73)
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Let us address the case cosφ > 0 first. Taking into account (73) we have

e2R cos φ > e2,(74)

e−2R cos φ <
1

e2
,(75)

and we can estimate the numerator and denominator of (71) as

e2R cos φ + e−2R cos φ + 2 sin(2R sinφ) < e2R cos φ
(

1 +
2e2 + 1

e4

)

,(76)

e2R cos φ + e−2R cos φ − 2 sin(2R sinφ) > e2R cos φ
(

1− 2

e2

)

.(77)

Now for χ(R, φ) we have

χ(R, φ) <
e2 + 1

e
√

e2 − 2
= ξ < 2.(78)

For the case cosφ < 0 and | cosφ| > δ the estimate (78) can be obtained in the
similar manner. Thus, we have shown that

χ(R, φ) < ξ, | cosφ| > 1

R
.(79)

Note that the estimate (79) is valid for any φ except for the close proximity of the
points π

2
and 3π

2
.

Second Case Let

| cosφ| ≤ δ.(80)

Again, let us consider cosφ > 0. Let us also assume that φ is close to π
2

rather than
3π
2

. Since arccos δ = π
2
− δ + O(δ3),

φ =
π

2
− γ, 0 < γ � 1.(81)

Then

sinφ = 1− γ2

2
+ O(γ4),(82)

and, taking into account that R = πk, for sin(2R sinφ) we have

sin(2R sinφ) = −Rγ2 + O(γ3).(83)

For φ satisfying (81) we also have

e2R cos φ + e−2R cos φ
= e2Rγ + e−2Rγ + O(γ2),(84)
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Figure 7: χ(R, φ) versus φ for two various values of R.

and

χ(R, φ) = 1 + O(γ), φ =
π

2
− γ, 0 < γ � 1.(85)

Treatment of the case φ = 3π
2

+ γ, 0 < γ � 1, as well as the case−δ < cosφ < 0,
can be proceeded in the similar manner, leading to the same estimate (85).

Thus, finally we have shown that for φ ∈ [0, 2π] and sufficiently large R = πk

χ(R, φ) < 2.(86)

Figure 7 shows χ(R, φ) versus φ for two various values of R.

8 Appendix D. Jordan’s Modified Lemma

Let f (z) be a complex-valued function of a complex argument. Let also ηn be an
infinite family of arcs defined as

ηn = {z : |z| = ρn,Re z < a}, n = 1, 2, . . . ,(87)

where a > 0, ρ1 < ρ2 < · · · < ρk < ρk+1 < · · · , and ρn →∞ as n→∞.
If f (z) tends to zero on the family of arcs (87) uniformly with respect to arg z, i.e.

if

| f (z)| ≤ ∆n, z ∈ ηn with∆n → 0 as n→ 0,(88)
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then, for any λ > 0,

lim
n→∞

∫

ηn

f (z)eλz dz = 0.(89)
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