A Characterization of Products of Projective Spaces

Gianluca Occhetta

Abstract. We give a characterization of products of projective spaces using unsplit covering families of rational curves.

1 Introduction

Since Mori's proof of the Hartshorne conjecture, families of rational curves have become a fundamental tool in the study of higher dimensional complex varieties, as is shown in Kollar's book [8], the basic reference for most of the techniques and results related to this subject.

Among these families a very special role is played by the so called unsplit families; roughly speaking these are families of rational curves whose degenerations don't split up into reducible cycles (for a precise definition see Section 2).

It was soon realized that the existence of these families could be related to bounds on the Picard number; for instance if on a variety X there exists an unsplit family of rational curves such that the curves in the family passing through a point cover the whole variety then $\rho_{X}=1$ (see [2, Proof of Proposition 1.1]).

For Fano manifolds, which are covered by rational curves, Mukai [10] proposed the following conjecture:

$$
\begin{equation*}
\rho_{X}\left(r_{X}-1\right) \leq \operatorname{dim} X, \tag{M}
\end{equation*}
$$

where r_{X} is the index of X, i.e., the greatest integer m such that there exists $L \in$ $\operatorname{Pic}(X)$ satisfying $-K_{X}=m L$. In [11] Wiśniewski introduced the related notion of pseudoindex i_{X} of a Fano manifold, as the minimum anticanonical degree of rational curves, and proved the following

Theorem Let X be a Fano manifold of index r_{X} and pseudoindex i_{X}.
(A) If $2 i_{X}>\operatorname{dim} X+2$ then $\rho_{X}=1$.
(B) If $2 r_{X}=\operatorname{dim} X+2$ then $\rho_{X}=1$ except if $X \simeq\left(\mathbb{P}^{r_{X}-1}\right)^{2}$.

Recently [4], a generalized version of conjecture (M) has been proposed in the following form:
(GM)

$$
\rho_{X}\left(i_{X}-1\right) \leq \operatorname{dim} X,
$$

[^0]with equality if and only if $X \simeq\left(\mathbb{P}^{i_{X}-1}\right)^{\rho_{X}}$; in [4], conjecture (GM) is proved for $\operatorname{dim} X=3,4$, for some families of toric Fano manifolds and for homogeneous Fano manifolds.

Note that for $i_{X}=\operatorname{dim} X+1$ this conjecture states that the only Fano manifold with pseudoindex $\operatorname{dim} X+1$ is the projective space; this long-standing question recently has been answered [5, 7].

This paper proposes a characterization of products of projective spaces which arose from the study of the case $2 i_{X}=\operatorname{dim} X+2$, i.e., our main result is the following:

Theorem 1.1 A smooth complex projective variety X of dimension n is isomorphic to a product of projective spaces $\mathbb{P}^{n(1)} \times \cdots \times \mathbb{P}^{n(k)}$ if and only if there exist k unsplit covering families of rational curves V^{1}, \ldots, V^{k} of degrees $n(1)+1, \ldots, n(k)+1$ with $\sum n(i)=n$ such that the numerical classes of V^{1}, \ldots, V^{k} are linearly independent in $N_{1}(X)$.

In particular it follows from this theorem that for a Fano manifold with $2 i_{X}=$ $\operatorname{dim} X+2$, we have $\rho_{X}=1$ except if $X \simeq\left(\mathbb{P}^{i_{X}-1}\right)^{2}$.

2 Families of Rational Curves

We recall some of our basic definitions; our notation is consistent with the one in [8] to which we refer the reader.

Let X be a projective variety and let $\operatorname{Hom}\left(\mathbb{P}^{1}, X\right)$ be the scheme parametrizing morphisms $f: \mathbb{P}^{1} \rightarrow X$; let $\operatorname{Hom}_{\text {bir }}\left(\mathbb{P}^{1}, X\right) \subset \operatorname{Hom}\left(\mathbb{P}^{1}, X\right)$ be the open subscheme corresponding to morphisms which are birational onto their image. The group $\operatorname{Aut}\left(\mathbb{P}^{1}\right)$ acts on the normalization $\operatorname{Hom}_{\text {bir }}^{n}\left(\mathbb{P}^{1}, X\right)$ and the quotient exists.

Definition 2.1 The space RatCurves ${ }^{n}(X)$ is the quotient of $\operatorname{Hom}_{\text {bir }}^{n}\left(\mathbb{P}^{1}, X\right)$ by the action of $\operatorname{Aut}\left(\mathbb{P}^{1}\right)$ and the space $\operatorname{Univ}(X)$ is the quotient of $\operatorname{Hom}_{\text {bir }}^{n}\left(\mathbb{P}^{1}, X\right) \times \mathbb{P}^{1}$ by the product action of $\operatorname{Aut}\left(\mathbb{P}^{1}\right)$.

We have the following commutative diagram:

where u_{X} and U_{X} are principal $\operatorname{Aut}\left(\mathbb{P}^{1}\right)$-bundles and π is a \mathbb{P}^{1}-bundle.

Definition 2.2 A family of rational curves is a closed irreducible subvariety $V \subset$ RatCurves ${ }^{n}(X)$. The family V is called an unsplit family of rational curves if V is a proper subvariety.

Given a family of rational curves, we have the following basic diagram

where i is the map induced by the evaluation ev: $\operatorname{Hom}_{\text {bir }}^{n}\left(\mathbb{P}^{1}, X\right) \times \mathbb{P}^{1} \rightarrow X$ and π is a \mathbb{P}^{1}-bundle; we say that V is a covering family if i is dominant, otherwise we denote the closure of $i(U)$ by $\operatorname{Locus}(V)$. If V is proper, i.e., if the family is unsplit, then i is a proper morphism [8, II.2.3]. Finally we denote by V_{x} the subfamily parametrizing rational curves of the family V passing through x.

3 Chains of Rational Curves

In this section we give slight modifications of some results in [4] that we need for the proof of Theorem 1.1.

Let X be a projective variety, V^{1}, \ldots, V^{k} unsplit families of rational curves on X, and Y a subset of X.

Definition 3.1 We denote by $\operatorname{Locus}\left(V^{1}, \ldots, V^{k}\right)_{Y}$ the set of points $x \in X$ such that there exist curves C_{1}, \ldots, C_{k} with the following properties:

- C_{i} belongs to the family V^{i},
- $C_{i} \cap C_{i+1} \neq \varnothing$,
- $C_{1} \cap Y \neq \varnothing$ and $x \in C_{k}$.
i.e., $\operatorname{Locus}\left(V^{1}, \ldots, V^{k}\right)_{Y}$ is the set of points that can be joined to Y by a connected chain of k curves belonging, respectively, to the families V^{1}, \ldots, V^{k}.

The following lemma is well known (see for istance [8, IV.3.13.3]), but we give a sketch of the proof since we will need it for the crucial Remark 3.3.

Lemma 3.2 Let $Y \subset X$ be a closed subset and let V be an unsplit family of rational curves. Then $\operatorname{Locus}(V)_{Y}$ is closed and every curve contained in $\operatorname{Locus}(V)_{Y}$ is numerically equivalent to a linear combination with rational coefficients of curves in Y and curves parametrized by V.

Proof Let U, V, π and i be as in Definition 2.2 and let C be a curve contained in $\operatorname{Locus}(V)_{Y}$. If $C \subset Y$ or C is a curve parametrized by V we have nothing to prove, so we can suppose that this is not the case.

In particular we have that $i^{-1}(C)$ contains an irreducible curve C^{\prime} which is not contained in a fiber of π and dominates C via i; let B^{\prime} be the curve $\pi\left(C^{\prime}\right) \subset V$, let $\nu: B \rightarrow B^{\prime}$ be the normalization of B^{\prime}, and let S be the normalization of $B \times_{V} U$.

By standard arguments it can be shown that S is a ruled surface over the curve B; we thus have a diagram:

Let f be a fiber of p and let C_{Y} be a curve in S which dominates B and whose image via j is contained in Y; such a curve exists since the image via j of every fiber of p meets Y.

Since S is a ruled surface, every curve in S is algebraically equivalent to a linear combination with rational coefficients of C_{Y} and f.

Therefore every curve in $j(S)$ is algebraically equivalent in X to a linear combination with rational coefficients of $j_{*}\left(C_{Y}\right)$ and $j_{*}(f)$:

$$
C \equiv \lambda j_{*}\left(C_{Y}\right)+\mu j_{*}(f),
$$

where $j_{*}\left(C_{Y}\right)$ is a curve in Y or is the zero cycle, and $j_{*}(f)$ is a curve of the family V. Since algebraic equivalence implies numerical equivalence we conclude the proof.

Remark 3.3 Note that the proof of the above lemma actually yields that a curve C in $\operatorname{Locus}(V)_{Y}$ is algebraically equivalent to a linear combination with rational coefficients

$$
\lambda j_{*}\left(C_{Y}\right)+\mu j_{*}(f)
$$

such that $\lambda \geq 0$; in fact, let C_{S} be an irreducible curve in S which dominates C via j as in the proof of the lemma. In S we write $C_{S} \equiv \lambda C_{Y}+\mu f$ and, intersecting with f we have $\lambda \geq 0$. To the author's knowledge this was first noted by Wiśniewski in [3, Proof of Lemma 1.4.5].

Corollary 3.4 Let V^{1}, \ldots, V^{k} be unsplit families of rational curves and let x be a point in X such that $\operatorname{Locus}\left(V^{1}, \ldots, V^{k}\right)_{x}$ is not empty. Then every curve contained in $\operatorname{Locus}\left(V^{1}, \ldots, V^{k}\right)_{x}$ is numerically equivalent to a linear combination with rational coefficients of curves in V^{1}, \ldots, V^{k}.

Proof To prove the corollary we apply Lemma $3.2 k$ times, taking $Y_{1}=x$ and $Y_{i}=$ $\operatorname{Locus}\left(V^{1}, \ldots, V^{i-1}\right)_{x}$.

If Y is a point and X is smooth, we have the following dimension bound which is a generalization of [8, Proposition IV.2.6]

Theorem 3.5 ([4, Theorem 5.2]) Let V^{1}, \ldots, V^{k} be linearly independent unsplit families of rational curves on a smooth variety X and let x be a point in X such that $\operatorname{Locus}\left(V^{1}, \ldots, V^{k}\right)_{x}$ is not empty. Then

$$
\operatorname{dim} \operatorname{Locus}\left(V^{1}, \ldots, V^{k}\right)_{x} \geq-\sum K_{X} \cdot V^{i}-k
$$

4 Products of Projective Spaces

In the proof of Theorem 1.1 we will use the following well-known lemmata:
Lemma 4.1 Let $p: Y \rightarrow B$ be a morphism from a smooth variety to a smooth curve, such that $\rho(Y / B)=1$ and the general fiber of p is a projective space. Then there exists a vector bundle \mathcal{F} of rank $=\operatorname{dim} Y$ on B such that $Y=\mathbb{P}_{B}(\mathcal{F})$ and p is the natural projection.

Lemma 4.2 Let $Y=\mathbb{P}_{\mathbb{P}^{1}}(\mathcal{E})$ be the projectivization of a vector bundle of rank $r+1$ over \mathbb{P}^{1}. Then the Mori cone $N E(Y)$ is generated by the class of a line l in a fiber of the natural projection $p: Y \rightarrow \mathbb{P}^{1}$ and the class of a section whose intersection with the tautological line bundle ξ_{ε} is minimal (a minimal section). Moreover, denoting by C_{0} a minimal section, any curve whose numerical class is a multiple of $\left[C_{0}\right]$ is (set-theoretically) the union of disjoint minimal sections.

Proof of Theorem 1.1 The "only if" part of the theorem is clear, taking as V^{i} the family of lines in $\mathbb{P}^{n(i)}$; to prove the "if" part first of all we observe that, in the assumptions of the theorem, we have $\rho_{X}=k$.

In fact, since on X there exists k numerically independent curves we have $\rho_{X} \geq k$. On the other hand $\operatorname{Locus}\left(V^{1}, \ldots, V^{k}\right)_{x}$ is not empty for every $x \in X$ since the families V^{j} are covering families, and by Theorem 3.5 we have

$$
\operatorname{dim} \operatorname{Locus}\left(V^{1}, \ldots, V^{k}\right)_{x} \geq-\sum K_{X} \cdot V^{i}-k=n
$$

so $X=\operatorname{Locus}\left(V^{1}, \ldots, V^{k}\right)_{x}$ and $\rho_{X} \leq k$ by Corollary 3.4.
We will now proceed by induction on the Picard number ρ_{X}. If $\rho_{X}=1$ then $X \simeq \mathbb{P}^{n}$ by [7, Theorem 1.1] or [5, Corollary 0.4$]$; so let us suppose that $\rho_{X}=k$. We denote by $\mathrm{NE}(X)$ the Mori cone of X, i.e., the cone in $N_{1}(X)$ generated by the classes of effective curves on X.

Step $1 \mathrm{NE}(X)=\mathbb{R}_{+}\left[V^{1}\right]+\cdots+\mathbb{R}_{+}\left[V^{k}\right]$.
For every point $x \in X$ and for every permutation $i(1), \ldots, i(k)$ of the integers $1, \ldots, k$ we have $X=\operatorname{Locus}\left(V^{i(1)}, \ldots, V^{i(k)}\right)_{x}$. In fact, $\operatorname{Locus}\left(V^{i(1)}, \ldots, V^{i(k)}\right)_{x}$ is not empty since the families V^{j} are covering families, and by Theorem 3.5 we have

$$
\operatorname{dim} \operatorname{Locus}\left(V^{i(1)}, \ldots, V^{i(k)}\right)_{x} \geq-\sum K_{X} \cdot V^{i}-k=n
$$

Now let C be an effective curve in X; by Corollary 3.4 and Remark 3.3, for every permutation $i(1), \ldots, i(k)$ we find coefficients $\lambda_{i(1)}, \ldots, \lambda_{i(k)}$, with $\lambda_{i(1)} \geq 0$ such that

$$
[C]=\lambda_{i(1)}\left[C_{i(1)}\right]+\cdots+\lambda_{i(k)}\left[C_{i(k)}\right]
$$

Since V^{1}, \ldots, V^{k} are independent in $N_{1}(X)$, the decomposition of [C] is unique and we get that $\lambda_{i(j)} \geq 0$ for all $j \in 1, \ldots, k$. It follows that $\operatorname{NE}(X)=\mathbb{R}_{+}\left[V^{1}\right]+\cdots+$ $\mathbb{R}_{+}\left[V^{k}\right]$; moreover by the Kleiman criterion $-K_{X}$ is ample, so X is a Fano manifold.

Notation We will usually denote by $\varphi_{\sigma}: X \rightarrow Y_{\sigma}$ the contraction corresponding to the extremal face σ. If $\tau \subsetneq \sigma$ is a (possibly empty) subface, then $\varphi_{\sigma}: X \rightarrow Y_{\sigma}$ factors through $\varphi_{\tau}: X \rightarrow Y_{\tau}$ and a morphism $Y_{\tau} \rightarrow Y_{\sigma}$ which we will call $\psi_{\tau \sigma}$.

Note that, if $\tau=\varnothing$ then $Y_{\tau}=X$ and $\psi_{\tau \sigma}=\varphi_{\sigma}$.
Step 2 Every extremal contraction of X is equidimensional and its general fiber is a product of projective spaces.

By Step 1 the cone $\mathrm{NE}(X)$ is k-dimensional and it is spanned by k extremal rays, so to every subset $I \subset\{1, \ldots, k\}$ corresponds an extremal face, spanned by the rays indexed by I and an extremal contraction.

Let $\sigma=\left\langle R_{i_{1}} \cdots R_{i_{l}}\right\rangle$ be an extremal face of $\operatorname{NE}(X)$ and let σ^{\perp} be the face spanned by the extremal rays of $\operatorname{NE}(X)$ which are not in σ; these two faces are clearly disjoint.

We claim that for every fiber G_{σ} of φ_{σ} we have

$$
\begin{equation*}
\operatorname{dim} G_{\sigma}=\sum_{j=1, \ldots, l} n\left(i_{j}\right) ; \tag{1}
\end{equation*}
$$

since $G_{\sigma} \supseteq \operatorname{Locus}\left(V^{i_{1}}, \ldots, V^{i_{l}}\right)_{x}$, by Theorem 3.5 we know that

$$
\operatorname{dim} G_{\sigma} \geq-\sum_{j=1, \ldots, l} K_{X} \cdot V^{i_{j}}-l=\sum_{j=1, \ldots, l} n\left(i_{j}\right)
$$

Let x be a point of G_{σ} and let $G_{\sigma^{\perp}}$ be the fiber of $\varphi_{\sigma^{\perp}}$ passing through x; we have

$$
\operatorname{dim} G_{\sigma^{\perp}} \geq-\sum_{j=l+1, \ldots, k} K_{X} \cdot V^{i_{j}}-(k-l)=\sum_{j=l+1, \ldots, k} n\left(i_{j}\right)
$$

Moreover, since the numerical class of every curve in G_{σ} lies in σ and the numerical class of every curve in $G_{\sigma^{\perp}}$ lies in σ^{\perp} we have $\operatorname{dim}\left(G_{\sigma} \cap G_{\sigma^{\perp}}\right)=0$, so that, by Serre's inequality, $\operatorname{dim} G_{\sigma}+\operatorname{dim} G_{\sigma^{\perp}} \leq n$. Hence

$$
n=\sum_{j=1, \ldots, k} n\left(i_{j}\right) \leq \operatorname{dim} G_{\sigma}+\operatorname{dim} G_{\sigma^{\perp}} \leq n
$$

forcing

$$
\operatorname{dim} G_{\sigma}=\sum_{j=1, \ldots, l} n\left(i_{j}\right)
$$

In particular, if we take G_{σ} to be a general fiber of φ_{σ}, then G_{σ} is smooth and satisfies the assumptions of Theorem 1.1, and so we have $G_{\sigma} \simeq \mathbb{P}^{n\left(i_{1}\right)} \times \cdots \times \mathbb{P}^{n\left(i_{l}\right)}$ by the induction assumption.

We note here, for later use, that from the proof of Step 2 it follows that

$$
\begin{equation*}
\operatorname{dim} Y_{\sigma}=\operatorname{dim} X-\operatorname{dim} G_{\sigma}=\operatorname{dim} G_{\sigma^{\perp}} \tag{2}
\end{equation*}
$$

Step 3 Let Σ be an extremal face of $\mathrm{NE}(X)$ of dimension $s<k$ and let $\sigma \subset \Sigma$ be a subface of codimension one; then $\psi_{\sigma \Sigma}: Y_{\sigma} \rightarrow Y_{\Sigma}$ is a projective bundle outside a set of codimension two in Y_{Σ}.

Recall that $\varphi_{\Sigma}=\psi_{\sigma \Sigma} \circ \varphi_{\sigma}$ and that both φ_{Σ} and φ_{σ} are equidimensional and with connected fibers, so also $\psi_{\sigma \Sigma}$ is equidimensional and has connected fibers. Since Y_{σ} is a normal variety, also the general fiber of $\psi_{\sigma \Sigma}$ is normal; we claim that it is a projective space.

To prove the claim let y be a general point of Y_{Σ}, let G_{y} be the fiber of $\psi_{\sigma \Sigma}$ over y, let F_{y} be the fiber of φ_{Σ} over y, and consider the following diagram:

By Step 2 we know that F_{y} is a product of s projective spaces; the morphism $\varphi_{\sigma \mid F_{y}}$ is a proper morphism with connected fibers onto a normal variety, so it is a contraction of F_{y}. But on a product of projective spaces the only contractions are projections onto some factors. Since the general fiber of φ_{σ} is a product of $s-1$ projective spaces, the claim follows.

To prove that $\psi_{\sigma \Sigma}$ is a projective bundle outside a set of codimension two we have to prove that for a general curve $B \subset Y_{\Sigma}$ the variety $Y_{\sigma}^{B}:=\psi_{\sigma \Sigma}^{-1}(B)$ is a projective bundle over B. To show this last statement, by Lemma 4.1, it is enough to prove that Y_{σ}^{B} is smooth.

Let θ and Θ be two subfaces of $\operatorname{NE}(X)$ such that $\theta \subset \Theta \subset \Sigma$, and consider the following commutative diagram:

Take $\operatorname{dim} Y_{\Sigma}-1$ general very ample divisors on Y_{Σ}; by Bertini's theorem their intersection is a smooth curve B and also $X^{B}=\varphi_{\Sigma}^{-1}(B)$ is smooth.

We can consider the restriction to X^{B} of the previous diagram, where for the restricted morphisms we keep the same notation we used for the original ones and where $Y_{\theta}^{B}:=\psi_{\theta \Sigma}^{-1}(B)$ and $Y_{\Theta}^{B}:=\psi_{\Theta \Sigma}^{-1}(B)$.

We will show that, for every extremal face $\Theta \subsetneq \Sigma$ in $\mathrm{NE}(X)$, associated extremal contraction $\varphi_{\Theta}: X \rightarrow Y_{\Theta}$ and restricted morphism $\varphi_{\Theta}: X^{B} \rightarrow Y_{\Theta}^{B}$ the target variety Y_{Θ}^{B} is smooth. In particular it will follow that Y_{σ}^{B} is smooth.

We proceed by induction on the dimension of Θ; if $\operatorname{dim} \Theta=0$ then φ_{Θ} does not contract anything and X^{B} is smooth.

Now let $\theta \subsetneq \Sigma$ be an extremal face of $\mathrm{NE}(X)$ of dimension $t-1<s-1$, let $R \subset \Sigma$ be an extremal ray independent from θ, let Θ be the face spanned by θ and R and finally let ω the face spanned by all the rays in Σ but R.

We have a commutative diagram

The general fiber of $\psi_{\omega \Sigma}: Y_{\omega}^{B} \rightarrow B$ is a projective space, so over an open Zariski subset U of B the morphism $\psi_{\omega \Sigma}$ is a projective bundle. We take H to be the closure of a hyperplane section of $\psi_{\omega \Sigma}$ defined over the open set U and $\mathcal{H}=\psi_{\theta \omega}^{-1}(H)$. Since Y_{θ}^{B} is smooth by induction, \mathcal{H} is a Cartier divisor, which restricts to $\mathcal{O}(1)$ on the general fiber of $\psi_{\theta \Theta}$, so $\psi_{\theta \Theta}$ is a projective bundle globally by [6, Lemma 2.12] and so Y_{Θ}^{B} is smooth.

Step 4 Let Σ be a $(k-1)$-dimensional face of $\mathrm{NE}(X)$ obtained by removing a ray $R_{i_{1}}$ and let $\varphi_{\Sigma}: X \rightarrow Y_{\Sigma}$ be the associated contraction. Then $Y_{\Sigma} \simeq \mathbb{P}^{\operatorname{dim} Y_{\Sigma}}$.

Let $R_{i_{2}}$ be a ray in Σ and σ the (possibly empty) subface of Σ obtained removing the ray $R_{i_{2}}$; finally let $\tau=<\sigma, R_{i_{1}}>$.

The contraction φ_{τ} factors through φ_{σ} and a morphism $\psi_{\sigma \tau}: Y_{\sigma} \rightarrow Y_{\tau}$, the contraction φ_{Σ} factors through φ_{σ} and a morphism $\psi_{\sigma \Sigma}: Y_{\sigma} \rightarrow Y_{\Sigma}$ and both the morphisms $\psi_{\sigma \tau}$ and $\psi_{\sigma \Sigma}$ are, by Step three, projective bundles outside a set of codimension two.

The situation is illustrated by the commutative diagram

where G is a general fiber of $\psi_{\sigma \tau}$ and so a projective space.
Note that, by equations (1) and (2) we have $\operatorname{dim} Y_{\sigma}=n\left(i_{1}\right)+n\left(i_{2}\right), \operatorname{dim} Y_{\Sigma}=$ $n\left(i_{1}\right)$ and $\operatorname{dim} Y_{\tau}=n\left(i_{2}\right)$; it follows that $\operatorname{dim} G=\operatorname{dim} Y_{\Sigma}$, so that $\psi_{\sigma \Sigma}$ restricted to G is dominating.

First of all we will prove that $\psi_{\sigma \Sigma}$ restricted to G is not ramified outside a subset of codimension two.

Let l be a general line in G such that its image $C:=\psi_{\sigma \Sigma}(l) \subset Y_{\Sigma}$ is not contained in the branch locus of $\psi_{\sigma \Sigma}$ and such that, over C, the morphism $\psi_{\sigma \Sigma}$ is a projective bundle. Let $\nu: \mathbb{P}^{1} \rightarrow C \subset Y_{\Sigma}$ be the normalization of C and let Y_{C} be the fiber product $Y_{C}=\mathbb{P}^{1} \times_{C} Y_{\sigma}$:

The variety Y_{C} is a projective bundle over \mathbb{P}^{1}, so by Lemma 4.2 its cone of curves $\mathrm{NE}\left(Y_{C}\right)$ is generated by the class of a line in a fiber of p and by the class of a minimal section C_{0}.

The cone of curves $\mathrm{NE}\left(Y_{\sigma}\right)$ is generated by the class of a line in a fiber of $\psi_{\sigma \Sigma}$ and by the class of a line in a fiber of $\psi_{\sigma \tau}$, i.e., the class of l.

The morphism $\bar{\nu}$ induces a map of spaces of cycles $N_{1}\left(Y_{C}\right) \rightarrow N_{1}\left(Y_{\sigma}\right)$ which allows us to identify $\mathrm{NE}\left(Y_{C}\right)$ with a subcone of $\mathrm{NE}\left(Y_{\sigma}\right)$. Since $\bar{\nu}\left(Y_{C}\right)$ contains lines in the fibers of $\psi_{\sigma \Sigma}$ and contains l, a line in G, we have an identification $\operatorname{NE}\left(Y_{C}\right) \simeq$ $\mathrm{NE}\left(Y_{\sigma}\right)$.

In particular $G \cap \bar{\nu}\left(Y_{C}\right)$, which is a curve whose numerical class in Y_{σ} is a multiple of $[l]$, is the image of a curve Γ whose numerical class in Y_{C} is a multiple of $\left[C_{0}\right]$.

By Lemma 4.2 the curve Γ is the union of disjoint minimal sections, so $G \cap \bar{\nu}\left(Y_{C}\right)$ consists of the images via $\bar{\nu}$ of disjoint minimal sections. These images are disjoint curves since $\bar{\nu}$ is one to one on the fibers of p, so every point in C has the same number of preimages via $\psi_{\sigma \Sigma \mid G}$.

Now, recalling that C was not contained in the branch locus of $\psi_{\sigma \Sigma \mid G}$, we can conclude that $\psi_{\sigma \Sigma \mid G}$ is not ramified outside a subset of codimension two, for otherwise, the ramification divisor would be effective, hence ample on G and so it would meet l, a contradicition. We now prove that Y_{Σ} is a quotient of a projective space; if we remove the ramification and branch sets of $\psi_{\sigma \Sigma \mid G}$, the finite map

$$
\psi_{\sigma \Sigma \mid G \backslash \operatorname{Ram}}: G \backslash \operatorname{Ram} \rightarrow Y_{\Sigma} \backslash \operatorname{Br}
$$

is a topological covering.
Since the covering space, $\mathbb{P}^{\text {dim } G} \backslash\{$ set of codimension two $\}$, is simply connected, this is just the universal cover of $Y_{\Sigma} \backslash \mathrm{Br}$. The deck transformation group of this covering defines birational maps of $\mathbb{P}^{\mathrm{dim}} \mathrm{G}$, which are isomorphisms outside a set of codimension two and therefore the strict transform of divisors is defined and it is the identity on the Picard group; it follows that the deck transformations are linear transformations. In particular $\psi_{\sigma \Sigma \mid G}: \mathbb{P}^{\text {dim } G} \rightarrow Y_{\Sigma}$ is just a quotient by a finite subgroup of $P G L(\operatorname{dim} G)$.

Finally, we can conclude that Y_{Σ} is smooth by [1, Proposition 1.3], which asserts that if the target of an extremal equidimensional contraction has quotient singularities, then it is smooth. We can thus apply a result of Lazarsfeld [9, Theorem 4.1] which shows that the only smooth variety dominated by a projective space is the projective space itself, and conclude that $Y_{\Sigma} \simeq \mathbb{P}^{\mathrm{dim}} Y_{\Sigma}$.

Final step $X=\mathbb{P}^{n(1)} \times \cdots \times \mathbb{P}^{n(k)}$. We finish the proof using the notation of Step 4 and denoting by R the ray $R_{i_{1}}$. By the smoothness of Y_{Σ} and the purity of the branch locus we have that φ_{Σ} restricted to G is one to one; this implies that the line bundle $H=\varphi_{\Sigma}^{*} \mathcal{O}_{\mathbb{P}}(1)$ restricts to $\mathcal{O}_{\mathbb{P}}(1)$ on the fibers of φ_{R}, and so φ_{R} is a projective bundle by [6, Lemma 2.12].

In particular we get that Y_{R} is smooth, and so, by the induction hypothesis, it is a product of projective spaces.

We can write $X=\mathbb{P}_{Y_{R}}\left(\mathcal{E}_{R}\right)$ where \mathcal{E}_{R} is vector bundle on Y_{R} of rank $n\left(i_{1}\right)+1$.
We claim that the restriction of \mathcal{E}_{R} to every line in Y_{R} is trivial; in fact, let l be a line in Y_{R} and let \mathcal{E}_{l} be the restriction of \mathcal{E}_{R} to $l ; \mathbb{P}\left(\mathcal{E}_{l}\right)$ has a morphism onto $Y_{\Sigma} \simeq \mathbb{P}{ }^{d i m} Y_{\Sigma}$; since $n\left(i_{1}\right)=\operatorname{dim} Y_{\Sigma}<\operatorname{dim} \mathbb{P}\left(\mathcal{E}_{l}\right)=n\left(i_{1}\right)+1$ this is possible only if $\mathbb{P}^{\mathbf{P}}\left(\mathcal{E}_{l}\right) \simeq \mathbb{P}^{1} \times$ $\mathbb{P}^{\text {dim }} Y_{\Sigma}$ (otherwise $\mathbb{P}\left(\varepsilon_{l}\right)$ has morphisms either on \mathbb{P}^{1} or onto a variety of dimension equal to the dimension of $\left.\mathbb{P}\left(\mathcal{E}_{l}\right)\right)$.

Now we proceed by induction on the rank of \mathcal{E}_{R} to prove that \mathcal{E}_{R} is a trivial bundle, following [2, Proof of Proposition 1.2].

Let G_{Σ} be a general fiber of φ_{Σ} and consider the pullback $\widetilde{\varphi_{R}}: \mathbb{P}\left(\varphi_{\Sigma}^{*} \mathcal{E}_{R}\right) \rightarrow G_{\Sigma}$, as in the following diagram:

By the universal property of the fiber product, the \mathbb{P}-bundle $\widetilde{\varphi_{R}}$ admits a section $s: G_{\Sigma} \rightarrow \mathbb{P}\left(\varphi_{R}^{*} \mathcal{E}_{i}\right)$ such that $\widetilde{\varphi_{R \mid G_{\Sigma}}} \circ s$ is the embedding of G_{Σ} into X, and so there exists a sequence of vector bundles over G_{Σ}

$$
0 \longrightarrow \mathcal{E}_{R}^{\prime} \longrightarrow \varphi_{\Sigma}^{*} \mathcal{E}_{R} \longrightarrow \mathcal{O}_{G_{\Sigma}} \longrightarrow 0
$$

with \mathcal{E}_{R}^{\prime} trivial on every line in G_{Σ}. By induction we get that \mathcal{E}_{R}^{\prime} is trivial, and, since $H^{1}\left(G_{\Sigma}, \mathcal{O}_{G_{\Sigma}}\right)=0$, the above sequence splits; we conclude the proof using [2, Lemma 1.2.2].

Corollary 4.3 Let X be a Fano manifold of pseudoindex i_{X}. If $2 i_{X} \geq \operatorname{dim} X+2$ then $\rho_{X}=1$ except if $X \simeq\left(\mathbb{P}^{i_{X}-1}\right)^{2}$.

Proof Since X is a Fano manifold, through every point of X there exists a rational curve of anticanonical degree $\leq \operatorname{dim} X+1$, hence there exists an irreducible component $V^{1} \subset$ RatCurves $_{d}^{n}(X)$ of anticanonical degree $d \leq \operatorname{dim} X+1$ which is a covering family; note that, by our assumptions on the pseudoindex, the family V^{1} is an unsplit family.

Let R be an extremal ray of X which does not contract curves of V^{1}; and let V^{2} be the family of rational curves corresponding to a minimal degree curve whose numerical class is in R; if such a ray does not exist, then $\rho_{X}=1$ and we are done.

By Theorem 3.5 we have

$$
\operatorname{dim} X \geq \operatorname{dim} \operatorname{Locus}\left(V^{1}, V^{2}\right)_{x} \geq-\sum K_{X} \cdot V^{i}-2 \geq 2 i_{X}-2 \geq \operatorname{dim} X
$$

We get that $-K_{X} \cdot V^{1}=-K_{X} \cdot V^{2}=i_{X}-1, \operatorname{Locus}\left(V^{1}, V^{2}\right)_{x}=X$ and that V^{2} is a covering family, so we can apply Theorem 1.1.

Acknowledgements I wish to thank Jarosław Wiśniewski for some helpful suggestions.

References

[1] M. Andreatta, and J. A. Wiśniewski, A view on contractions of higher dimensional varieties. In: Algebraic Geometry, Proc. Sympos. Pure Math. 62, American Mathematical Society, Providence, RI, 1997, pp. 153-183.
[2] On manifolds whose tangent bundle contains an ample subbundle. Invent. Math. 146(2001), no. 1, 209-217.
[3] M. C. Beltrametti, A. J. Sommese, and J. A. Wiśniewski, Results on varieties with many lines and their applications to adjunction theory. In: Complex Algebraic Varieties 1507, Lecture Notes in Math. 1507, Springer, Berlin, 1992, pp. 16-38.
[4] L. Bonavero, C. Casagrande, O. Debarre, and S. Druel, Sur une conjecture de Mukai. Comment. Math. Helv. 78(2003), no. 3, 601-626.
[5] K. Cho, Y. Miyaoka, and N. Shepherd-Barron, Characterizations of projective space and applications to complex symplectic manifolds. In: Higher Dimensional Birational Geometry, Adv. Stud. Pure Math. 35, Math. Soc. Japan, Tokyo, 2002, 1-88.
[6] T. Fujita, On polarized manifolds whose adjoint bundles are not semipositive. In: Algebraic Geometry, Adv. Stud. Pure Math. 10, North-Holland, Amsterdam, 1987, pp. 167-178.
[7] S. Kebekus, Characterizing the projective space after Cho, Miyaoka and Sheperd-Barron. In: Complex Geometry, Springer, Berlin, 2002, pp. 147-155.
[8] J. Kollár, Rational Curves on Algebraic Varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete 32, Springer-Verlag, Berlin, 1996.
[9] R. Lazarsfeld, Some applications of the theory of positive vector bundles. In: Complete Intersections, Lecture Notes in Math. 1092, Springer, Berlin, 1984, pp. 29-61.
[10] S. Mukai, Open problems. In: Birational Geometry of Algebraic Varieties, Cambridge Tracts in Mathematics 134, Cambridge University Press, Cambridge, 1988, pp. 67-60.
[11] J. A. Wiśniewski, On a conjecture of Mukai. Manuscripta Math. 68(1990), no. 2, 135-141.

Dipartimento di Matematica

Università degli Studi di Trento
Via Sommarive, 14
I-38050 Povo (Trento)
Italy
e-mail: occhetta@science.unitn.it

[^0]: Received by the editors July 8, 2004; revised September 25, 2004.
 AMS subject classification: 14J40, 14J45.
 Keywords: Rational curves, Fano varieties.
 (c)Canadian Mathematical Society 2006.

