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The heterogeneity of permeability in a porous medium considerably alters the behaviour
of density-driven flows from what is observed in a medium of homogeneous permeability,
and significantly enhances the mixing between the dense and light fluids during the flow.
In this work, we present results from laboratory experiments performed in heterogeneous
media consisting of horizontal layers of different permeabilities, investigating their effects
on gravity current flows. We find that the mixing in our heterogeneous experimental
set-ups can be O(2) greater than that in a homogeneous medium of similar depth-averaged
properties. The enhanced mixing in this setting is primarily because of transverse
gravity-driven fingers and produced blunt front, which is the direct result of the layered
structure. This enhanced rate of mixing dictates the gravity current height and length,
making the current lose its long and thin shape much faster than a comparable current
in a homogeneous medium. We discuss the experimental observations in detail and
present relevant physical interpretations. Based on the experimental measurements and
dimensionless modelling, we also derive semi-empirical formulas for predicting the
gravity current length, height and mixing in a heterogeneous medium. Results from this
work can be used in predicting the scale of mixing between different density fluids during
contaminant transport in the subsurface environment.
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1. Introduction

In porous media, gravity-driven flows result from density differences between two or
more fluids that occur during the leakage of contaminants, or seawater intrusions into
groundwater, the geological storage of CO2 and geothermal energy processes, for example.
Gravity-driven flows, which are primarily horizontal and driven by hydrostatic pressure
gradients, are commonly referred to as gravity currents. In general, natural systems are
highly heterogeneous, with the permeability field playing a significant role in determining
the paths and fate of density-driven flows.

Gravity currents in porous media have been studied extensively, both theoretically and
experimentally, in cases where the porous medium is homogeneous. Some of the early
models describing the propagation of gravity currents in homogeneous, unconfined media
in a rectilinear or asymmetric geometry are presented by Huppert (1986), Lyle et al.
(2005), Nordbotten, Celia & Bachu (2005) and others. These studies have been extended
to consider the effects of confining boundaries by Nordbotten & Celia (2006), MacMinn
et al. (2012), Pegler, Huppert & Neufeld (2014) and Zheng et al. (2015) where vertical
shear becomes significant and the effects of ambient fluid motion is taken into account.

The above studies assume that the gravity current and ambient fluid make a sharp
interface and that there is no mixing between the two fluids. However, in processes such
as seawater intrusion into groundwater miscibility plays a central role in determining the
flow. To account for the effects of miscibility, gravity currents with a diffusive interface
with the ambient in homogeneous media have been recently studied by Szulczewski &
Juanes (2013) and Sahu & Neufeld (2020). Szulczewski & Juanes (2013) studied this
problem theoretically in a confined porous medium considering fixed volumes of dense
and light fluids and assuming that mixing occurs primarily due to the molecular diffusion
or Taylor dispersion. Sahu & Neufeld (2020) performed dye-attenuation-based laboratory
experiments to study the confined problem in more detail. Based on their experimental
findings, they showed that significant mixing between the gravity current and the ambient
fluid occurs due to mechanical dispersion. To quantify the effects of mixing, they presented
an analytical model where they coined a term called ‘dispersive entrainment’ that employs
the concept of velocity-dependent mechanical dispersion in the transverse direction (Bear
1972) in a direct analogy to the turbulent entrainment in plumes or gravity currents in
an open medium (Morton, Taylor & Turner 1956; Johnson & Hogg 2013). With the help
of their analytical model, Sahu & Neufeld (2020) showed that, while the length of the
gravity current can still be described by the model of Huppert & Woods (1995), the height
profile varies as a result of transverse dispersion. They show that the volume of ambient
fluid mixed into the gravity current as a result of dispersive entrainment in an unconfined
homogeneous medium is given by

Ve = α

(
qkg′

νφ2

)2/3

t4/3, (1.1)

where α ≈ 0.01 is the dispersive entrainment coefficient obtained experimentally for the
homogeneous media, q is the volume flux, k is the permeability, g′ is the source reduced
gravity, ν is the kinematic viscosity, φ is the porosity and t is time. Sahu & Neufeld
(2020) anticipate that the value of the dispersive entrainment coefficient could be larger
in a heterogeneous medium. It is also noted that Sahu & Neufeld (2020) neglected the
longitudinal dispersion in their analytical modelling and only considered the transverse
part.

In contrast to the homogeneous systems considered previously, geological aquifers are
highly heterogeneous, with the structure of the porous medium greatly influencing the
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Gravity-driven flows and mixing in layered porous media

fate of gravity currents and their mixing. To understand the behaviour of gravity currents
in heterogeneous media, investigations have been performed theoretically (Anderson,
McLaughlin & Miller 2003; Hinton & Woods 2018, 2019) and experimentally (Huppert,
Neufeld & Strandkvist 2013; Sahu & Flynn 2017; Bharath, Sahu & Flynn 2020). Anderson
et al. (2003) used a homogenization method for averaging the effect of heterogeneity on
flow to find a solution for the flow, while Hinton & Woods (2018, 2019) studied the
effects of vertical gradients of permeability on the gravity current flow due to viscosity
and density differences, and on tracer dispersion.

Previous experimental investigations by Huppert et al. (2013) were performed in
two-layered media, where the bottom layer was of lower permeability and of finite
thickness and the overlying higher permeable layer was deep so that the flow was
unconfined. They find that, above a certain injection rate, the gravity current flows
preferentially along the high permeability upper layer, overriding the lower layer. The
critical volume flux that results in the overriding current is found empirically to be

Qc = 0.93kLg′HL

ν

(
kU

kL
− 1

)−0.34

, (1.2)

where kL and kU are the permeabilities of the lower and upper layers, respectively, and
HL is the thickness of the lower layer. The override results in gravity-driven fingers from
the overriding current penetrating into the lower layer, which consequently enhances the
mixing.

In contrast, Sahu & Flynn (2017) investigated the flow along the interface of two
semi-infinite thick layers. They found that, when the lower layer permeability is smaller
and the override occurs, the gravity current flow continues only up to a maximum
horizontal distance in the upper layer, beyond which the horizontal volume flux in the
upper gravity current is balanced by the vertically draining flux underneath and therefore
the gravity current ceases to move any further horizontally. They present a semi-empirical
relation for this run-out length

Lr = qν

kLg′
L
, (1.3)

where q is the volume flux per unit length and g′
L < g′ is the mean reduced gravity of

the draining fluid in the lower layer, which is smaller due to the mixing caused by the
gravity-driven fingers. Recently, Bharath et al. (2020) extended these investigations further
into two semi-infinitely thick layers media with an inclined interface between them, in
contrast to the horizontal interface studied by Huppert et al. (2013) and Sahu & Flynn
(2017). They found that the volume flux up-dip and down-dip along the interface are
significantly different, which results in different run-out lengths and subsequently leads
to different mixing in the lower layer.

These experiments in two-layered media demonstrate that the occurrence of flow
instabilities or local velocity gradients in a heterogeneous medium may significantly alter
the gravity current flow and enhance the mixing between the current and the ambient.
While in a homogeneous medium, the transverse mechanical dispersion is the primary
source of mixing, in layered media the mixing is dominated by the longitudinal dispersion
as a result of a larger blunt nose and vertical gravity-driven fingers, which facilitate
additional interfacial area between the dense and light fluid for mixing. Despite these
previous experimental studies, quantification of the effects of heterogeneity on the flow
and mixing remain an open question. Building upon the previous studies, we perform
new laboratory experiments to further investigate the behaviour of gravity currents in
multilayered media.
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Figure 1. Schematic of a gravity current in layered porous medium with k2, k4 > k1, k3.

In the current work, we focus on the important open question of mixing in gravity
currents in a layered porous medium. In particular, we focus on the effects of the
permeability structure and flow conditions on the flow of the gravity current and mixing.
In § 2 we begin by considering an analytical configuration of porous media, and formulate
a set of key non-dimensional parameters governing the flow. Based on new laboratory
measurements described in § 3, we derive semi-empirical correlations that quantify the
amount of mixing in a heterogeneous medium and, as a result, enable predictions of the
gravity current length and height. In § 4 we discuss the implications of the analytical and
experimental results obtained to the broader geological context and finally conclude the
work in § 5 by identifying future problems of interest.

2. Geometry and non-dimensionalization

We consider the buoyancy-driven flow of a fluid in a heterogeneous permeable structure
of vertical permeability k(z) and porosity φ(z), the structure of which is assumed to
be uniform horizontally. For analytical and experimental simplicity, we approximate
the medium with a layered series of permeabilities ki and porosities φi of thicknesses
�Zi = Zi − Zi−1 (i = 1, 2, . . . ), as shown in figure 1, where Zi indicates the height of the
top of each horizontal layer. The medium is saturated with an ambient fluid of density ρa
and concentration Ca into which a dense miscible fluid of density ρo and concentration
C0 is injected at a constant two-dimensional volumetric flow rate q. Depending on the
permeability structure, layer thicknesses, injection rate and fluid buoyancy, different flow
patterns can develop. Figure 1 depicts one such example where k2 > k1, k3, in which the
flow is focused through a high permeability layer and leads to a density inversion that is
unstable and forms gravitationally driven fingers driving mixing.

The flow of the gravity current through a medium with large vertical permeability
variations results in a non-monotonic interface, which leads to efficient mixing between
the fluids. This mixing necessarily decreases the mean concentration of the current through
dilution. We track the envelope of the injected fluid h(x, t) as it varies in space x and
time t in response to the input flux and the complex permeability structure. Here, we
define the height of the current as the vertical location where the concentration is below
a threshold concentration, which we consider to be 1 % of C0 − Ca in our experiments.
Likewise, the length L(t) of the gravity current is defined as the maximum horizontal
location where the concentration is below this threshold. A schematic height profile and
length of the current are indicated by a solid black line in figure 1. It is worth noting that
this definition implies a significant engulfment or ‘entrainment’ of ambient fluid into the
gravity current as saturated, low permeability layers are engulfed, but facilitates a mass
conserving description of the current.

Despite the macroscopic effects of the layered permeability structure and mixing
between two fluids, these flows obey Darcy’s law in all layers and satisfy the conditions of
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Gravity-driven flows and mixing in layered porous media

fluid injections and far-field pressure, and conserve mass throughout the domain. With the
aim of combining the macroscopic effects at the scale of the current and mixing behaviour
at the scale of permeability layers together into a single bulk gravity current framework,
we consider the depth-averaged porosity φ̄ and permeability k̄ based on the vertical extent
of flow domain as

φ̄(h) = 1
h

∫ h

0
φ(h) dz, (2.1)

and

k̄(h) = 1
h

∫ h

0
k(h) dz. (2.2)

This approach requires that we tediously follow the contours of the gravity currents. For
the sake of simplification, and recognizing that the natural permeable aquifers sandwiched
between impermeable rocks are usually thin compared with their horizontal extents, we
calculate the depth-averaged porosity and permeability considering the entire thickness of
the aquifer as

φ̄ = φ1Z1 + φ2(Z2 − Z1) + · · · + φN(ZN − ZN−1)

ZN
=

N∑
i=1

φi(Zi − Zi−1)

ZN
(2.3)

and

k̄ = k1Z1 + k2(Z2 − Z1) + · · · + kN(ZN − ZN−1)

ZN
=

N∑
i=1

ki(Zi − Zi−1)

ZN
. (2.4)

Here N is the total number of permeable layers in an aquifer of thickness ZN .
Based on the porosity and permeability defined in (2.3) and (2.4), respectively, we can

write Darcy’s law, mass and concentration flux boundary conditions and global solute
mass conservation, respectively, as

u = − k̄
μ

(∇p + ρgẑ
)
, (2.5)

q =
[∫ h

0
u dz

]
x=0

, (2.6)

q(C0 − Ca) =
[∫ h

0
u(C − Ca) dz

]
x=0

, (2.7)

qt(C0 − Ca)

φ̄
=

∫ L

0

∫ h

0
(C − Ca) dz dx. (2.8)

Here, μ is the viscosity, p is pressure and u = (u, w) is the velocity vector in (x, z)
coordinates as indicated in figure 1. The source volume flux q and concentration C0 are
assumed to be injected at (x, z) = (0, 0).

Gravity currents are long and thin so that the pressure is hydrostatic to leading order.
From (2.5) and (2.6), we define a characteristic buoyancy velocity U, length scale X, and
subsequently a dimensionless time t̂, gravity current length L̂ and height at the source Ĥ
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all given by

U = k̄g′

ν
, (2.9)

X = q
U

≡ νq
k̄g′ , (2.10)

t̂ = U2t
qφ̄

≡
(

k̄g′

ν

)2 t
φ̄q

, (2.11)

L̂ = L
X

, (2.12)

Ĥ = H
X

. (2.13)

Here, ν = μ/ρa is the kinematic viscosity, g′ = g(ρ0 − ρa)/ρa ≡ gβ(C0 − Ca) is the
source reduced gravity, β is the solute expansion coefficient and H(t) is the height at
the source.

The volume enclosed by the height and length of the gravity current, as indicated by
the solid line in figure 1, is considered as the total volume of the current V(t). Due to
the mixing between the injected and ambient fluids, V(t) at any time t is larger than the
injected volume qt/φ̄. On subtracting the injected volume from the total volume, we can
estimate the volume of the entrained fluid, Ve(t), that has mixed with the current over time
t either by dispersive entrainment or due to engulfment by gravity fingers

Ve = V − qt
φ̄

. (2.14)

The use of (2.10) on (2.14) yields the dimensionless entrained volume

V̂e = Ve

X2 . (2.15)

Mixing of the ambient fluid with the gravity current results in the dilution of the injected
fluid, and consequently generates a concentration gradient within the current. We consider
the gravity current as a bulk fluid, and by applying conservation of mass we define the
mean concentration of the total volume

C̄ = 1
V

∫ L

0

∫ h

0
C dz dx, (2.16)

which can be non-dimensionalized based on the initial injected concentration at the origin

Ĉ = C̄ − Ca

C0 − Ca
. (2.17)

The definition of the mean concentration in (2.16) modifies the statement of mass
conservation, (2.8), to give

qt(C0 − Ca)

φ̄
= (C̄ − Ca)

(
qt
φ̄

+ Ve

)
, (2.18)
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which, on combining with (2.11), (2.15) and (2.17), suggests that

Ĉ = t̂

t̂ + V̂e
. (2.19)

Since we anticipate V̂e(t̂) to increase monotonically in time, all the dimensionless
parameters defined above are time dependent. To explicitly quantify the effects of the
injection parameters, which are time independent, we define a dimensionless injection
number

Λ = qν

g′k̄3/2
≡ q

Uk̄1/2
, (2.20)

which gives a ratio of the injected volume flux to the pore-scale flux generated
due to buoyancy injection. Further, to be able to quantify the effects of the
permeability structures – layers thicknesses, permeability jumps and their locations Zi
(i = 1, 2, 3, . . . ) – on the gravity current flow and mixing, we define a dimensionless
‘jump factor’

J = k2

k1

Z1

Z1
+ k3

k2

Z2 − Z1

Z2
+ · · · + kN

kN−1

ZN−1 − ZN−2

ZN−1
=

N−1∑
i=1

ki+1

ki

Zi − Zi−1

Zi
, (2.21)

where N − 1 is the number of permeability jumps for N number of layers. For a
homogeneous porous medium, J = 1, while for structured or heterogeneous media each
layer is weighted proportional to its thickness and permeability jump and inversely
proportional to the distance to the injection point.

From the experimental work of Huppert et al. (2013) and Sahu & Flynn (2017), as
discussed in § 1, we know that a positive permeability jump, i.e. ki+1/ki > 1, is crucial
for resulting in an override and consequently an enhanced mixing. In case of a negative
permeability jump, i.e. ki+1/ki < 1, the change in the dynamics of the gravity current
is minimal. The jump factor in (2.21) thus quantifies the type and magnitude of the
permeability jumps. The thicknesses, Zi+1 − Zi, of the layers underlying the permeability
jumps define the size of fingers and extent of mixing. Their effects are therefore coupled
in (2.21). Huppert et al. (2013) showed that the location of the permeability jump for a
single layer plays an inverse role in the possibility of creating an override, as described
in (1.2). The jump factor in (2.21) therefore accounts for the vertical distance, Zi, of the
permeability jump from the location of the injection of the dense fluid.

From the experiments described below, we aim to investigate the effects of Λ and J over
time t̂ on the gravity current length L̂, height Ĥ, entrained volume V̂e and concentration Ĉ.

3. Experimental technique

Laboratory experiments were conducted in which the spatial and temporal evolution of
the concentration was measured using a calibrated dye-light-attenuation technique. We
injected a dense fluid at the base of a deep layered porous medium. In all cases, the
buoyancy-driven flow of the injected fluid resulted in a complex gravity current spreading
in and through the multi-layered porous media. Images captured during the experiments
were post-processed to extract the evolving concentration field from which the gravity
current height, length, entrained volume and mean concentration were deduced. These
data were then analysed against time and as a function of the input parameters. Finally,
based on the results obtained from the experiments and by interpreting these outputs with
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Transparent tank filled

with layered ballotini and

fresh water

Constant head

Discharge tank

Peristaltic pump

Dyed salt water

Figure 2. Schematic of the laboratory set-up.

the dimensionless scaling presented in § 2, empirical correlations were derived that predict
the evolution of the height and length of the gravity current and estimate the associated
mixing.

3.1. Laboratory set-up and control parameters
The laboratory set-up consisted of a transparent rectangular tank of size 200 × 20 × 1 cm3

packed with spherical glass ballotini of diameter ds = 1.0 ± 0.1 mm and dl = 3.1 ±
0.2 mm arranged in a variety of configurations detailed below. The tank was filled with
ballotini in layers of fixed thicknesses across the tank in a manner depicted in figure 2.
Owing to the different sizes of ballotini, which were comparable to the width of the tank,
porosities φs and φl, in the layers belonging to beads of diameters ds and dl, respectively,
were different due to constraints on the packings from the walls. Our measurements
suggest that φs = 0.40 ± 0.01 and φl = 0.42 ± 0.01, which are slightly greater than the
value of 0.37 that is usually reported for randomly packed spherical beads with no wall
effects (Happel & Brenner 1991). For estimating the permeability in each layer, we used
the Kozeny–Carman relation, which has been verified in our previous work to predict the
permeability within 6 % standard deviation (Sahu & Neufeld 2020). Hence

ks = d2
s

180
φ3

s

(1 − φs)2 � 9 ± 2 × 10−6 cm2, (3.1)

kl = d2
l

180
φ3

l

(1 − φl)2 � 1.2 ± 0.2 × 10−4 cm2. (3.2)

The experimental tank was initially saturated with tap water of density ρa =
0.998g cm−3. During the experiments, the water level in the tank was kept constant by an
overflow port at the top-right corner of the tank and salt water of fixed salt concentration
was injected at a constant rate through a nozzle of 5 mm diameter at the bottom-left corner
using a peristaltic pump. Due to the injection through a point nozzle, there was an initial
time taken for the injected fluid to spread uniformly in the third dimension, over the 10 mm
width of the tank. However, this time scale was much shorter than the duration of each
experiment. It is also worth noting that pulsating effects associated with the peristaltic
pump had minimal effects on our measurements due to the glass beads working as natural
dampers and the flow being in a low Reynolds number regime. For the purpose of flow
visualization and mixing estimation, a red-coloured food dye of fixed concentration was
added to the injected salt water.

A Nikon D5300 DSLR camera, with a resolution of 4200 × 2800 pixels, was used to
capture images of the experiments every 60 s. The camera settings used were aperture
f/4, shutter speed 1/100 s, ISO-200 and only the blue channel of the image was used for
processing. Uniform illumination was ensured by backlighting the experimental tank using
an LED light panel of the same dimensions as the tank.
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4 cm
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4 cm
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ds, φs, ks

dl, φl, kl
2 cm

2 cm

2 cm

4 cm

4 cm

Set-up A Set-up B Set-up C Set-up D Set-up E

Figure 3. Vertical structure of the permeability in the five different set-ups discussed.

Set-up n φ̄(±0.01) k̄(±0.33) × 10−4 (cm2) J err (%)

A 5 0.41 1.28 12.08 3.31
B 8 0.41 1.53 13.90 6.25
C 5 0.41 1.78 6.90 8.25
D 6 0.41 1.28 14.90 4.35
E 6 0.41 2.04 12.64 4.09

Table 1. A summary of the depth-averaged porosity φ and permeability k for each set-up. The jump factor J
and the image processing error err are calculated using (2.21) and (3.6), respectively.

Set-up A Set-up B Set-up C Set-up D Set-up E g′ (cm s−2) q (cm2 s−1)

A11 B11 C11 D11 — 19.23 0.14
A12 B12 C12 D12 E12 19.23 0.28
A13 B13 C13 — E13 19.23 0.42
— — C14 — — 19.23 0.56
— — — D21 — 40.52 0.14
A22 B22 C22 D22 E22 40.52 0.28
A23 B23 C23 D23 E23 40.52 0.42
A24 B24 C24 — E24 40.52 0.56
A32 B32 C32 D32 — 62.10 0.28
A33 B33 C33 D33 E33 62.10 0.42
A34 B34 C34 — E34 62.10 0.56

Table 2. A summary of the experiments performed in each set-up with corresponding source volume flux q
and source reduced gravity g′, where g′ = g(ρ0 − ρa)/ρa ≡ gβ(C0 − Ca).

Five different permeability set-ups were examined where layer thicknesses and
distributions were varied, as depicted in figure 3. The depth-averaged porosity and
permeability for each set-up were calculated using (2.3) or (2.4), where ZN = 20 cm was
the same for all set-ups but the number of layers N changed between them, as shown
in figure 3 and listed in table 1. Values obtained for the depth-averaged porosity and
permeability for each set-up are also listed in table 1. Approximately 7–10 gravity current
experiments were conducted in each set-up and in each experiment the volume flux q and
fluid density ρ0, or equivalently concentration C0, at the source were kept constant, as
recorded in table 2. In total, 42 experiments were conducted with 11 combinations of q
and ρ0.
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Figure 4. Gravity current images and their concentration maps for a representative experiment A22 from
table 2. Dashed curves are the height profiles of the gravity currents. Each individual panel is 200 × 20 cm2.
The colour map depicts Ĉ = (C − Ca)/(C0 − Ca).

3.2. Image processing and concentration maps
Sample gravity current images are shown in figure 4(a) for a representative experiment,
A22, from table 2 for set-up A at five different times. The dashed curves shown on
the individual images represent the height profiles and lengths of the gravity currents.
To measure the evolving concentration, and hence the profile of these currents, we
use calibrated images of the light intensity of the gravity current to measure the dye
concentration. The intensity of the blue channel of the images are first subtracted at each
pixel from that of the reference image. The resultant intensity matrix is then divided into
vertical stripes of fixed 20–25 pixel thicknesses across the tank. For each vertical stripe
we calculate the mean intensity of the column with vertical extent such that all values lie
within 1 % of the maximum intensity. This threshold defines the local height of the gravity
current. The individual heights are then added to produce the height profiles. Moreover, the
area engulfed by these curves is the total gravity current volume, which, after subtracting
the injected volume qt/φ̄, gives the entrained volume Ve over time t.

Figure 4(b) shows the concentration maps of the respective gravity current images
to the left. The concentration maps are generated to measure the spatial and temporal
distributions of concentration with the help of calibration experiments that yield a
functional relationship between the dye concentration and light intensity.

For the calibration experiments, the tank was uniformly saturated with the red dye in a
series of concentrations

Cd = [0, 0.05, 0.10, 0.20, 0.40, 0.60, 0.80, 1.00, 1.20] ± 0.01 g l−1. (3.3)

Images of the saturated tank were recorded with the same camera settings as discussed in
§ 3.1. Sample calibration curves for small and large beads are shown in figure 5, where
the relative intensity, I0 − I, is obtained by subtracting each image of intensity I from the
reference image of intensity I0 in which Cd = 0. The calibration curves are best explained
by a polynomial of the form

Cd = A(I0 − I) + B(I0 − I)2 g l−1, (3.4)

where A and B are the polynomial fitting coefficients. To account for small variations
in light intensity across the tank, we divided each calibration image into a series of
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Figure 5. Calibration curve: dye concentration vs image intensity, with Cd ± 0.01g l−1. These curves are
representatives of the calibration curves in the regions of larger or smaller size beads.

1 cm × 1 cm subregions, each containing roughly 200 pixels. For these subregions across
the tank, the polynomial fitting coefficients vary within A = 9.3 ± 0.5 × 10−3 g l−1

and B = 8.2 ± 1.5 × 10−5. Calibration experiments were performed separately for each
permeability set-up.

For large Péclet number (Pe) flows, it is safe to assume that the normalized dye
concentration yields the normalized solute concentration (Sahu & Flynn 2017)

Ĉ = Cd

Cd,0
, (3.5)

where Cd,0 is the reference dye concentration at the source and Ĉ is defined in (2.17). By
considering Pe = Ud̄/Dm, where U is defined in (2.9), d̄ is the mean ballotini diameter
and Dm is the effective molecular diffusion coefficient, we find in all our experiments
Pe ∼ O(102), and hence we calculate the value of solute concentration using (3.5).

The concentration maps, as shown in figure 4, are obtained by inputting the values of
relative intensity I0 − I of the gravity current images into (3.4) at individual subregions
of size similar to that in the calibration experiments. The reference intensity I0 now
corresponds to the image of the tank saturated with tap water and captured just before
the start of each experiment.

To check the accuracy of the post-processing schemes, we evaluate the conservation of
mass (2.16) and calculate the normalized percentage error at any time t as

err =
[(

Ve + qt
φ̄

)
(C̄ − Ca) − qt(C0 − Ca)

φ̄

]
100φ̄

qt(C0 − Ca)
, (3.6)

where Ve + qt/φ̄ is the volume inside the height profiles and C̄ is the mean concentration
obtained from the concentration maps. The error err is estimated at 15 different times for
each experiment. Mean errors for each set-up, for all its experiments together, are given in
table 1. The overall mean error for all 42 experiments is 5.25 %.

3.3. Experimental observation
In all the experiments, the thickness and permeability of the lowermost layer (depicted in
figure 3) and the volume flux and reduced gravity (listed in table 2) are such that q > Qc,
where Qc is the critical volume flux needed to result in an override in the second layer
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A22, q, 2g′, t1

A23, 1.5q, 2g′, t1
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A13, 1.5q, g′, t2

A23, 1.5q, 2g′, t2

A33, 1.5q, 3g′, t2

(a) (b)

Figure 6. Concentration maps comparing the effects of volume flux (a) and reduced gravity (b) at time t1 =
15 min and t2 = 20 min, respectively. Colour maps have same scales as in figure 4. Dashed curves are the height
profiles of the gravity currents. Each individual panel is 200 × 20 cm2. Details of the experiments mentioned
in the images are given in table 2.

(Huppert et al. 2013) as calculated from (1.2) with HL = Z1. Examples of the gravity
current flow in a multilayered medium and the consequent overrides and Rayleigh–Taylor
instabilities are shown in figure 4 for experiment A22.

In figure 4, at early time (t1) the gravity current has nearly the same length in the bottom
two layers. With progress in time (t2) the override length increases and gravity-driven
fingers start appearing. At intermediate time (t3) convective mixing begins in the bottom
layer, while new gravity-driven fingers keep forming. In contrast, there is no override in
the third layer because k3 > k2. At late times (t4, t5), while convective mixing continues in
the bottom layers, a new override begins in the fourth layer because k4 < k3, thus adding
further to overall mixing. Apart from general convective mixing, significant longitudinal
dispersion occurs, resulting in a blunt nose particularly in the second layer. Figure 4 shows
that transverse and longitudinal dispersion along with the override of the gravity current
is important in driving mixing.

In figure 6, the effects of injection parameters on the flow and mixing of the gravity
current are compared: volume flux q in the left panels and reduced gravity g′ in the
right panels. All parameters in the left panels have same quantitative values except q,
likewise only g′ varies in the right panels. Results from the left side panels show that, with
increasing q, the length of the override increases and the second override in the fourth
layer appears more rapidly, indicating that a higher input flux enlarges the override and
enhances the mixing. This consequently increases the overall gravity current length and
entrained volume.

In contrast, the analysis of the effects of g′ in the right side panels of figure 6 show that
the gravity current length is only mildly affected by g′, but the height is slightly larger
with smaller g′ (A13). This results in a more prominent second override that develops
gravity-driven fingers earlier than those in experiments A23 and A33. A higher degree of
mixing can therefore be achieved by decreasing the source reduced gravity.

The effects of the different permeability set-ups are compared in figure 7 for the same
injection parameters and times. The number of overrides in each set-up is as per the
number of positive permeability jumps: three overrides each in set-ups B and D, two in
set-ups A and E and only one in set-up C. The length and thickness of each override,
however, depend on the respective layer thicknesses. The overrides are thicker in set-ups
A and E, where highly permeable layers are relatively thicker than those in set-ups B and
D. These thicker overrides enhance the longitudinal dispersion due to the blunt nose. In
contrast, the magnitude of the convective mixing occurring as a result of the gravity-driven
fingering depends on the thicknesses of the underlying layers of lower permeability.
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z
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Set-up – C22

Set-up – D22

Set-up – E22

Figure 7. Concentration maps comparing the effects of permeability set-ups at time t = 25 min. Colour maps
have the same scales as in figure 4. Dashed curves are the height profiles of the gravity currents. Each individual
panel is 200 × 20 cm2. Details of the experiments mentioned in the images are given in table 2.

Therefore, the fingers are more prominent in set-up D, where the lower permeability
layer is thicker, than those in set-up E, which consists of relatively thinner layers of
lower permeability underneath. The variation observed in the flow patterns and subsequent
mixing between the set-ups based on the concentration maps suggests that there could be
a competition between the number of overriding layers and the layer thicknesses in setting
the mixing rate. These effects are quantified below in § 3.4.

The behaviour of the gravity currents in set-up C in figure 7 is distinct from other set-ups
because the bottom layer in set-up C is of higher permeability, such that there is a negative
permeability jump at the first interface from the bottom. The first override occurs only
in the third layer from the bottom, which, compared with other set-ups where the first
override occurs in the second layer, decreases the opportunity for convective fingers and
longitudinal dispersion. Therefore, a positive permeability jump is crucial for generating
an overriding current and the consequent enhancement of mixing. The concentration map
of set-up C in figure 7 also shows that a negative permeability jump results in a larger
gravity current length but smaller height and lesser mixing.

3.4. Experimental results
Measurements obtained using the post-processing schemes described in § 3.2 from
the experiments listed in table 2 are analysed below with the help of dimensionless
models presented in § 2. We begin by checking the self-similarity of the measured
data in their dimensional forms, then measure dimensionless coefficients and exponents
for the associated power laws. These coefficients are subsequently combined with the
dimensionless forms of the parameters to produce semi-empirical formulas that predict
the horizontal and vertical extents of the gravity current and associated dispersive mixing
with time.

For analysing the results from the experiments quantitatively, we plot the measured
gravity current length (L), height at the source (H) and entrained volume (Ve) vs time
(t). Sample plots are shown in figure 8 for the experiments in set-up A. We find that
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Figure 8. The log–log plots of experimental data vs time for representative set-up A: (a) gravity current length,
(b) height at the source and (c) entrained volume. The solid lines are the corresponding linear fits. The slopes
obtained from these fits for all set-ups together are listed in table 3 in index 1, with their standard deviations in
index 2.

identical experimental data in each plot exhibit power-law behaviour in time, where the
solid lines represent the power-law best fits. These suggest that the evolutions of L, H and
Ve are self-similar in t. Slopes of the solid lines are the exponents to the power laws, which
we calculate individually for each experiment along with their means. The mean values
of the slopes from all 42 experiments for length, height and entrained volume, termed
SL, SH and SV , respectively, are given in table 3 in index 1, where SL = 0.70 ± 0.05,
SH = 0.27 ± 0.04 and SV = 0.81 ± 0.07 with the standard deviations of 7.40 %, 16.32 %
and 8.86 %, respectively.

Having confirmed the self-similarity of L, H and Ve in t, we can deduce their
dimensionless correlations from (2.11)–(2.13) and (2.15):

L̂ = pLt̂SL, Ĥ = pHt̂SH , V̂e = pV t̂SV , (3.7a–c)

where pL, pH and pV are the dimensionless prefactors. Values of the prefactors are
calculated at 8–10 equally spaced times for each experiment using the measured values, as
depicted in figure 8, and the parametric values listed in tables 1 and 2. The prefactors are
plotted in panels (a,b,c,) of figure 9, where each colour represents the experiments from
individual set-ups from table 2. We see that the majority of the same coloured data remain
nearly constant horizontally, thus verifying the self-similarity of L, H and Ve on t. The
mean values of the prefactors for all 42 experiments and the standard deviations are given
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Index Parameter Length (L) Height (H) Volume (Ve)

1 S (Exponent on t) 0.70 ± 0.05 0.27 ± 0.04 0.81 ± 0.07
2 std (Standard deviation of S) 7.40 % 16.32 % 8.86 %
3 p (Prefactors pL, pH, pV ) 0.95 ± 0.17 3.33 ± 0.6 2.57 ± 0.83
4 std (Standard deviation of p) 18.45 % 18.18 % 32.16 %
5 SΛ (Exponent of p on Λ) 0.3 [≈1 − SL] −0.3 [≈−SH] −0.2 [≈SV − 1]
6 Sj (Exponent of p on J) −0.27 [≈SL − 1] 0.27 [≈SH] 0.82 [≈SV ]
7 p0 (Reduced prefactors) 0.63 ± 0.03 4.73 ± 0.33 0.64 ± 0.10
8 std (Standard deviation of p0) 5.36 % 6.89 % 16.47 %
9 S (Homogeneous medium) 0.67 0.33 1.33
10 p0 = p (Homogeneous medium) 1.48 1.29 α ≈ 0.01
11 SΛ (Homogeneous medium) 0 0 0
12 Sj (Homogeneous medium) 0 0 0

Table 3. Values of the exponents and prefactors obtained from the experiments. The exponents represent
S = (SL, SH, SV ), SΛ = (SΛL , SΛH , SΛV ) and Sj = (SjL , SjH , SjV ). Likewise, the prefactors represent p =
( pL, pH, pV ) and p0 = ( p0L , p0H , p0V ). In indices 9 and 10, analytical values for a homogeneous medium are
given for comparison which are derived through similarity solutions (Huppert & Woods 1995; Sahu & Neufeld
2020), where the dispersive entrainment coefficient α ≈ 0.01. The parameters listed in indices 11 and 12 are
assumed to be non-existent in case of a homogeneous medium.

in table 3 in index 3 and index 4, respectively. Large standard deviations, i.e. std > 18 %,
in all three cases are the result of significant vertical distributions of the data between the
experiments in figure 9(a–c). This implies that pL, pH and pV depend on the experimental
variables from table 2 – volume flux q and reduced gravity g′ – or on the set-up parameters
from table 1 – permeability k and jump factor J.

We employ the dimensionless variable Λ = qν/g′k3/2, defined in (2.20), to find the
dependence of pL, pH and pV on the injection parameters and medium properties. The
prefactors from panels (a,b,c) of figure 9 are averaged over time for each experiment and
analysed against Λ. We find that the correlations are best fit by the power laws

pL ∝ ΛSΛL , pH ∝ ΛSΛH , pV ∝ ΛSΛV , (3.8a–c)

with the slopes SΛL = 0.3, SΛH = −0.3 and SΛV = −0.2. The results are shown in panels
(d,e,f ) of figure 9, where individual circles represent each experiment and identically
coloured groups represent each set-up. The prefactors from each set-up are segregated
vertically, indicating that the prefactors vary between the set-ups but are constant within
each set-up. The segregation is found to be more prominent for the entrained volume than
those for the length and height of the currents.

To account for the effects of permeability structure, we introduce the dimensionless
jump factor J from (2.21) into the prefactors. We take the mean of the prefactors for each
set-up from the middle panels in figure 9 and analyse them against the values of J from
table 1. The best fitted data are presented in panels (g,h,i) of figure 9, where the prefactors
now promisingly coincide with the constant lines represented by p0L = 0.63, p0H = 4.73
and p0V = 0.64, respectively, in the left, middle and right panels. The prefactors from
(3.8a–c) can therefore be expanded as

pL = p0LΛ
SΛL JSjL , pH = p0HΛSΛH JSjH , pV = p0V ΛSΛV JSjV , (3.9a–c)

where the values of the exponents SΛL , SΛH and SΛV and SjL , SjH and SjV and constants
p0L , p0H and p0V are listed in table 3 in indices 5, 6 and 7, respectively.
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Figure 9. The pre factors pL (a,d,g), pH (b,e,h) and pV (c, f,i) obtained from (3.7a–c) are plotted against time
t in (a–c) for all experiments with approximately 10 equi-spanned times from each experiment. (d–f ) The
mean values of pL, pH and pV for each experiment are normalized with the dimensionless variable Λ from
(2.20) and exponents SΛ (SΛL , SΛH , SΛV ) from table 3 and plotted against Λ, where specific colours represent
the experiments from the same set-up. (g–i) Show the constants p0 ( p0L , p0H , p0V ) from (3.9a–c) which also
depict the convergence obtained in p after considering the effects of the jump factor J, whose values are taken
from table 1 for each set-up. The mean values of p0 and their standard deviations for all 42 experiments for
each parameter (L, H, Ve) are listed in table 3 in index 7 and index 8.

In index 8 of table 3, the standard deviations of the constants p0L , p0H and p0V are given,
which are std < 7 % for the former two and std < 17 % for the latter. These values, in
comparison with the standard deviations of pL, pH and pV in index 4, show significant
improvement. This is also in line with the agreement we see in panels (g,h,i) of figure 9
compared with that in panels (a,b,c).

3.5. Semi-empirical models
A straightforward substitution of (3.9a–c) into (3.7a–c) gives

L̂ = p0LΛ
SΛL JSjL t̂SL, Ĥ = p0HΛSΛH JSjH t̂SH , V̂e = p0V ΛSΛV JSjV t̂SV . (3.10a–c)

Now, the conversion of the dimensionless L̂, Ĥ and V̂e in (3.10a–c) into their dimensional
forms with the help of (2.9)–(2.13), (2.15) and (2.20) yields the gravity current length,
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height and entrained volume

L = p0LJSjL q(1−SL+SΛL )k̄(2SL−1−3SΛL/2)

(
g′

ν

)(2SL−1−SΛL ) (
t
φ̄

)SL

, (3.11)

H = p0H JSjH q(1−SH+SΛH )k̄(2SH−1−3SΛH /2)

(
g′

ν

)(2SH−1−SΛH ) (
t
φ̄

)SH

, (3.12)

Ve = p0V JSjV q(2−SV+SΛV )k̄(2SV−2−3SΛV /2)

(
g′

ν

)(2SV−2−SΛV ) (
t
φ̄

)SV

. (3.13)

The experimental values of the constants p0 and exponents Sj, SΛ and S for all three
parameters (L, H, Ve) for the heterogeneous set-ups examined here are listed in table 3.

On considering the effects of J and Λ on L, H and Ve, we find that Sj and SΛ are
numerically but approximately related to S for all three parameters, as described in indices
5 and 6 of table 3. Therefore, for further simplification of (3.11)–(3.13), we consider
the values of SΛ and Sj from the square brackets in table 3 as (SΛL ≈ 1 − SL, SΛH ≈
−SH , SΛV ≈ SV − 1) and (SjL ≈ SL − 1, SjH ≈ SH , SjV ≈ SV ). These substitutions give us
approximate expressions for the gravity current length, height and entrained volume from
(3.11)–(3.13) with a single exponent type, i.e. SL, SH or SV , on each term instead of three:

L ≈ p0L

J1−SL
q(2−2SL)k̄(7SL−5)/2

(
g′

ν

)(3SL−2) (
t
φ̄

)SL

, (3.14)

H ≈ p0H JSH q(1−2SH)k̄(7SH−2)/2
(

g′

ν

)(3SH−1) (
t
φ̄

)SH

, (3.15)

Ve ≈ p0V JSV qk(SV−1)/2
(

g′

ν

)(SV−1) (
t
φ̄

)SV

. (3.16)

We plot the empirical models from (3.14)–(3.16) against t in their dimensionless forms in
figure 10 with the measured values of L, H and Ve, where the dimensionless forms are
obtained from (3.10a–c) with the approximate values of SΛ and Sj described above. We
see good agreement in all cases between the empirical model and measured values.

Figure 10(d) shows the comparison of the mean concentration of the gravity current,
where the experimental values are obtained from the concentration maps and the empirical
model is obtained from the mass conservation (2.19) with the help of (3.7a–c) and
(3.9a–c):

Ĉ = 1

1 + p0V JSjV ΛSΛV t̂(SV−1)
. (3.17)

Using the approximations of SΛV and SjV similar to those used in (3.16), and the expansions
of Ĉ, t̂ and Λ using (2.17), (2.11) and (2.20), provide an estimate of the mean concentration

C̄ ≈ Ca +

⎡
⎢⎢⎢⎣ (C0 − Ca)

1 + p0V JSV

(
k1/2g′

νφ

)(SV−1)

t(SV−1)

⎤
⎥⎥⎥⎦ . (3.18)

Unlike the length, height and entrained volume of the gravity current, the mean
concentration in figure 10 does not follow a power law in time because it is constrained by
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Figure 10. Experimental data and the best fits vs time t̂: (a) gravity current length L̂, (b) height at the source Ĥ,
(c) entrained volume V̂e and (d) mean concentration Ĉ. The best fit solid lines are obtained from (3.14)–(3.16)
and (3.18) by converting them into the dimensionless forms.

the limits 0 � Ĉ ≤ 1. The agreement in this case is not excellent because the measurement
of concentration involves the use of concentration maps, which have a mean error of
5.25 %, as discussed in § 3.2. The image processing error gets added up with the errors
in the empirical modelling, i.e. large standard deviations of 8.86 % and 16.47 % of SV and
p0V , respectively, resulting in only modest agreement.

4. Discussion

The empirical models reported here for the length, height and entrained volume of a
gravity current in a heterogeneous porous medium are given in (3.11)–(3.13), along with
their simplified approximate forms in (3.14)–(3.16). The empirical values of the constants
and exponents for the heterogeneous set-ups examined here are listed in table 3, along with
the theoretical values for the case of a homogeneous medium.

On comparing the model presented in (3.11)–(3.13) with that of Huppert & Woods
(1995) and Sahu & Neufeld (2020) for homogeneous media, we find that L, H and Ve
do not depend on the dimensionless parameter Λ. Moreover, from (2.21), the jump factor
J = 1 for homogeneous media. Therefore, for a homogeneous medium, it is safe to assume
that (SΛ, Sj) = (0, 0). By substituting the values of the exponents and prefactors for the
homogeneous case from indices 9 and 10 of table 3 (SL = 0.67, SH = 0.33, p0L = 1.48,
p0H = 1.29) and (SΛ, Sj) = (0, 0) into (3.11) and (3.12), the similarity solution of Huppert
& Woods (1995) for the length and height of the gravity current can be recovered.
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Likewise, by substituting SV = 1.33 and p0V = 0.01 into (3.13), the semi-empirical
solution of Sahu & Neufeld (2020) for the entrained volume is recovered.

Sahu & Neufeld (2020) suggest that the magnitude of entrainment of the ambient fluid
into the gravity current depends on a term called the dispersive entrainment coefficient,
which is equivalent to the dimensionless dispersivity in a homogeneous medium. They
anticipate that, due to flow instabilities and local velocity gradients in a heterogeneous
porous medium, the dispersive entrainment is significantly higher and therefore the
effective dispersive entrainment coefficient is much larger in a heterogeneous medium
than in a homogeneous medium. We verify this anticipation in the current study. The
values of pV(2.57, 0.01) given in indices 3 and 10 in table 3 are the equivalent dispersive
entrainment coefficients in heterogeneous and homogeneous media, respectively. The
values suggest that the effective dispersive entrainment coefficient in heterogeneous media
is approximately 250 times greater than in homogeneous media at early times for the same
depth-averaged medium properties and injection parameters. This result implies that the
amount of mixing in a heterogeneous medium can be higher by several orders of magnitude
than that in a homogeneous medium depending on the type of heterogeneity.

Sahu & Neufeld (2020) also predict that the length of the current and the height at the
source are unaffected by the heterogeneity or the amount of mixing. The experimental
results from the current work, however, show otherwise.

For the heterogeneous set-ups examined here, the exponent SL = 0.70 is larger and
SH = 0.27 and SV = 0.81 are smaller than those for homogeneous media (0.67, 0.33,
1.33). In contrast, prior to considering the effects of J and Λ, from index 3 of table 3,
the prefactors pL = 0.95 is smaller and pH = 3.33 and pV = 2.57 are larger than their
equivalents for a homogeneous medium (1.48, 1.29, 0.01). For power-law behaviour, the
value of the prefactor dictates the magnitude of the parameters at early times, whereas the
exponent dominates at late times. Therefore, for the set-ups examined here, the empirical
values reported here suggest that the gravity current height, similar to the entrained
volume, is larger at early times in a heterogeneous medium than that in a homogeneous
medium for comparable values of depth-averaged permeability, porosity and injection
parameters. A reverse of this behaviour is found for the gravity current length.

The enhanced mixing at early times due to the heterogeneity rapidly decreases the
concentration of the injected fluid. The lighter density of the mixed fluid compared with
that originally injected subsequently results in an easier vertical buoyant motion, instead
of horizontal propagation. Due to the reduced horizontal velocity of the gravity current,
the effects of longitudinal dispersion start dominating the longitudinal advection. This
decreases the concentration of the current further. The rapid decrease in the concentration
results in a thicker gravity current, which tends to violate the assumption of a long and thin
current that is crucial for satisfying the hydrostatic pressure assumption and the neglect of
the vertical velocity gradient in the current.

Most of the gravity current models derived by previous researchers assume that the
gravity current is long and thin, but the enhanced mixing due to the heterogeneity tends to
violate this assumption much earlier than the period for which a solution of the late time
regime is applicable. In a late time regime, it is therefore crucial to consider the vertical
velocity in the current and model it as a two-dimensional problem.

5. Summary and conclusions

By recognizing the role of heterogeneity in the permeability of the medium in dictating
the flow and mixing within porous media, we have presented results and analysis based on
laboratory experiments to characterize the behaviour of gravity currents in multi-layered
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porous media. The experimental set-up consisted of multiple parallel layers of various
permeability, which were obtained with the help of different sizes of spherical glass
ballotini. The working fluids for the experiments were fresh water and dense salt water.
The permeability ratios and the combinations of the layers, their thicknesses and the flow
rate and solute concentration at the injection were considered the flow variables in the
analysis. Based on the types of the structures, we also introduced a term called the ‘jump
factor’, which quantifies the potential of layered structure towards mixing.

Our experiments show that mixing between the gravity current and ambient fluid gets
amplified due to the layered structures. For a similar set of depth-averaged parameters,
e.g. porosity and permeability, and flow conditions, e.g. volume flux and concentration,
the mixing in a layered heterogeneous medium could be as large as 250 times than that in
the homogeneous medium. Equivalently, the dispersive entrainment coefficient α ≈ 2.57
in a heterogeneous medium could be of O(2) greater than that for a homogeneous medium,
i.e. α ≈ 0.01 as predicted by Sahu & Neufeld (2020). We also find, for a similar set of
variables, that the height of the current is greater in a heterogeneous medium than that in
a homogeneous medium, whereas the gravity current length is smaller.

Because of large dispersion into the gravity current at early times, the gravity currents
become blunt, which further enhances the possibility of longitudinal dispersion. This leads
to a thick current with a blunt nose. Therefore, the assumption of long and thin current
that is central to modelling the gravity current flow theoretically is generally invalid after
a certain time scale.

Based on the experimental findings and dimensionless modelling, we present
semi-empirical formulas that predict the height and length of the gravity current and
entrained volume into the gravity current as a function of time and other parameters. These
three parameters monotonically increase, however, simultaneously, the mean concentration
of the current decrease with time, which is also predicted in this work.

The experimental results and semi-empirical models from the current work can be used
to predict the behaviour of gravity current flow and mixing in a heterogeneous medium
of much larger length scale by appropriately defining the depth-averaged parameters and
jump factors. The experimental images can be used for the validation of a computational
model built for modelling flows in a highly heterogeneous system.

Some obvious drawbacks of the current work are the well-defined parallel layers and
large permeability and porosity values, which do not necessarily simulate a real geological
rock. As a next step of this work, it would be useful to consider varied combinations
of layers, for example with inclined interfaces between them. The experimental work
may be extended to numerical modelling where more realistic values of porosity
and permeability can be considered. Finally, the Rayleigh–Taylor instabilities may be
investigated mathematically to predict the mixing due to the gravity-driven fingers more
accurately.
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