Canad. Math. Bull. Vol. 49 (2), 2006 pp. 270-280

A Characterization of Products of Projective Spaces

Gianluca Occhetta

Abstract. We give a characterization of products of projective spaces using unsplit covering families of rational curves.

1 Introduction

Since Mori's proof of the Hartshorne conjecture, families of rational curves have become a fundamental tool in the study of higher dimensional complex varieties, as is shown in Kollar's book [8], the basic reference for most of the techniques and results related to this subject.

Among these families a very special role is played by the so called unsplit families; roughly speaking these are families of rational curves whose degenerations don't split up into reducible cycles (for a precise definition see Section 2).

It was soon realized that the existence of these families could be related to bounds on the Picard number; for instance if on a variety *X* there exists an unsplit family of rational curves such that the curves in the family passing through a point cover the whole variety then $\rho_X = 1$ (see [2, Proof of Proposition 1.1]).

For Fano manifolds, which are covered by rational curves, Mukai [10] proposed the following conjecture:

(M)
$$\rho_X(r_X - 1) \le \dim X,$$

where r_X is the *index* of *X*, *i.e.*, the greatest integer *m* such that there exists $L \in \text{Pic}(X)$ satisfying $-K_X = mL$. In [11] Wiśniewski introduced the related notion of *pseudoindex* i_X of a Fano manifold, as the minimum anticanonical degree of rational curves, and proved the following

Theorem Let X be a Fano manifold of index r_X and pseudoindex i_X .

(A) If $2i_X > \dim X + 2$ then $\rho_X = 1$.

(B) If $2r_X = \dim X + 2$ then $\rho_X = 1$ except if $X \simeq (\mathbb{P}^{r_X - 1})^2$.

Recently [4], a generalized version of conjecture (M) has been proposed in the following form:

(GM)
$$\rho_X(i_X-1) \leq \dim X,$$

Received by the editors July 8, 2004; revised September 25, 2004. AMS subject classification: 14J40, 14J45. Keywords: Rational curves, Fano varieties. ©Canadian Mathematical Society 2006.

with equality if and only if $X \simeq (\mathbb{P}^{i_X-1})^{\rho_X}$; in [4], conjecture (GM) is proved for dim X = 3, 4, for some families of toric Fano manifolds and for homogeneous Fano manifolds.

Note that for $i_X = \dim X + 1$ this conjecture states that the only Fano manifold with pseudoindex dim X + 1 is the projective space; this long-standing question recently has been answered [5, 7].

This paper proposes a characterization of products of projective spaces which arose from the study of the case $2i_X = \dim X + 2$, *i.e.*, our main result is the following:

Theorem 1.1 A smooth complex projective variety X of dimension n is isomorphic to a product of projective spaces $\mathbb{P}^{n(1)} \times \cdots \times \mathbb{P}^{n(k)}$ if and only if there exist k unsplit covering families of rational curves V^1, \ldots, V^k of degrees $n(1)+1, \ldots, n(k)+1$ with $\sum n(i) = n$ such that the numerical classes of V^1, \ldots, V^k are linearly independent in $N_1(X)$.

In particular it follows from this theorem that for a Fano manifold with $2i_X = \dim X + 2$, we have $\rho_X = 1$ except if $X \simeq (\mathbb{P}^{i_X - 1})^2$.

2 Families of Rational Curves

We recall some of our basic definitions; our notation is consistent with the one in [8] to which we refer the reader.

Let X be a projective variety and let $\operatorname{Hom}(\mathbb{P}^1, X)$ be the scheme parametrizing morphisms $f \colon \mathbb{P}^1 \to X$; let $\operatorname{Hom}_{\operatorname{bir}}(\mathbb{P}^1, X) \subset \operatorname{Hom}(\mathbb{P}^1, X)$ be the open subscheme corresponding to morphisms which are birational onto their image. The group $\operatorname{Aut}(\mathbb{P}^1)$ acts on the normalization $\operatorname{Hom}_{\operatorname{bir}}^n(\mathbb{P}^1, X)$ and the quotient exists.

Definition 2.1 The space RatCurves^{*n*}(*X*) is the quotient of $\operatorname{Hom}_{\operatorname{bir}}^{n}(\mathbb{P}^{1}, X)$ by the action of $\operatorname{Aut}(\mathbb{P}^{1})$ and the space $\operatorname{Univ}(X)$ is the quotient of $\operatorname{Hom}_{\operatorname{bir}}^{n}(\mathbb{P}^{1}, X) \times \mathbb{P}^{1}$ by the product action of $\operatorname{Aut}(\mathbb{P}^{1})$.

We have the following commutative diagram:

where u_X and U_X are principal Aut(\mathbb{P}^1)-bundles and π is a \mathbb{P}^1 -bundle.

Definition 2.2 A family of rational curves is a closed irreducible subvariety $V \subset$ RatCurves^{*n*}(*X*). The family *V* is called an *unsplit family* of rational curves if *V* is a proper subvariety.

Given a family of rational curves, we have the following basic diagram

where *i* is the map induced by the evaluation ev: $\operatorname{Hom}_{\operatorname{bir}}^n(\mathbb{P}^1, X) \times \mathbb{P}^1 \to X$ and π is a \mathbb{P}^1 -bundle; we say that *V* is a *covering family* if *i* is dominant, otherwise we denote the closure of i(U) by $\operatorname{Locus}(V)$. If *V* is proper, *i.e.*, if the family is unsplit, then *i* is a proper morphism [8, II.2.3]. Finally we denote by V_x the subfamily parametrizing rational curves of the family *V* passing through *x*.

3 Chains of Rational Curves

In this section we give slight modifications of some results in [4] that we need for the proof of Theorem 1.1.

Let X be a projective variety, V^1, \ldots, V^k unsplit families of rational curves on X, and Y a subset of X.

Definition 3.1 We denote by $Locus(V^1, \ldots, V^k)_Y$ the set of points $x \in X$ such that there exist curves C_1, \ldots, C_k with the following properties:

- C_i belongs to the family V^i ,
- $C_i \cap C_{i+1} \neq \emptyset$,
- $C_1 \cap Y \neq \emptyset$ and $x \in C_k$.

i.e., Locus $(V^1, \ldots, V^k)_Y$ is the set of points that can be joined to Y by a connected chain of k curves belonging, respectively, to the families V^1, \ldots, V^k .

The following lemma is well known (see for istance [8, IV.3.13.3]), but we give a sketch of the proof since we will need it for the crucial Remark 3.3.

Lemma 3.2 Let $Y \subset X$ be a closed subset and let V be an unsplit family of rational curves. Then $Locus(V)_Y$ is closed and every curve contained in $Locus(V)_Y$ is numerically equivalent to a linear combination with rational coefficients of curves in Y and curves parametrized by V.

Proof Let U, V, π and *i* be as in Definition 2.2 and let *C* be a curve contained in Locus $(V)_Y$. If $C \subset Y$ or *C* is a curve parametrized by *V* we have nothing to prove, so we can suppose that this is not the case.

In particular we have that $i^{-1}(C)$ contains an irreducible curve C' which is not contained in a fiber of π and dominates C via i; let B' be the curve $\pi(C') \subset V$, let $\nu: B \to B'$ be the normalization of B', and let S be the normalization of $B \times_V U$.

By standard arguments it can be shown that *S* is a ruled surface over the curve *B*; we thus have a diagram:

Let f be a fiber of p and let C_Y be a curve in S which dominates B and whose image via j is contained in Y; such a curve exists since the image via j of every fiber of p meets Y.

Since *S* is a ruled surface, every curve in *S* is algebraically equivalent to a linear combination with rational coefficients of C_Y and *f*.

Therefore every curve in j(S) is algebraically equivalent in *X* to a linear combination with rational coefficients of $j_*(C_Y)$ and $j_*(f)$:

$$C \equiv \lambda j_*(C_Y) + \mu j_*(f),$$

where $j_*(C_Y)$ is a curve in *Y* or is the zero cycle, and $j_*(f)$ is a curve of the family *V*. Since algebraic equivalence implies numerical equivalence we conclude the proof.

Remark 3.3 Note that the proof of the above lemma actually yields that a curve C in Locus $(V)_Y$ is algebraically equivalent to a linear combination with rational coefficients

$$\lambda j_*(C_Y) + \mu j_*(f)$$

such that $\lambda \ge 0$; in fact, let C_S be an irreducible curve in *S* which dominates *C* via *j* as in the proof of the lemma. In *S* we write $C_S \equiv \lambda C_Y + \mu f$ and, intersecting with *f* we have $\lambda \ge 0$. To the author's knowledge this was first noted by Wiśniewski in [3, Proof of Lemma 1.4.5].

Corollary 3.4 Let V^1, \ldots, V^k be unsplit families of rational curves and let x be a point in X such that $Locus(V^1, \ldots, V^k)_x$ is not empty. Then every curve contained in $Locus(V^1, \ldots, V^k)_x$ is numerically equivalent to a linear combination with rational coefficients of curves in V^1, \ldots, V^k .

Proof To prove the corollary we apply Lemma 3.2 *k* times, taking $Y_1 = x$ and $Y_i = \text{Locus}(V^1, \ldots, V^{i-1})_x$.

If *Y* is a point and *X* is smooth, we have the following dimension bound which is a generalization of [8, Proposition IV.2.6]

Theorem 3.5 ([4, Theorem 5.2]) Let V^1, \ldots, V^k be linearly independent unsplit families of rational curves on a smooth variety X and let x be a point in X such that $Locus(V^1, \ldots, V^k)_x$ is not empty. Then

dim Locus
$$(V^1,\ldots,V^k)_x \ge -\sum K_X \cdot V^i - k.$$

4 Products of Projective Spaces

In the proof of Theorem 1.1 we will use the following well-known lemmata:

Lemma 4.1 Let $p: Y \to B$ be a morphism from a smooth variety to a smooth curve, such that $\rho(Y/B) = 1$ and the general fiber of p is a projective space. Then there exists a vector bundle \mathcal{F} of rank = dim Y on B such that $Y = \mathbb{P}_B(\mathcal{F})$ and p is the natural projection.

Lemma 4.2 Let $Y = \mathbb{P}_{\mathbb{P}^1}(\mathcal{E})$ be the projectivization of a vector bundle of rank r+1 over \mathbb{P}^1 . Then the Mori cone NE(Y) is generated by the class of a line l in a fiber of the natural projection $p: Y \to \mathbb{P}^1$ and the class of a section whose intersection with the tautological line bundle $\xi_{\mathcal{E}}$ is minimal (a minimal section). Moreover, denoting by C_0 a minimal section, any curve whose numerical class is a multiple of $[C_0]$ is (set-theoretically) the union of disjoint minimal sections.

Proof of Theorem 1.1 The "only if" part of the theorem is clear, taking as V^i the family of lines in $\mathbb{P}^{n(i)}$; to prove the "if" part first of all we observe that, in the assumptions of the theorem, we have $\rho_X = k$.

In fact, since on X there exists k numerically independent curves we have $\rho_X \ge k$. On the other hand $\text{Locus}(V^1, \dots, V^k)_x$ is not empty for every $x \in X$ since the families V^j are covering families, and by Theorem 3.5 we have

dim Locus
$$(V^1,\ldots,V^k)_x \ge -\sum K_X \cdot V^i - k = n,$$

so $X = \text{Locus}(V^1, \ldots, V^k)_x$ and $\rho_X \leq k$ by Corollary 3.4.

We will now proceed by induction on the Picard number ρ_X . If $\rho_X = 1$ then $X \simeq \mathbb{P}^n$ by [7, Theorem 1.1] or [5, Corollary 0.4]; so let us suppose that $\rho_X = k$. We denote by NE(*X*) the Mori cone of *X*, *i.e.*, the cone in $N_1(X)$ generated by the classes of effective curves on *X*.

Step 1 NE(X) = $\mathbb{R}_+[V^1] + \cdots + \mathbb{R}_+[V^k]$.

For every point $x \in X$ and for every permutation $i(1), \ldots, i(k)$ of the integers $1, \ldots, k$ we have $X = \text{Locus}(V^{i(1)}, \ldots, V^{i(k)})_x$. In fact, $\text{Locus}(V^{i(1)}, \ldots, V^{i(k)})_x$ is not empty since the families V^j are covering families, and by Theorem 3.5 we have

dim Locus
$$(V^{i(1)},\ldots,V^{i(k)})_x \ge -\sum K_X \cdot V^i - k = n.$$

Now let *C* be an effective curve in *X*; by Corollary 3.4 and Remark 3.3, for every permutation $i(1), \ldots, i(k)$ we find coefficients $\lambda_{i(1)}, \ldots, \lambda_{i(k)}$, with $\lambda_{i(1)} \ge 0$ such that

$$[C] = \lambda_{i(1)}[C_{i(1)}] + \dots + \lambda_{i(k)}[C_{i(k)}].$$

Since V^1, \ldots, V^k are independent in $N_1(X)$, the decomposition of [C] is unique and we get that $\lambda_{i(j)} \ge 0$ for all $j \in 1, \ldots, k$. It follows that $NE(X) = \mathbb{R}_+[V^1] + \cdots + \mathbb{R}_+[V^k]$; moreover by the Kleiman criterion $-K_X$ is ample, so X is a Fano manifold.

Notation We will usually denote by $\varphi_{\sigma} \colon X \to Y_{\sigma}$ the contraction corresponding to the extremal face σ . If $\tau \subsetneq \sigma$ is a (possibly empty) subface, then $\varphi_{\sigma} \colon X \to Y_{\sigma}$ factors through $\varphi_{\tau} \colon X \to Y_{\tau}$ and a morphism $Y_{\tau} \to Y_{\sigma}$ which we will call $\psi_{\tau\sigma}$.

Note that, if
$$\tau = \emptyset$$
 then $Y_{\tau} = X$ and $\psi_{\tau\sigma} = \varphi_{\sigma}$.

Step 2 Every extremal contraction of *X* is equidimensional and its general fiber is a product of projective spaces.

By Step 1 the cone NE(X) is k-dimensional and it is spanned by k extremal rays, so to every subset $I \subset \{1, ..., k\}$ corresponds an extremal face, spanned by the rays indexed by I and an extremal contraction.

Let $\sigma = \langle R_{i_1} \cdots R_{i_l} \rangle$ be an extremal face of NE(*X*) and let σ^{\perp} be the face spanned by the extremal rays of NE(*X*) which are not in σ ; these two faces are clearly disjoint.

We claim that for every fiber G_{σ} of φ_{σ} we have

(1)
$$\dim G_{\sigma} = \sum_{j=1,\dots,l} n(i_j)$$

since $G_{\sigma} \supseteq \text{Locus}(V^{i_1}, \ldots, V^{i_l})_x$, by Theorem 3.5 we know that

$$\dim G_{\sigma} \geq -\sum_{j=1,\dots,l} K_X \cdot V^{i_j} - l = \sum_{j=1,\dots,l} n(i_j).$$

Let *x* be a point of G_{σ} and let $G_{\sigma^{\perp}}$ be the fiber of $\varphi_{\sigma^{\perp}}$ passing through *x*; we have

$$\dim G_{\sigma^{\perp}} \geq -\sum_{j=l+1,\ldots,k} K_X \cdot V^{i_j} - (k-l) = \sum_{j=l+1,\ldots,k} n(i_j).$$

Moreover, since the numerical class of every curve in G_{σ} lies in σ and the numerical class of every curve in $G_{\sigma^{\perp}}$ lies in σ^{\perp} we have dim $(G_{\sigma} \cap G_{\sigma^{\perp}}) = 0$, so that, by Serre's inequality, dim G_{σ} + dim $G_{\sigma^{\perp}} \leq n$. Hence

$$n = \sum_{j=1,\dots,k} n(i_j) \le \dim G_{\sigma} + \dim G_{\sigma^{\perp}} \le n,$$

forcing

$$\dim G_{\sigma} = \sum_{j=1,\dots,l} n(i_j).$$

In particular, if we take G_{σ} to be a general fiber of φ_{σ} , then G_{σ} is smooth and satisfies the assumptions of Theorem 1.1, and so we have $G_{\sigma} \simeq \mathbb{P}^{n(i_1)} \times \cdots \times \mathbb{P}^{n(i_l)}$ by the induction assumption.

We note here, for later use, that from the proof of Step 2 it follows that

(2)
$$\dim Y_{\sigma} = \dim X - \dim G_{\sigma} = \dim G_{\sigma^{\perp}}$$

Step 3 Let Σ be an extremal face of NE(X) of dimension s < k and let $\sigma \subset \Sigma$ be a subface of codimension one; then $\psi_{\sigma\Sigma} \colon Y_{\sigma} \to Y_{\Sigma}$ is a projective bundle outside a set of codimension two in Y_{Σ} .

Recall that $\varphi_{\Sigma} = \psi_{\sigma\Sigma} \circ \varphi_{\sigma}$ and that both φ_{Σ} and φ_{σ} are equidimensional and with connected fibers, so also $\psi_{\sigma\Sigma}$ is equidimensional and has connected fibers. Since Y_{σ} is a normal variety, also the general fiber of $\psi_{\sigma\Sigma}$ is normal; we claim that it is a projective space.

To prove the claim let *y* be a general point of Y_{Σ} , let G_y be the fiber of $\psi_{\sigma\Sigma}$ over *y*, let F_y be the fiber of φ_{Σ} over *y*, and consider the following diagram:

By Step 2 we know that F_y is a product of *s* projective spaces; the morphism $\varphi_{\sigma|F_y}$ is a proper morphism with connected fibers onto a normal variety, so it is a contraction of F_y . But on a product of projective spaces the only contractions are projections onto some factors. Since the general fiber of φ_{σ} is a product of s - 1 projective spaces, the claim follows.

To prove that $\psi_{\sigma\Sigma}$ is a projective bundle outside a set of codimension two we have to prove that for a general curve $B \subset Y_{\Sigma}$ the variety $Y_{\sigma}^{B} := \psi_{\sigma\Sigma}^{-1}(B)$ is a projective bundle over *B*. To show this last statement, by Lemma 4.1, it is enough to prove that Y_{σ}^{B} is smooth.

Let θ and Θ be two subfaces of NE(*X*) such that $\theta \subset \Theta \subset \Sigma$, and consider the following commutative diagram:

Take dim $Y_{\Sigma} - 1$ general very ample divisors on Y_{Σ} ; by Bertini's theorem their intersection is a smooth curve *B* and also $X^B = \varphi_{\Sigma}^{-1}(B)$ is smooth.

We can consider the restriction to X^B of the previous diagram, where for the restricted morphisms we keep the same notation we used for the original ones and where $Y^B_{\theta} := \psi^{-1}_{\theta\Sigma}(B)$ and $Y^B_{\Theta} := \psi^{-1}_{\Theta\Sigma}(B)$.

A Characterization of Products of Projective Spaces

We will show that, for every extremal face $\Theta \subsetneq \Sigma$ in NE(X), associated extremal contraction $\varphi_{\Theta} \colon X \to Y_{\Theta}$ and restricted morphism $\varphi_{\Theta} \colon X^B \to Y_{\Theta}^B$ the target variety Y_{Θ}^B is smooth. In particular it will follow that Y_{σ}^B is smooth.

We proceed by induction on the dimension of Θ ; if dim $\Theta = 0$ then φ_{Θ} does not contract anything and X^{B} is smooth.

Now let $\theta \subseteq \Sigma$ be an extremal face of NE(*X*) of dimension t - 1 < s - 1, let $R \subset \Sigma$ be an extremal ray independent from θ , let Θ be the face spanned by θ and *R* and finally let ω the face spanned by all the rays in Σ but *R*.

We have a commutative diagram

The general fiber of $\psi_{\omega\Sigma} \colon Y^B_{\omega} \to B$ is a projective space, so over an open Zariski subset U of B the morphism $\psi_{\omega\Sigma}$ is a projective bundle. We take H to be the closure of a hyperplane section of $\psi_{\omega\Sigma}$ defined over the open set U and $\mathcal{H} = \psi_{\theta\omega}^{-1}(H)$. Since Y^B_{θ} is smooth by induction, \mathcal{H} is a Cartier divisor, which restricts to O(1) on the general fiber of $\psi_{\theta\Theta}$, so $\psi_{\theta\Theta}$ is a projective bundle globally by [6, Lemma 2.12] and so Y^B_{Θ} is smooth.

Step 4 Let Σ be a (k-1)-dimensional face of NE(X) obtained by removing a ray R_{i_1} and let $\varphi_{\Sigma} \colon X \to Y_{\Sigma}$ be the associated contraction. Then $Y_{\Sigma} \simeq \mathbb{P}^{\dim Y_{\Sigma}}$.

Let R_{i_2} be a ray in Σ and σ the (possibly empty) subface of Σ obtained removing the ray R_{i_2} ; finally let $\tau = \langle \sigma, R_{i_1} \rangle$.

The contraction φ_{τ} factors through φ_{σ} and a morphism $\psi_{\sigma\tau} \colon Y_{\sigma} \to Y_{\tau}$, the contraction φ_{Σ} factors through φ_{σ} and a morphism $\psi_{\sigma\Sigma} \colon Y_{\sigma} \to Y_{\Sigma}$ and both the morphisms $\psi_{\sigma\tau}$ and $\psi_{\sigma\Sigma}$ are, by Step three, projective bundles outside a set of codimension two.

The situation is illustrated by the commutative diagram

where *G* is a general fiber of $\psi_{\sigma\tau}$ and so a projective space.

Note that, by equations (1) and (2) we have dim $Y_{\sigma} = n(i_1) + n(i_2)$, dim $Y_{\Sigma} = n(i_1)$ and dim $Y_{\tau} = n(i_2)$; it follows that dim $G = \dim Y_{\Sigma}$, so that $\psi_{\sigma\Sigma}$ restricted to G is dominating.

First of all we will prove that $\psi_{\sigma\Sigma}$ restricted to *G* is not ramified outside a subset of codimension two.

Let *l* be a general line in *G* such that its image $C := \psi_{\sigma\Sigma}(l) \subset Y_{\Sigma}$ is not contained in the branch locus of $\psi_{\sigma\Sigma}$ and such that, over *C*, the morphism $\psi_{\sigma\Sigma}$ is a projective bundle. Let $\nu : \mathbb{P}^1 \to C \subset Y_{\Sigma}$ be the normalization of *C* and let Y_C be the fiber product $Y_C = \mathbb{P}^1 \times_C Y_{\sigma}$:

The variety Y_C is a projective bundle over \mathbb{P}^1 , so by Lemma 4.2 its cone of curves $NE(Y_C)$ is generated by the class of a line in a fiber of p and by the class of a minimal section C_0 .

The cone of curves NE(Y_{σ}) is generated by the class of a line in a fiber of $\psi_{\sigma\Sigma}$ and by the class of a line in a fiber of $\psi_{\sigma\tau}$, *i.e.*, the class of *l*.

The morphism $\bar{\nu}$ induces a map of spaces of cycles $N_1(Y_C) \rightarrow N_1(Y_{\sigma})$ which allows us to identify NE(Y_C) with a subcone of NE(Y_{σ}). Since $\bar{\nu}(Y_C)$ contains lines in the fibers of $\psi_{\sigma\Sigma}$ and contains l, a line in G, we have an identification NE(Y_C) \simeq NE(Y_{σ}).

In particular $G \cap \overline{\nu}(Y_C)$, which is a curve whose numerical class in Y_{σ} is a multiple of [l], is the image of a curve Γ whose numerical class in Y_C is a multiple of $[C_0]$.

By Lemma 4.2 the curve Γ is the union of disjoint minimal sections, so $G \cap \bar{\nu}(Y_C)$ consists of the images via $\bar{\nu}$ of disjoint minimal sections. These images are disjoint curves since $\bar{\nu}$ is one to one on the fibers of p, so every point in C has the same number of preimages via $\psi_{\sigma\Sigma|G}$.

Now, recalling that *C* was not contained in the branch locus of $\psi_{\sigma\Sigma|G}$, we can conclude that $\psi_{\sigma\Sigma|G}$ is not ramified outside a subset of codimension two, for otherwise, the ramification divisor would be effective, hence ample on *G* and so it would meet *l*, a contradicition. We now prove that Y_{Σ} is a quotient of a projective space; if we remove the ramification and branch sets of $\psi_{\sigma\Sigma|G}$, the finite map

$$\psi_{\sigma\Sigma|G\setminus\operatorname{Ram}}\colon G\setminus\operatorname{Ram}\to Y_{\Sigma}\setminus\operatorname{Br}$$

is a topological covering.

Since the covering space, $\mathbb{P}^{\dim G} \setminus \{\text{set of codimension two}\}$, is simply connected, this is just the universal cover of $Y_{\Sigma} \setminus \text{Br}$. The deck transformation group of this covering defines birational maps of $\mathbb{P}^{\dim G}$, which are isomorphisms outside a set of codimension two and therefore the strict transform of divisors is defined and it is the identity on the Picard group; it follows that the deck transformations are linear transformations. In particular $\psi_{\sigma\Sigma|G} \colon \mathbb{P}^{\dim G} \to Y_{\Sigma}$ is just a quotient by a finite subgroup of $PGL(\dim G)$.

Finally, we can conclude that Y_{Σ} is smooth by [1, Proposition 1.3], which asserts that if the target of an extremal equidimensional contraction has quotient singularities, then it is smooth. We can thus apply a result of Lazarsfeld [9, Theorem 4.1] which shows that the only smooth variety dominated by a projective space is the projective space itself, and conclude that $Y_{\Sigma} \simeq \mathbb{P}^{\dim Y_{\Sigma}}$.

A Characterization of Products of Projective Spaces

Final step $X = \mathbb{P}^{n(1)} \times \cdots \times \mathbb{P}^{n(k)}$. We finish the proof using the notation of Step 4 and denoting by *R* the ray R_{i_1} . By the smoothness of Y_{Σ} and the purity of the branch locus we have that φ_{Σ} restricted to *G* is one to one; this implies that the line bundle $H = \varphi_{\Sigma}^* \mathcal{O}_{\mathbb{P}}(1)$ restricts to $\mathcal{O}_{\mathbb{P}}(1)$ on the fibers of φ_R , and so φ_R is a projective bundle by [6, Lemma 2.12].

In particular we get that Y_R is smooth, and so, by the induction hypothesis, it is a product of projective spaces.

We can write $X = \mathbb{P}_{Y_R}(\mathcal{E}_R)$ where \mathcal{E}_R is vector bundle on Y_R of rank $n(i_1) + 1$.

We claim that the restriction of \mathcal{E}_R to every line in Y_R is trivial; in fact, let l be a line in Y_R and let \mathcal{E}_l be the restriction of \mathcal{E}_R to l; $\mathbb{P}(\mathcal{E}_l)$ has a morphism onto $Y_{\Sigma} \simeq \mathbb{P}^{\dim Y_{\Sigma}}$; since $n(i_1) = \dim Y_{\Sigma} < \dim \mathbb{P}(\mathcal{E}_l) = n(i_1) + 1$ this is possible only if $\mathbb{P}(\mathcal{E}_l) \simeq \mathbb{P}^1 \times \mathbb{P}^{\dim Y_{\Sigma}}$ (otherwise $\mathbb{P}(\mathcal{E}_l)$ has morphisms either on \mathbb{P}^1 or onto a variety of dimension equal to the dimension of $\mathbb{P}(\mathcal{E}_l)$).

Now we proceed by induction on the rank of \mathcal{E}_R to prove that \mathcal{E}_R is a trivial bundle, following [2, Proof of Proposition 1.2].

Let G_{Σ} be a general fiber of φ_{Σ} and consider the pullback $\widetilde{\varphi_R} \colon \mathbb{P}(\varphi_{\Sigma}^* \mathcal{E}_R) \to G_{\Sigma}$, as in the following diagram:

By the universal property of the fiber product, the \mathbb{P} -bundle $\widetilde{\varphi_R}$ admits a section $s: G_{\Sigma} \to \mathbb{P}(\varphi_R^* \mathcal{E}_i)$ such that $\widetilde{\varphi_{R|G_{\Sigma}}} \circ s$ is the embedding of G_{Σ} into X, and so there exists a sequence of vector bundles over G_{Σ}

$$0 \longrightarrow \mathcal{E}'_R \longrightarrow \varphi_{\Sigma}^* \mathcal{E}_R \longrightarrow \mathcal{O}_{G_{\Sigma}} \longrightarrow 0$$

with \mathcal{E}'_R trivial on every line in G_{Σ} . By induction we get that \mathcal{E}'_R is trivial, and, since $H^1(G_{\Sigma}, \mathcal{O}_{G_{\Sigma}}) = 0$, the above sequence splits; we conclude the proof using [2, Lemma 1.2.2].

Corollary 4.3 Let X be a Fano manifold of pseudoindex i_X . If $2i_X \ge \dim X + 2$ then $\rho_X = 1$ except if $X \simeq (\mathbb{P}^{i_X-1})^2$.

Proof Since *X* is a Fano manifold, through every point of *X* there exists a rational curve of anticanonical degree $\leq \dim X + 1$, hence there exists an irreducible component $V^1 \subset \text{RatCurves}_d^n(X)$ of anticanonical degree $d \leq \dim X + 1$ which is a covering family; note that, by our assumptions on the pseudoindex, the family V^1 is an unsplit family.

Let *R* be an extremal ray of *X* which does not contract curves of V^1 ; and let V^2 be the family of rational curves corresponding to a minimal degree curve whose numerical class is in *R*; if such a ray does not exist, then $\rho_X = 1$ and we are done.

By Theorem 3.5 we have

$$\dim X \geq \dim \operatorname{Locus}(V^1, V^2)_x \geq -\sum K_X \cdot V^i - 2 \geq 2i_X - 2 \geq \dim X.$$

We get that $-K_X \cdot V^1 = -K_X \cdot V^2 = i_X - 1$, $Locus(V^1, V^2)_x = X$ and that V^2 is a covering family, so we can apply Theorem 1.1.

Acknowledgements I wish to thank Jarosław Wiśniewski for some helpful suggestions.

References

- M. Andreatta, and J. A. Wiśniewski, A view on contractions of higher dimensional varieties. In: Algebraic Geometry, Proc. Sympos. Pure Math. 62, American Mathematical Society, Providence, RI, 1997, pp. 153–183.
- [2] _____, On manifolds whose tangent bundle contains an ample subbundle. Invent. Math. 146(2001), no. 1, 209–217.
- [3] M. C. Beltrametti, A. J. Sommese, and J. A. Wiśniewski, *Results on varieties with many lines and their applications to adjunction theory.* In: Complex Algebraic Varieties 1507, Lecture Notes in Math. 1507, Springer, Berlin, 1992, pp. 16–38.
- [4] L. Bonavero, C. Casagrande, O. Debarre, and S. Druel, Sur une conjecture de Mukai. Comment. Math. Helv. 78(2003), no. 3, 601–626.
- [5] K. Cho, Y. Miyaoka, and N. Shepherd-Barron, *Characterizations of projective space and applications to complex symplectic manifolds*. In: Higher Dimensional Birational Geometry, Adv. Stud. Pure Math. 35, Math. Soc. Japan, Tokyo, 2002, 1–88.
- [6] T. Fujita, On polarized manifolds whose adjoint bundles are not semipositive. In: Algebraic Geometry, Adv. Stud. Pure Math. 10, North-Holland, Amsterdam, 1987, pp. 167–178.
- [7] S. Kebekus, Characterizing the projective space after Cho, Miyaoka and Sheperd-Barron. In: Complex Geometry, Springer, Berlin, 2002, pp. 147–155.
- [8] J. Kollár, Rational Curves on Algebraic Varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete 32, Springer-Verlag, Berlin, 1996.
- [9] R. Lazarsfeld, Some applications of the theory of positive vector bundles. In: Complete Intersections, Lecture Notes in Math. 1092, Springer, Berlin, 1984, pp. 29–61.
- [10] S. Mukai, Open problems. In: Birational Geometry of Algebraic Varieties, Cambridge Tracts in Mathematics 134, Cambridge University Press, Cambridge, 1988, pp. 67–60.
- [11] J. A. Wiśniewski, On a conjecture of Mukai. Manuscripta Math. 68(1990), no. 2, 135–141.

Dipartimento di Matematica Università degli Studi di Trento Via Sommarive, 14 I-38050 Povo (Trento) Italy e-mail: occhetta@science.unitn.it