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Abstract

Pure Type Systems (PTS) come in two flavours: domain-free systems with untyped λ-

abstractions (i.e. of the form λx .M); and domain-free systems with typed λ-abstractions

(i.e. of the form λx :A . M). Both flavours of systems are related by an erasure function |.|
that removes types from λ-abstractions. Preservation of Equational Theory, which states the

equational theories of both systems coincide through the erasure function, is a property of

functional and normalizing PTSs. In this paper we establish that Preservation of Equational

Theory fails for some non-normalizing PTSs, including the PTS with ∗ : ∗. The gist of our

argument is to exhibit a typable expression YH whose erasure |Y | is a fixpoint combinator,

but which is not a fixpoint combinator itself.

1 Introduction

The simply typed λ-calculus comes in two flavours (see figure 1):

• the simply typed λ-calculus à la Church, which features an explicitely typed

λ-abstraction, and in which one writes λx :A .M for the function of domain A

which sends x to M;

• the simply typed λ-calculus à la Curry, which features an implicitely typed

λ-abstraction, and in which one writes λx .M for the function of domain A

which sends x to M.

The two formulations are equivalent in the sense that typing and conversion are

preserved by the obvious erasure function |.| which maps λ-terms à la Church to

λ-terms à la Curry. More precisely, the following two properties hold:

Preservation of typing – if Γ � M : A then Γ � |M| : A. Conversely, if Γ � M : A

then Γ � M ′ : A for some M ′ ∈ Λ such that |M ′| = M.

Preservation of equational theory – if Γ � M : A and Γ � M ′ : A then M =β M ′ if

and only if |M| =β |M ′|.
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We assume two countably infinite sets � and V of base types and variables, respectively.

Simply typed λ-calculus à la Church

• Types � = � | �→ �
• Expressions Λ = V | Λ Λ | λV :� . Λ

• Reduction →β is the compatible closure of the contraction

(λx :A . M) N →β M{x := N}

• Conversion =β is the reflexive-symmetric-transitive closure of →β

• Typing

(x : A) ∈ Γ

Γ � x : A

Γ � M : A→ B Γ � N : A

Γ � M N : B

Γ, x : A � M : B

Γ � λx :A . M : A→ B

with the usual restrictions on contexts.

Simply typed λ-calculus à la Curry

• Types � = � | �→ �
• Expressions Λ = V | Λ Λ | λV .Λ

• Reduction →β is the compatible closure of the contraction

(λx .M) N →β M{x := N}

• Conversion =β is the reflexive-symmetric-transitive closure of →β

• Typing

(x : A) ∈ Γ

Γ � x : A

Γ �M : A→ B Γ �N : A

Γ �M N : B

Γ, x : A�M : B

Γ � λx .M : A→ B

with the usual restrictions on contexts.

Erasure

|.| : Λ→ Λ

|x| = x

|M N| = |M| |N|
|λx :A . M| = λx . |M|

Fig. 1. Simply typed λ-calculus.

The distinction between typed λ-calculi à la Church and à la Curry carries over

to more powerful type disciplines, and it is natural to study the equivalence

between the two flavours for such type disciplines. These equivalences can be

analyzed conveniently in the setting of Pure Type Systems (PTS) (Barendregt, 1992;

Geuvers & Nederhof, 1991), which provide a generic framework for the description

of typed λ-calculi à la Church, and Domain-Free Pure Type Systems (DFPTS)

(Barthe & Sørensen, 2000), which play a similar role for typed λ-calculi à la

Curry – DFPTSs are not to be confused with Type Assignment Systems (Bakel

et al., 1997). Recall that PTSs and DFPTSs are parametrized by the notion of

specification, which fixes the typing discipline under consideration. The equivalence

properties for a given specification S are stated as follows, where � and � denote

the typing relation for DFPTSs and PTSs respectively; see section 2 for further

notations.
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Preservation of typing – if Γ �S M : A then Γ �S |M| : A. Conversely, if Γ �S M : A

then Γ′ �S M ′ : A′ for some Γ′, M ′ and A′ such that |Γ′| = Γ, |M ′| = M and

|A′| = A.

Preservation of Equational Theory – if Γ �S M : A and Γ �S M ′ : A then M =β M ′

if and only if |M| =β |M ′|.

A previous analysis (Barthe & Sørensen, 2000) shows that Preservation of Typing

and Preservation of Equational Theory hold for normalizing and functional Pure

Type Systems. This leaves open the question of equivalence for functional and

non-normalizing Pure Type Systems such as λ∗ and λU−.

The main result of this note is that Preservation of Equational Theory fails for

these two systems. The failure of Preservation of Equational Theory for U− is shown

by defining an expression YH , that is derived from the paradox of Hurkens (1995),

and verifies:

1. the domain free erasure Y of YH is a fixpoint combinator, i.e. verifies Y A f =β

f (Y A f);

2. YH is not a fixpoint combinator, i.e. does not satisfy YH A f =β f (YH A f).

Establishing the second fact is elementary but tedious: it requires to characterize

the possible reducts of YH A f. Using an idea of Geuvers & Werner (1994), we also

provide a direct proof of the failure of Preservation of Equational Theory for λ∗.
In particular, the proof only requires to know that Y is a fixpoint combinator and

does not analyze the possible reducts of YH A f.

The other results of this note are concerned with a variant of PTSs and

DFPTSs, where the convertibility relation is extended to βη-equality and βη-equality,

respectively. We show that:

• confluence of βη-reduction on typable terms may fail for a variant of PTSs

with βη-conversion;

• subject reduction η-reduction may fail for a variant of DFPTSs with βη-

conversion.

For this second result, we use the fact that strengthening may fail for DFPTSs. The

latter, which is shown in Lemma 6, answers in the negative another question left

open in Barthe & Sørensen (2000).

Contents This note is organized as follows. In section 2, we briefly review the notions

of PTSs and DFPTSs, and the erasure function that connects the two frameworks.

In section 3, we present the looping combinator YH associated to Hurkens’ paradox

in λU−, and show that its erasure Y is a fixpoint combinator. In section 4, we

establish the failure of Preservation of Equational Theory for λU− and λ∗. In

section 5, we derive from our results that βη-reduction is not confluent on legal

terms of the variant of λ∗, where the conversion rule is based on βη-convertibility.

Finally, we conclude in section 6. In the appendix we prove that a restricted form

of strengthening holds for DFPTSs and that it implies soundness of DFPTSs with

βη-conversion.
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Preliminaries We assume the reader to be familiar with λ-calculus (Barendregt, 1984)

and abstract rewriting systems (Klop, 1992). In particular, we use the following

standard notation and terminology of abstract rewriting systems: we let →ij denote

the union of two relations →i and →j; we let �+
i , �i, and =i denote the transitive,

reflexive-transitive, and reflexive-symmetric-transitive closure of →i respectively; we

let ↓i denote the composition of �i with its converse, i.e. a ↓i b if there exists c such

that a �i c and b �i c; as usual, we say that →i is confluent if =i and ↓i coincide.

Finally, we say that:

• a is in normal form w.r.t. →i, written a ∈ NFi, if there is no b s.t. a→i b;

• a is weakly normalizing w.r.t.→i, written a ∈ WNi, if a �i b for some b ∈ NFi;

• a is strongly normalizing w.r.t. →i, written a ∈ SNi, if all reduction sequences

starting from a are finite.

2 (Domain-Free) Pure Type Systems

We review the definition of DFPTSs (Barthe & Sørensen, 2000) and PTSms

(Barendregt, 1992; Geuvers & Nederhof, 1991).

2.1 Specifications

Both frameworks are parameterized by the notion of specification.

Definition 1

A specification is a triple S = (S,A,R) where

1. S is a set of sorts;

2. A ⊆ S×S is a set of axioms;

3. R ⊆ S×S×S is a set of rules.

As usual, a rule of form (s1, s2, s2) is also written (s1, s2).

The analysis of Barthe & Sørensen (2000) focuses on functional specifications.

Definition 2

S = (S,A,R) is functional if for every s1, s2, s
′
2, s3, s

′
3 ∈ S,

(s1, s2) ∈ A ∧ (s1, s
′
2) ∈ A ⇒ s2 = s′2

(s1, s2, s3) ∈ R ∧ (s1, s2, s
′
3) ∈ R ⇒ s3 = s′3

In this paper, our analysis focuses on the (functional) specifications ∗ and U−.

These specifications respectively correspond to Martin-Löf’s original inconsistent

type theory (Martin-Löf, 1971) and to Girard’s System U− (Girard, 1972).

Definition 3

1. The specification U− = (SU− ,AU− ,RU− ) is defined by the clauses:

• SU− = {∗,�,�}
• AU− = {(∗,�), (�,�)}
• RU− = {(∗, ∗), (�,�), (�, ∗), (�,�)}

2. The specification ∗ is defined by the triple ({∗}, {(∗, ∗)}, {(∗, ∗)}).
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The specifications U− and ∗ are examples of impredicative specifications, i.e.

specifications that contain as a subsystem the polymorphic λ-calculus of Girard and

Reynolds.

Definition 4

A specification S = (S,A,R) is impredicative w.r.t. the sorts ∗ and � if ∗ : � is an

axiom and (∗, ∗) and (�, ∗) are rules.

In the sequel, we shall often talk about impredicative specifications, leaving ∗ and

� implicit.

2.2 Domain-Free Pure Type Systems

Every specification S = (S,A,R) yields a DFPTS λS as follows.

Definition 5

Let V denote a fixed, countably infinite, set of variables.

1. The set E of (domain-free) expressions is given by the abstract syntax

E = V | S | E E | λV .E | ΠV : E.E

We use A→ B as an abbreviation for Πx:A. B when x �∈ FV(B).

2. A (domain-free) context is a finite sequence of assertions of the form x:A with

x ∈ V and A ∈ E. If Γ = x1:A1, . . . , xn:An is a context, we let dom(Γ) denote

the set {x1, . . . , xn}.
3. β-reduction on E is defined as the compatible closure of the contraction rule

(λx.M) N →β M{x := N}

where •{• := •} is the obvious substitution operator.

4. The derivability relation � is given by the rules of figure 2. If Γ � A : B then

Γ, A and B are legal. Sometimes we write Γ �S M : A instead of Γ � M : A

to make the dependence of the derivability relation on S explicit.

Barthe & Sørensen (2000) show that DFPTSs enjoy most, but not all, properties

properties of PTSs. We complete their analysis by showing that strengthening fails

for some DFPTSs; in contrast, recall that strengthening holds for an arbitrary Pure

Type System (van Benthem Jutting, 1993).

Lemma 6

There exist specifications S for which the following implication fails:

Γ1, x : A,Γ2 �S M : B ∧ x �∈ FV(Γ2)∪FV(M)∪FV(B) ⇒ Γ1,Γ2 �S M : B

Proof

Consider the PTS λE given by the specification E = (SE,AE,RE):
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(axiom) � s1 : s2 if (s1, s2) ∈ A

(start)
Γ �A : s

Γ, x:A� x : A
if x �∈ dom(Γ)

(weakening)
Γ �A : B Γ �C : s

Γ, x:C �A : B
if x �∈ dom(Γ)

(product)
Γ �A : s1 Γ, x:A�B : s2

Γ � (Πx:A. B) : s3
if (s1, s2, s3) ∈ R

(application)
Γ �F : (Πx:A. B) Γ � a : A

Γ �F a : B{x := a}

(abstraction)
Γ, x:A� b : B Γ � (Πx:A. B) : s

Γ � λx . b : Πx:A. B

(conversion)
Γ �A : B Γ �B′ : s

Γ �A : B′
if B =β B′

Fig. 2. Domain-Free Pure Type Systems.

• SE = {∗s,�s, ∗p,�p}
• AE = {(∗s,�s), (∗p,�p)}
• RE = {(∗s, ∗s), (∗s, ∗p)}

Now take M = (λz . w) λy . y, and Γ1 = B : ∗p, w : B, and A = ∗s and Γ2 to be the

empty sequence.

• B : ∗p, w : B, x : ∗s �S M : B is derivable, with intermediate steps

B : ∗p, w : B, x : ∗s �S λz . w : (x→ x)→ B

B : ∗p, w : B, x : ∗s �S λy . y : x→ x

• B : ∗p, w : B �S M : B is not derivable because there is no C such that

B : ∗p, w : B �S λy . y : C is derivable.

�

On the positive side, we show in Appendix B that strengthening holds for M ∈NFβ .

2.3 Pure Type Systems

Every specification S = (S,A,R) yields a Pure Type System λS as follows.

Definition 7

Let V denote a fixed, countably infinite, set of variables.

1. The set E of (domain-full) expressions is given by the abstract syntax:

E = V | S | EE | λV : E.E | ΠV : E.E

We use A→ B as an abbreviation for Πx:A. B when x �∈ FV(B).
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2. A (domain-full) context is a finite sequence of assertions of the form x:A with

x ∈ V and A ∈ E. If Γ = x1:A1, . . . , xn:An is a context, we let dom(Γ) denote

the set {x1, . . . , xn}.
3. β-reduction →β on E is defined as the compatible closure of the contraction

(λx : A.M) N →β M{x := N}

where •{• := •} is the obvious substitution operator.

4. The derivability relation � is given by the rules of figure 2, except for the

(abstraction) rule which becomes

Γ, x:A � b : B Γ � (Πx:A. B) : s

Γ � λx :A . b : Πx:A. B

and the (conversion) rule which becomes

Γ � A : B Γ � B′ : s

Γ � A : B′
if B =β B′

We adopt the same conventions as for domain-free derivability.

In the sequel, we focus on normalizing PTSs.

Definition 8

1. A PTS λS is β-weakly normalizing (or normalizing for short) if

Γ � M : A ⇒ M ∈ WN(β)

2. A PTS λS is β-weakly normalizing on types (or type-normalizing for short) if

[Γ � M : s ∧ s ∈ S] ⇒ M ∈ WN(β)

Most systems that appear in the literature are normalizing, but the PTSs λU− and

λ∗ are not. In fact, these two systems are well-known examples of inconsistent PTSs,

i.e. systems for which one can construct an expression H such that Γ � H : Πα:∗. ∗,
see Girard (1972) for the original construction. Such an expression H is a proof

of inconsistency, or a paradox, because Πα: ∗. α is the encoding of falsity in these

systems. As is well-known, every inconsistent PTS is also non-normalizing hence

λU− and λ∗ are non-normalizing. However, λU− is type-normalizing.

2.4 Erasure and equivalence properties

There is an obvious erasure function |.| : E → E which removes domains from

λ-abstractions:

|x| = x

|s| = s

|M N| = |M| |N|
|λx :A . M| = λx . |M|
|Πx:A. B| = Πx: |A|. |B|

|.| can be extended to contexts in the obvious way and preserves typing in the sense

that for every specification S,

Γ � M : A ⇒ |Γ| � |M| : |A|
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The erasure function is useful for stating the equivalence properties between PTSs

and DFPTSs.

Preservation of Typing A specification S enjoys Preservation of Typing, written

PTY(S), if, for every derivable judgement Γ �S M : A there exists a derivable

judgement Γ′ �S M ′ : A′ with |Γ′| = Γ, |M ′| = M and |A′| = A.

Preservation of Equational Theory A specification S enjoys Preservation of Equa-

tional Theory, written PET(S), if:

[Γ �λS M : A ∧ Γ �λS N : A ∧ |M|= β |N|] ⇒ M = βN

Lemma 9

A specification S enjoys Preservation of Equational Theory iff

[Γ �λS M : A ∧ Γ �λS N : A ∧ |M| = |N|] ⇒ M =β N

Proof

Only the reverse implication is not trivial. So assume

Γ �λS M : A ∧ Γ �λS N : A ∧ |M| =β |N|

By confluence of β-reduction, |M| =β |N| iff |M|�β P and |N|�β P . We proceed

by induction on the length of the reduction sequences. In case the length of both

sequences is 0, we are done by assumption. Otherwise one reduction sequence, say

that of |M|, is of the form |M| →β M ′ �β P . Now there exists M ′′ ∈ E such that

M →β M ′′ and |M ′′| = M ′. By Subject Reduction Γ �λS M ′′ : A so we can apply our

induction hypothesis to conlude M ′′ =β M ′, from which M =β M ′ follows. �

A previous analysis (Barthe & Sørensen, 2000) establishes the equivalence prop-

erties for some classes of functional PTSs.

Proposition 10

Let λS be a functional PTS.

1. If λS is normalizing then PET(S).

2. If λS is type-normalizing then PTY(S).

The question arises whether Preservation of Equational Theory holds for non-

normalizing PTSs. In section 4 we give a negative answer by showing that erasure

does not reflect the equational theory of λU− and λ∗. That is, we show ¬PET(U−)

and ¬PET(∗).

3 A fixpoint combinator for λU−

We define an expression YH that is a looping combinator, but not a fixpoint

combinator for λU−. Furthermore the erasure Y of YH is a fixpoint combinator

for λU−. The expression YH is derived from Hurkens’ paradox for λU− (Hurkens,

1995).
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3.1 Fixpoint and looping combinators

We begin by reviewing the notions of fixpoint and looping combinators. The

definitions are given for DFPTSs, but they adapt readily to PTSs.

Definition 11

Let S = (S,A,R) be an impredicative specification.

1. A fixpoint combinator is an expression Y such that

�S Y : ΠA:∗. (A→ A)→ A

and Y A f =β f (Y A f) for every A, f ∈ E (it would be equivalent to require

A, f ∈ V ). We write FIX(λS) if there exists a fixpoint combinator in λS.

2. A looping combinator is a family of expressions (Yn)n∈IN such that for every

i ∈ IN

�S Yi : ΠA:∗. (A→ A)→ A

and Yn A f =β f (Yn+1 A f) for every A, f ∈ E (it would be equivalent to

require A, f ∈ V ). By abuse of notation, we say that an expression Y is a

looping combinator if there exists a looping combinator (Yn)n∈IN with Y = Y0.

We write LOOP(λS) if there exists a looping combinator in λS.

The notion of looping combinator originates from the work of Meyer & Reinhold

(1986), who suggested a method to transform Girard’s paradox in λ∗ (Girard, 1972)

into a fixpoint combinator for λ∗. This transformation was carried out by Howe

(1987), who also established that the resulting term is in fact a looping combinator

and not a fixpoint combinator; this is closely connected to the fact that the term

G does not reduce to itself, but to a more complicated term (Coquand, 1986).

However, the existence of a looping combinator is enough to get undecidability

of type checking in λ∗, see Reinhold (1989) which also provides an interesting

account of related work up to 1989. More recently, Coquand & Herbelin (1994)

presented a systematic way to show the existence of a looping combinator in so-

called inconsistent logical PTSs, and showed that under certain conditions these

inconsistent logical PTSs have undecidable type-checking.

3.2 PET, fixpoint and looping combinators

Erasure preserves fixpoint and looping combinators (Barthe & Sørensen, 2000).

Lemma 12

Let S be an impredicative specification.

1. If FIX(λS) then FIX(λS).

2. If LOOP(λS) then LOOP(λS).

A form of converse holds for those specifications that enjoy Preservation of

Equational Theory.

Lemma 13

Let S be an impredicative specification such that PET(S).
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1. If Γ �S Y : ΠA:∗. (A→ A)→ A and |Y | is a fixpoint combinator in λS then

Y is a fixpoint combinator in λS.

2. If Γ �S Y : ΠA:∗. (A→ A)→ A and |Y | is a looping combinator in λS then

Y is a looping combinator in λS.

Proof

We only prove 1, but 2 is proved in a similar way. Assume that Γ � Y : ΠA:∗. (A→
A)→ A and |Y | is a fixpoint combinator in λS. Clearly |Y A f| =β |f (Y A f)| for

every A, f ∈ E. It follows from PET(S) that Y A f =β f (Y A f) so that Y is a

fixpoint combinator for λS. �

3.3 A fixpoint combinator for λU−

Hurkens (1995) presents a remarkably simple paradox H for λU−, with the striking

property that H reduces to itself (non-trivially). One can transform H into a looping

combinator YH by using the idea of Meyer and Reinhold. In a nutshell, their idea is

to replace ¬ φ by φ→ A, where A is a fresh type variable, and to introduce a fresh

function symbol f of type A→ A at appropriate places in H .

Definition 14

1. The (domain-full) expression YH is defined as λA :∗ . λf :A→ A . L R, where L

and R are given in figure 3. One has �U− YH : ΠA:∗. (A→ A)→ A.

2. The (domain-free) expression Y is defined as |YH |. One has �U− Y : ΠA:

∗. (A→ A)→ A.

As already noted by Geuvers and Pollack in 1994, Y is a fixpoint combinator for

λU−. However, YH is a looping combinator but not a fixpoint combinator for λU−.

Theorem 15

1. Y is a fixpoint combinator for λU−.

2. YH is a looping combinator for λU−.

3. YH is not a fixpoint combinator for λU−.

Proof

1. We look at the corresponding domain free erasure of the terms of figure 3. By

abuse of notation we write B, C and ρ for |B|, |C| and |ρ|, respectively. We

have:

Y = λA. λf. L R

L = λd. d B M (λp. d (λy. p (ρ y)))

M = λx. λk. λl. f (l B k (λp. l (λy. p (ρ y))))

R = λp. λh. h C (λx. h (ρ x))

A simple calculation shows that Y is a fixpoint combinator:

Y A f �β L R

→β R B M (λp. R (λy. p (ρ y)))

→β R B M R
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All terms are given with their types in the context A : ∗, f : A→ A:

Preliminary definitions

P : �→ � = λX : �. X → ∗
P2 : �→ � = λX : �.P (P X)

¬ : ∗ → ∗ = λφ : ∗. φ→ A

Definition of a paradoxical universe

U : � = ΠX : �. ((P2 X)→ X)→ (P2 X)

τ : (P2 U)→ U = λt : P2 U. λX : �. λg : (P2 X)→ X. λp : P X.

t (λx : U. p (g (x X g)))

σ : U → (P2 U) = λs : U. s U τ

ρ : U → U = λy : U. τ (σ y)

Intermediate Definitions

E : ∗ = Πp : P U. (σ x p)→ p (τ (σ x))

Q : P (P U) = λp : P U. Πx : U. (σ x p)→ (p x)

B : P U = λx : U. ¬(E x)

C : U = τ Q

D : ∗ = Πp : P U. Q p→ p C

Definition of the paradox

M : Q B = λx : U. λk : σ x B. λl : E.

f (l B k (λp : P U. l (λy : U. p (ρ y))))

L : ¬D = λd : D. d B M (λp : P U. d (λy : U. p (ρ y)))

R : D = λp : PU. λh : Q p. h C (λx : U. h (ρ x))

Fig. 3. The expression YH .

�β M C (λy. M (ρ y)) R

→β M C M R

�β f (R B M (λp. R (λy. p (ρ y))))

→β f (R B M R)

As the reduction sequence contains Y A f �β R B M R as a subsequence,

one concludes that Y A f =β f (Y A f).

2. By a simple calculation.

3. See Appendix A.

�

The results adapt readily to λ∗ and λ∗.

Proposition 16

Let Y ′H and Y ′ be the expressions obtained from YH and Y by replacing every

occurence of � by ∗.

1. Y ′ is a fixpoint combinator for λ∗.
2. Y ′H is a looping combinator for λ∗.
3. Y ′H is not a fixpoint combinator for λ∗.

Proof

One can repeat the calculations and analyses of Theorem 15. Alternatively, one can

derive 1 and 2 from Theorem 15.1 and Theorem 15.2 by noting that Y ′ and Y ′H
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are the images of Y and YH under the unique PTS-morphism from U− to ∗ and

by using the fact that PTS-morphisms preserve typing and convertibility (e.g. see

Geuvers (1993)). �

In the sequel, we blur the distinction between Y and Y ′ (resp. YH and Y ′H ), and

simply write Y (resp. YH ) for both.

4 Applications to non-preservation of equational theories

The results of the previous section imply that Preservation of Equational Theory

fails both for U− and ∗.

Theorem 17

1. ¬PET(U−)

2. ¬PET(∗)

Proof

1. Assume PET(U−). By Lemma 13.1 and Theorem 15.1, YH is a fixpoint

combinator for λU−, which contradicts Theorem 15.3.

2. Proceed as in 1 or use a more direct argument that does not rely on

Proposition 16.3, whose proof is extremly tedious. The direct proof proceeds

in two steps: first, one proves that PET(∗) ⇒ FIX(λ∗) as in 1 above. Then

one uses FIX(λ∗) ⇒ ¬ PET(∗), see Lemma 18 below, to conclude that

PET(∗)⇒ ¬PET(∗), hence ¬PET(∗).
�

The next lemma, which is used in the proof of Theorem 17, is adapted from

Geuvers & Werner (1994) – we review their original argument in section 5.

Lemma 18

FIX(λ∗)⇒ ¬ PET(∗)

Proof

Assume that Y is a fixpoint combinator in λ∗. Then let Γ = α : ∗, α′ : ∗, δ : ∗ and

define

A = Y ∗ (λε : ∗. ε→ (α→ α)→ δ)

A′ = Y ∗ (λε : ∗. ε→ (α′ → α′)→ δ)

By definition of a fixpoint combinator, one has

A =β A→ (α→ α)→ δ

A′ =β A′ → (α′ → α′)→ δ

Now let

M = λy : A. y y

M ′ = λy : A′. y y

N = M M (λz : α. z)

N ′ = M ′ M ′ (λz : α′. z)

Clearly

|N| = (λy. y y) (λy. y y) (λz. z) = |N ′|
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but we do not have N =β N ′. Indeed, every β-reduct of N is of the form

(λy : A1. y y) (λy : A2. y y) (λz : α. z)

and similarly every β-reduct of N ′ is of the form

(λy : A1. y y) (λy : A2. y y) (λz : α′. z)

so N and N ′ cannot have a common reduct under β-reduction. By confluence of

β-reduction, it follows that N and N ′ are not β-convertible. �

5 Applications to non-confluence of βη-reduction in ∗ : ∗

5.1 Definitions and general results

Following Geuvers (1992, 1993), we associate to every specification S an Extensional

Pure Type System λβηS whose conversion rule is modified to deal with a richer

convertibility relation that includes η-conversion.

Definition 19
1. η-reduction →η on E is defined as the compatible closure of the contraction

λx :A . M x →η M if x �∈ FV(M)

2. βη-reduction →βη is defined as →β ∪ →η .
3. The derivability relation �βη is given by the rules of PTSs, except for the

(conversion) rule which becomes

Γ�βη A : B Γ�βη B′ : s
Γ�βη A : B′

if B =βη B
′

We adopt the same conventions as for other derivability relations.

The following well-known example, due to Nederpelt, shows that βη-reduction is

not confluent on the set E of expressions

λx :A . M η ← λx :B . λx :A . M x →β λx :B . M

One may wonder if confluence holds for legal terms.

Definition 20
A Pure Type System λβηS enjoys confluence of βη-reduction on legal terms, written

CON(λβηS), if
[
Γ �βηS M : A ∧ Γ �βηS M ′ : A ∧ M =βη N

]
⇒ M ↓βη N

Geuvers (1992; 1993) showed CON(λβηS) for functional and β-weakly normalizing

PTSs λβηS, and also CON(λβηU), where the specification U is obtained from U− by

adding the rule (�, ∗); in fact, Geuvers’ argument for λβηU also applies to λβηU−.

Summarizing

Theorem 21 (Geuvers)
1. If λβηS is functional and β-weakly normalizing, then CON(λβηS).
2. CON(λβηU−) and CON(λβηU).

We can also drop the assumption about functionality in the first item of the above

theorem, see (Barthe, 1999).
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5.2 Non-confluence of βη-reduction in λβη∗

The question arises whether a similar result holds for λβη∗. Using Theorem 15, we

give a negative answer to the question by establishing ¬CON(λβη∗). Our proof relies

on two observations:

• the first observation, due to Geuvers (1993, Lemma 4.4.16, p. 98), is that Neder-

pelt’s counter-example provides an immediate proof that any two domain-

full expressions whose erasure β-convertible are themselves βη-convertible.

Lemma 22 is a corollary of Geuvers’ observation.

Lemma 22 (Geuvers)

For every M,N ∈ E,

|M| =β |N| ⇒ M =βη N

This observation allows to deduce that λβηU− and λβη∗ have a fixpoint com-

binator.

Lemma 23

FIX(λβηU−) and FIX(λβη∗).

Proof

We only prove FIX(λβηU−) as the proof of FIX(λβη∗) is similar. By Theorem 15,

the expression YH is such that |YH | = Y is a fixpoint combinator and verifies

�U− YH : ΠA : ∗. (A → A) → A. The derivability relation �βη extends the

derivability relation �, hence �βηU− YH : ΠA: ∗. (A → A) → A. Furthermore,

assume A, f ∈ E. We have

|YH A f| = Y A f =β f (Y A f) = |f (YH A f)|

and hence by Lemma 22, YH A f =βη f (YH A f). It follows that YH is a

fixpoint combinator for λβηU−. �

• the second observation, due to Geuvers & Werner (1994), is that CON(λβη∗)
and FIX(λβη∗) exclude each other. The proof uses the definitions of Lemma 18

– recall that the proof of the latter is an adaptation of Geuvers and Werner’s

original proof of this lemma.

Lemma 24 (Geuvers and Werner)

FIX(λβη∗) ⇒ ¬CON(λβη∗)

Proof

Observe that the forms (λy : A1. y y) (λy : A2. y y) (λz : α. z) and (λy :

A1. y y) (λy : A2. y y) (λz : α′. z) are closed under βη-reduction so N and N ′

cannot have a common reduct under βη-reduction. However |N| = |N ′|, hence

by Lemma 22, N =βη N
′. �

The non-confluence of βη-reduction on legal terms of λβη∗ is an immediate corollary

of Lemmas 23 and 24.

Corollary 25

¬CON(λβη∗)
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5.3 Domain-Free Pure Type Systems with βη-conversion?

Corollary 25 and more generally the difficulties with βη-reduction in a domain-full

setting make it tempting to switch to a domain-free setting, where confluence of

βη-reduction holds. Every specification S yields a DFPTS with βη-conversion λβηS

as follows.

Definition 26

1. η-reduction →η on E is defined as the compatible closure of the contraction

λx .M x →η M if x �∈ FV(M)

2. βη-reduction →βη is defined as →β ∪ →η .

3. The derivability relation �βη is given by the rules of DFPTSs, except for the

(conversion) rule which becomes

Γ �βη A : B Γ �βη B′ : s

Γ �βη A : B′
if B =βη B

′

We adopt the same conventions as for other derivability relations.

Unfortunately, subject reduction fails for some DFPTSs with βη-conversion.

Lemma 27

There exist specifications S for which the following implication fails:

Γ �
βη

S M : B ∧ M →η M
′ ⇒ Γ �

βη

S M ′ : B

Proof

Consider the PTS λβηF given by the specification F = (SF ,AF ,RF ):

• SF = {∗,�,�}
• AF = {(∗,�)}
• RF = {(∗, ∗), (�, ∗,�), (∗,�)}

Now set ⊥ = ΠA:∗. A and M = λA . (λz . x) (λy . y) A, and M ′ = (λz . x) (λy . y), and

Γ = x : ⊥ and B = ⊥. We have:

• x : ⊥ �
βη

F M : ⊥ is derivable with intermediate steps

x : ⊥A : ∗�βη λz . x : (A→ A)→ ⊥
A : ∗�βη λy . y : A→ A

• x : ⊥ �
βη

F M ′ : ⊥ is not derivable as there is no C s.t. x : ⊥�βη λy . y : C .

�

On the positive side, we show in the appendix that η-reduction holds provided

M ∈ NFβ and that DFPTSs with βη-conversion are sound.

6 Conclusion

This paper contributes to the study of fixpoint combinators in inconsistent PTSs

and resolves some of the questions that arose from previous work on DFPTSs, in
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particular the preservation of equational theory for ∗ and the existence of a fixpoint

combinator in λ∗. However, the question of the existence of a fixpoint combinator

in λ∗, i.e. FIX(λ∗), remains open.

Appendix A: proof that YH is not a fixpoint combinator

We begin with some preliminary definitions and notations. Recall that weak-head

reduction →wh is the smallest relation such that

(λx : A. P ) P ′ �R →wh P {x := P ′} �R

(Weak-head reduction differs from β-reduction by applying only at the top-level.)

Then we define for every X,Y ⊆ E the following sets and proposition:

• X Y = {H H ′ | H ∈ X ∧ H ′ ∈ Y };
• λx : X. Y = {λx : H. H ′ | H ∈ X ∧ H ′ ∈ Y };
• λx. Y = {λx : H. H ′ | H ∈ E ∧ H ′ ∈ Y };
• X =β Y iff ∃H ∈ X, H ′ ∈ Y . H =β H ′.

Next we give a necessary and sufficient condition for two expressions to be β-

convertible.

Definition 28

Let M,M ′ ∈ E. We say that M ∼M ′ if:

• M is of the form P0 . . . Pk ,

• M ′ is of the form P ′0 . . . P ′k ,

• both P0 and P ′0 are not applications,

• Pi =β Pi for 1 � i � k.

The next fact follows from the standardization theorem.

Fact

For every pseudo-terms M,M ′ ∈ E, M =β M ′ iff there exists N,N ′ ∈ E such that

N ∼ N ′ ∧ M �wh N ∧ M ′ �wh N
′

We shall use this characterization to show that YH A f �=β f (YH A f). We first

define:

N = {H ∈ E | H �wh λk. λl. f (l B k (λp. l (λy. p (ρ y))))}
S = {H ∈ E | H �wh λh. h C (λx. h (ρ x))}

Sn(p) = {H ∈ E | H �wh λh : Qn(p). h C (λx. h (ρ x))}

where

Q0(p) = Qp

Qn+1(p) = Qn(ρ p)

Note that for Qm(p) =β Qn(p) iff m = n.
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Lemma 29

S (λx .N) (λp. Sm(p)) =β S (λx .N) (λp. Sn(p))⇔ m = n

Proof

Consider the weak-head reduction sequence starting from a term of the form:

S (λx .N) (λp. Sn(p))

By a direct inspection it follows that the only reducts appearing in such a sequence

are of the form:

• S (λx .N) (λp. Sn(p));

• X (λx .N) (λp . Sn(p));

• (λl. f (l B (λx .N) (λp. l (λy. p (ρ y))))) (λp. Sn(p));

• f (S (λx .N) (λp. Sn+1(p))).

As λp. Sm(p) =β λp. Sn(p) iff m = n, the lemma follows from the fact. �

Now to conclude that

S (λx .N) (λp. S0(p)) �=β f (S (λx .N) (λp. S0(p)))

it is enough to notice that

S (λx .N) (λp. S0(p)) �wh f (S (λx .N) (λp. S1(p)))

and

S (λx .N) (λp. S0(p)) �=β S (λx .N) (λp. S1(p))

from the above lemma. Finally,

YH A f �=β f (YH A f)

follows from the fact that

YH A f =β S (λx .N) (λp. S0(p))

Remark The construction of YH relies on the existence of a paradoxical universe,

that is of a type U : � and two functions σ : (U → ∗) → U and τ : U → U → ∗
such that

(σ(τ X)) y ⇔ ∃x : U. X(x) ∧ y = τ(σx)

The results of this paper are independent of the choice of a specific paradoxical

universe. In particular, to prove that YH is not a fixpoint combinator it is enough

to know that we do not have

τ(σx) �β x

which allows us to deduce that Qn(p) =β Qm(p) iff n = m. In fact, Hurkens observes

that the existence of a fixpoint combinator would follow from the existence of a

paradoxical universe s.t.

τ(σx) �β x

but it is direct to show that no such paradoxical universe exists in λU−, since all

propositions are normalizable.
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Appendix B: further remarks on strengthening and soundness in DFPTSs

Lemma 30
For every DFPTS λS:

[Γ1, x : A,Γ2�M : B∧M ∈ NFβ∧x �∈ FV(Γ2)∪FV(M)∪FV(B)] ⇒ Γ1,Γ2�M : B

Proof
The proof proceeds by induction on the structure of M ∈ NFβ . We first prove

Γ1, x : A,Γ2 � M : B

x �∈ FV(Γ2) ∪ FV(M) ∪ FV(B)

M ∈ NFβ


 ⇒ [∃B′ ∈ E. B �β B′ ∧ Γ1,Γ2 �M : B′] (&)

For it, we use the following observation

∆ � y �P : C ⇒ [∃C ′, D ∈ E. (y : D) ∈ ∆ ∧ C �β C ′ ∧ FV(C ′) ⊆ FV(D) ∪ FV(�P )]

Then we conclude as follows: assume Γ1, x : A,Γ2 � M : B with M ∈ NFβ

and x �∈ FV(Γ2) ∪ FV(M) ∪ FV(B). By correctness of types, Γ1, x : A,Γ2 � B : s

and by (&), Γ1,Γ2 �B : s. By (&) again, there exists B′ ∈ E such that B �β B′ and

Γ1,Γ2 �M : B′. By conversion, we are done. �

Define η
0
-reduction →η

0
by

λx .M x →η
0

M if M ∈ NFβ

We have

Proposition 31
If Γ �βη M : A and M →η

0
M ′ then Γ �βη M ′ : A.

Proof
Standard, using Lemma 30. �

This result is enough to ensure soundness (Geuvers & Werner, 1994) of normalizing

DFPTSs with βη-conversion, in the sense that for such systems any two well-typed

and convertible expressions are convertible through well-typed terms.

Proposition 32
Assume that λβηS is normalizing. If Γ �βη M : A and Γ �βη M ′ : A′ with M =βη M

′

then there exists M1 . . . Mn such that

M →βη M1 →βη . . . →βη Mk βη ← . . . βη ←Mn βη ←M ′

with Γ �βη Mi : A for 1 � i � k and Γ �βη Mi : A′ for k � i � n.

Proof
By confluence of βη-reduction, postponement of η-reduction and normalization of

λβηS, if M and M ′ are well-typed and M =βη M ′ then there exists M1 . . .Mn with

Mj, Ml ∈ NFβ and

M →β M1 →β . . . →β Mj →η0
. . . →η0

Mk

M ′ →β Mn →β . . . →β Ml →η0
. . . →η0

Mk

The result then follows immediately from subject reduction for β-reduction and

η
0
-reduction. �

https://doi.org/10.1017/S0956796803004726 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004726


Equational theory of non-normalizing pure type systems 155

References

Bakel, S. van, Liquori, L., Ronchi della Rocca, S. and Urzyczyn, P. (1997) Comparing cubes

of typed and type assignment systems. Ann. Pure Appl. Logic, 86(3), 267–303.

Barendregt, H. (1984) The lambda calculus: Its syntax and semantics (revised edn). Studies in

Logic and the Foundations of Mathematics, vol. 103. North-Holland.

Barendregt, H. (1992) Lambda calculi with types. In: Abramsky, S., Gabbay, D. and Maibaum,

T., editors, Handbook of Logic in Computer Science, vol. 2, pp. 117–309. Oxford Science

Publications.

Barthe, G. (1999) Existence and uniqueness of normal forms in pure type systems with

βη-conversion. In: Gottlob, G., Grandjean, E. and Seyr, K., editors, Proceedings CSL’98:

Lecture Notes in Computer Science 1584, pp. 241–259. Springer-Verlag.

Barthe, G. and Sørensen, M. H. (2000) Domain-free pure type systems. J. Functional Program.

10(5), 417–452.

Coquand, T. (1986) An analysis of Girard’s paradox. Pages 227–236 of: Proceedings of

LICS’86. IEEE Press.

Coquand, T. and Herbelin, H. (1994) A-translation and looping combinators in pure type

systems. J. Functional Program. 4(1), 77–88.

Geuvers, H. (1992) The Church-Rosser property for βη-reduction in typed λ-calculi.

Proceedings LICS’92, pp. 453–460. IEEE Press.

Geuvers, H. (1993) Logics and type systems. PhD thesis, University of Nijmegen, The

Netherlands.

Geuvers, H. and Nederhof, M. J. (1991) A modular proof of strong normalisation for the

Calculus of Constructions. J. Functional Program. 1(2), 155–189.

Geuvers, H. and Werner, B. (1994) On the Church-Rosser property for expressive type systems

and its consequence for their metatheoretic study. Proceedings LICS’94, pp. 320–329. IEEE

Press.

Girard, J.-Y. (1972) Interprétation fonctionnelle et élimination des coupures dans
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