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Introduction

Any congruence on a semigroup S with a nonempty set Es of idempotents
induces a partition of the set Es. Two congruences p and a on the semigroup S
are defined to be idempotent-equivalent congruences on S if p and cr induce the same
partition of Es. In this paper we investigate idempotent-equivalent congruences
on orthodox semigroups (regular semigroups in which the set of idempotents forms
a subsemigroup).

If S is an orthodox semigroup and p is a congruence on S, then the partition
of Es induced by p satisfies certain normality conditions. We determine those par-
titions of Es which are induced by congruences on S and we characterize the
largest and smallest congruences on S corresponding to such a partition of Es.

The set of all congruences which are idempotent-equivalent to a given congru-
ence forms a sublattice of the lattice A(S) of all congruences on S. We investigate
some of the properties of this sublattice of A(S). Specifically, we determine the reg-
ular kernels of the meet and join of two idempotent-equivalent congruences p and a
on S in terms of the regular kernels of p and a. Finally, we show how this may be
simplified in the special case when the lattice of idempotent-equivalent congruences
considered coincides with the lattice of idempotent-separating congruences on S.

The corresponding results concerning idempotent-equivalent congruences on
inverse semigroups have b6en obtained by N. R. Reilly and H. E. Scheiblich [3],
and the methods which we adopt provide an extension of the methods adopted in
[3]. The essential difficulties which arise are due to the necessity to consider the
transitive closures of several relations.

1. Preliminary Results and Notation

We shall adhere throughout to the notation and terminology of A. H. Clif-
ford and G. B. Preston [1]. In addition, we shall denote the set of inverses of an
element x of a regular semigroup by V(x).

We make frequent use of the following lemma ([3], lemma 1.3 and lemma 1.4).
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222 John Meakin [2]

LEMMA 1.1. Let S be an orthodox semigroup. Then

(i) if a and b are arbitrary elements of S, and if a' and b' are arbitrary inverses
of a and b respectively, it follows that b'a' e V(ab);

(ii) if a is an arbitrary element of S and if a' is an arbitrary inverse of a, then
a'Esa <= Es;

(iii) ife is an arbitrary idempotent ofS, then V(e) c Es.

Wenowgiveabrief outline of some of the results of the author [2] concerning
congruences on orthodox semigroups. The regular kernel 88 — {Bt: iel} of a
congruence p on an orthodox semigroup is defined to be the set of maximal regular
subsemigroups of the elements of the kernel s/ = {At: iel} of p. Indeed, for
all i e I, we have the characterization

Bt = {xeAt:V(x)nAt^n}. (1)

A regular kernel normal system of the orthodox semigroup S is defined to be a set
88 = {B{ : iel} of subsets of S which satisfy the conditions:

(Kl) each B( is a regular subsemigroup of 5;

(K2) Bi n Bj = • if i # j ;

(K3) each idempotent of S is contained in some Bt;

(K4) for each ae S, a' e V(a), and i e I, there is some j = (a, a', i) e I such that
a'Bta £ By,

(K5) for each i,j e I, there is some k e I such that B^^Bi <=, Bk;

(K6) if a, ab, bb', b'b e Bt for some V e V(b), then b e B,;

(K7) for each iel and for each je I, there is some k e I such that EtEj c Ek,
where E{ denotes the set of idempotents of Bt.

Then we have the following theorem ([2], theorem 3.6).

THEOREM 1.2. If p is a congruence on an orthodox semigroup S then the regular
kernel 3D of p is a regular kernel normal system of S, and p = p\, the transitive
closure of the relation pm defined by:

pm = {(a, b)e SxS : there exists a'eV(a) and b'eV(b) such that

aa', bb', ab' e Bu da, b'b, a'b e Bj for some i,j e I}. (2)

Conversely, if 8$ is a regular kernel normal system of S, then there is precisely one
congruence p on S such that 8$ is the regular kernel of p, and then p — p'm.

Now let S be an orthodox semigroup and let p be a congruence on S. Then as
mentioned earlier, p induces a partition

& ={Et:ieI}
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[3] Congruences on semigroups 223

of the set Es of idempotents of S. By virtue of lemmu 1.1, we easily see that $
satisfies the conditions:

(Nl) for all i,j e I, there exists ke I such that EtEj = Ek;

(N2) for all iel, aeS, and a' e V(a), there exists y e / such that aEta' £ £ , .

We define a partition £ = {Et :ie 1} of the set Es of idempotents of the
orthodox semigroup S to be a normal partition of Es if <? satisfies conditions Nl
and N2. We denote by ng the equivalence relation on Es induced by such a parti-
tion & and show that there exists a congruence p on S such that p\E^ = ng\ indeed
we determine the maximal and minimal such congruences on S.

Before proceeding to the determination of these congruences, we introduce
the following useful notation: if e and f are two idempotents of the orthodox semi-
group S, then we define e x f if and only if e and f are in the same class Et of the
normal partition $ = {Et :iel} of Es.

Using this notation, we have the following lemma.

LEMMA 1.3. Let s1,s2, • •", s,,-i be elements of the orthodox semigroup S,
and let s't, s" be inverses ofstfor i = 1, • • • n— 1 such that relative to some normal
partition $ of Es we have srs" x sr+1s{+1, s'/sr « s'r+1sr+1, for r = 1, • • • n — 2.

Then the following formulae hold:

Sjs; »(s B - 1 s ;_ 1 ) (s B _ 2 s ;_ 2 ) - - - (s 1 s ' 1 ) ; (3)

sisi ~ (»isi)- • • ( C 2 J . - 2 X C 1 J . - 1 ) ; (3')

s n ' _ l V . « (C1»- -1 ) ' ' • («2S2)(si'*i); (4)

sB_ t sn'_ x « (Sl sV)(s2 s'2') • • • (sB_! s;i ,)• (4')

This may be proved by induction along precisely the same lines as the proof of
lemma 3.3 in [2], using the condition (Nl) in the appropriate places.

2. The Congruence £'

Let $ = {Et: / e 7} be a normal partition of the set Es of idempotents of the
orthodox semigroup S and consider the relation

£ = {(a, b) e S x S : there exist inverses a' of a and b' of Z> such that iel
implies aEia',bEib' c £,- and a'E^b'Eib ^ 2^, for some j,kel}. (5)

We prove that the transitive closure C of the relation ( is the largest congruence on
5 whose restriction to Es is ng.

LEMMA 2.1. Let £ = {Et: ie 1} be a normal partition of the set Es of idem-
potents of the orthodox semigroup S and let t, be defined by (5). Then the transitive
closure £' of the relation C is a congruence on S.
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224 John Meakin [4]

PROOF. £ is clearly reflexive by normality condition N2, and £ is also clearly
symmetric, so to prove that £' is a congruence on S it suffices to show that £ is a
compatible relation.

Suppose that (a, b) e £, and let c be an arbitrary element of S. Let c' be an ar-
bitrary inverse of c, and let a' and V be the inverses of a and b respectively which
appear in the definition of £. Since a'c' e V(ca) and b'c' e V(cb), it suffices, in or-
der to establish the left compatibility of £, to show that given / e /, there exists
lei and me I such that

and
(a'c ')£,M, (b'

Now, given i e /, there exists7 e / such that aEta', bEtb' £ £,. Then

(ca)Et(a'c') = c(aE{a')c' £ c£}c' £ £,,

some / e /, by condition N2, while

(cb)Ei(b'c') = c{bEib')c' £ cEjC' £ £,,
by N2.

Also, c'EiC £ isn, some n e I (by N2), and given ne I, there exists me I such
that a'Ena, b'Enb £ £m. Hence (a'c')is;(ca) £ a'£na £ £m and

(b'c')E,(cb) £ Z>'£nZ> £ £„.

Hence the left compatibility of £ is established, and the proof that £ is right com-
patible follows in a similar fashion. Thus £ is compatible, and it follows that £' is
a congruence on S.

LEMMA 2.2. Under the conditions of lemma 2.1 the restriction £'\Es of the con-
gruence £' to the set Es of idempotents of S coincides with ns, the equivalence
relation on Es induced by S'.

PROOF. Suppose first that e and/are idempotents of S in the same class Et of the
partition S. Let j be an arbitrary element of/. Then e£}e £ EiEjEi £ Ek, some
kel, by Nl, and/£,•/£ EiEjEi £ Ek. Since ee K(e) a n d / e V(f), it follows
that (e, /)e £ £ £', and hence that ns £ C'|£s.

Conversely, suppose that e and/are idempotents of 5 for which (e,f) e £'. We
aim to prove that e and / a re in the same class of the partition S, i.e. that e x f.
Now since £' = \J^= t £", where £" is the n-fold composition of £ with itself, it
follows that (e, /)e £" for some « ^ 1. We consider the cases n = 1 and n > \
separately.

Suppose first that (e,f) e £. Then there are inverses e' of e and/ ' of/such
that / e / implies eEte', fEj' £ Ej and e'^e, / ' £ , / £ £ t , some 7, /c e /. Then
ee' = e(e)e' xfef, and similarly it follows that e'e xf'e'f and that// ' w e/'e'.
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[5] Congruences on semigroups 225

Hence e = (ee')(e'e)

~{fef'){f'e'f) (byNl)

= f(ef'e')f

f (byNl).

Hence e x f, and the proof for the case n = 1 is complete. Now suppose that
( e , / ) e £", some n > 1. Then there are elements st, s2, • • •, sn-i of 5 such that
(e, st) e (, (Si, s2) e C, • • • O^-i , /) e C, and it follows that there are elements
e' e V(e), si, s',' e V(s,), for / = 1, • • • n-1, and / ' e K(/) such that i e I implies
the existence of j \ ,j2, • • • 7,,, &i, k2, • • • kne I such that

eEte', s1Eis[ s £,-,; e'£,e, si£fSi s Ekl;

s £; ,+ 1 , for / = 1, • • • n-2;

s'l'Eis,,s'l + 1Eisl+l £ £*,;,, for / = 1, • - - n - 2 ;

s ._ 1 £ , s ; '_ ! , /£ , / ' E £,„; C I £ « » » - I . / ' J E J / S £*»•

As the first step in the proof that « s i / , w e prove the following formulae:

ee' a st s'x, e'e x s[ st,

SfS't' x si + 1s'i + 1, s't'st x s'i+lsi + 1, for i = 1, • • • n-2, (7)

s » - i d «//'» C1S.-1 «/'/•
Now

slS; =s1(s'1s1)s'1«e(S'lSl)e' (by (6))

-Ks' .SiOe'^^lsie 'M (by (6))

- s^ ' s iaeeV (by (6)),

and hence Sis[ x ee'. Also, for / = 1, • • • n — 2 we have

3,5," = *,&'»,)»;' * »,+iW's«)s«'+i (by (6))

= s,+1[(s/"s,)(s,'+! s,+03S.-+1 « Si(s;'Sj)(s;+! si+ ,)s," (by (6))

and hence

Finally,

sn-l sn-l = sn-l(sn-l sn-l)sn-l x f\sn- 1 sn- 1

By the dual arguments, we obtain
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226 John Meakin [6]

e'e as s'iSi, s'i'si « s'i+1 s i + 1 , for i = 1, • • • n-2,
and

/'/«s;'_1s11_1,

and this completes the verification of (7). By virtue of the formulae (7) we are now
in a position to use lemma 1.3, of course. Now

ee' = eee' as stes[ (by 6))

= Ji[e(sIJi)K(si*i)-

We use this as a basis for an inductive proof of the formula:

ee' as sr e(s[ s,)(s2 s2) • • • (s'rsr)s'r'(s, s'r) • • • (s2 s'2)(s1 s[), (8)

for r = 1, • • • n— 1. We have just seen that this holds true for r = 1, so suppose
that (8) holds for r = k. Then we have

ee' « s*+1 e(s; s^SiSi) • • • (s'ksk)s'k+l(sksi) • • • (SiS',)^! s\) (by (6))

= st+i e(si si)' '' (s*st)(st+i s*+i)sfc+i(s*+i sfc+i)(s*s*)' ' ' (si si)>

and this completes the inductive proof of (8). From (8), we deduce that

ee' x sB_! e(s[ st)(s2 s2) • • • (s'n. t sB_ i)s'n'_ j(sn_ t sB_,) • • • (s2 s2Xsi si)

as /e(si Sl)(s2 s2) • • • (si_, s,_ O/'fo,-, S;_,) • • • (s2 s2)(Sl si) (by (6)).

By the dual of the argument used to prove this, we also have

e'e « (s'lSl)(s'2s2) • • • (s;_1s,,

Hence

c = (ee')(e'e)

where

and

v« = / ' ( s » - 1 s'n- J • • • (s2 s2)(Si si)c'/-

Now

• • • («»- 2 Sn-2)Vn- l(s»- 1 C l).

and we use this result as a basis for an inductive proof of the formula:

-r- 1 «B-r- l)] «»-r(SB-, <-,) " ' ' ( j » - l C l
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[7] Congruences on semigroups 227

for r = 1, • • • n— 1. Suppose inductively that (9) holds for r = k. Then

and this completes the inductive proof of (9). From (9) we immediately deduce that

un « (sl es'i)(s, s'i)(s2s2') • • • (sn_ t s^'_,)

« (e«')(si *")(*! s2') • • • (sB_, C t) (by (6) and Nl)

(«i «i)(si s'i')(»2 si') • • • (s»-1 si-1) (by (7) and Nl)

(Sl»V)(*2Si')- • • (« . - ! C l )

sB_ j s '̂_! by (4') of lemma 1.3

By the dual argument, we deduce that

and hence that

as required.
Hence ('|£s £ fl*, and since the converse inclusion has already been establish-

ed, we deduce that ('|£s = ne, as required. This completes the proof of the lemma.

THEOREM 2.3. Let $ = {E,: ie, 1} be a normal partition of the set Es of idem-
potent s of the orthodox semigroup S and let £ be defined by equation (5). Then (',
the transitive closure of (, is the largest congruence p on S which satisfies p\Es = ne.

PROOF. We have already seen that £' is a congruence on 5" and that £'|£s = nt.
It remains to verify that if p is a congruence on S satisfying p\Es = ng> then

So let p be a congruence on 5 which satisfies p\Es = ng, and let 8$ = {5,-: / e /}
be the regular kernel of p. Then since p\Es = ne, we have that iff £ Bt, for all
/ e / , for a suitable indexing of the elements of 38. By theorem 1.2, p = p'a, the
transitive closure of the relation pm defined by (2). Before proceeding to the proof
that p = p% £ (' we remark that if {a, b) e pm, then there exist inverses a' of a and
V ofb such that {a1, b')e pm.

To prove this, suppose that we have (a, b)epm for some a, be S. Then there
are inverses a' of a and V of b such that aa', bb', ab' e Bt, a'a, b'b, a'b e Bj, for
some i,j e /. Since a e V(a') and b e V(b'), we clearly have that (a', b') e pm.

We now prove that p = / 4 s ('• Let (a, ft)ep^ = (Jn°°= I Pm •Tnen (a> b) e P«>
for some n ^ 1. Hence there exist elements a = s0, st, J 2 ." ' ' ^n- I > 5n = * e ^
such that for all / = 0, • • • n-1, we have ( j f , j f + 1 ) e ^ , and consequently there
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228 John Meakin [8]

a r e e l e m e n t s s'o' e V(s0), sl,s" e K ( j f ) f o r i = 1, • • • , « - 1 , a n d s'n e V(sn) s u c h

t h a t f o r i = 0 , • • • , « — 1,

Hence ap = sop = sxp = • • • = . s ^ p = snp = &p, and

a"p = Sop = s\ p, s'i'p = s'2p,- • • C i P = s«P =

Now choose £}, an arbitrary element of the partition <f, and let e be an arbitrary
element of £}. Then for i = 0, • • • n— 1,

and
(s't'es^p = (s,"p)M(sip) = (s;+ip)(ep)(si+1p)

Since i1;^,-' and si+les'i+l are idempotents of S which are equivalent under p, and
since p | £ s = 71,,., it follows that s^s" and si+1es'i+1 are in the same element Ek

of the partition €, and hence by N2,

Since (s'/es^p = (s'i+1esi^.l)p, we also deduce that

sl'EjSi, s'i+lEjSi+l s £, , some / e / .

Hence, for i = 0, • • • n— 1, we have ($,, J j + 1) £ C, and it follows that (s0, sn) e C",
i.e. (a, b) e £" £ ^'. Hence p = p^ c ^j a n d the theorem is proved.

We devote the remainder of this section to the calculation of the regular kernel
of the congruence ('. By virtue of theorem 1.2, this provides an alternative char-
acterization of the congruence £'.

We make use of the following theorem, due to N. R. Reilly and H. E. Scheiblich
([3], theorem 1.5).

THEOREM 2.4. Let E be an idempotent subsemigroup of a semigroup S. Then S
has a unique subsemigroup T with the property that T is the largest regular subsemi-
group of S with E as its set of idempotents.

Now let S = {£•; : i e 1} be a normal partition of the set Es of idempotents
of the orthodox semigroup S. Then for each i e /, Et is a subsemigroup of S and
hence there exists a unique subsemigroup Tt of S with the property that Tt is the
largest regular subsemigroup of S with Et as its set of idempotents. It is obvious
that Ti is an orthodox subsemigroup of S. Using this definition of Tt, we now prove
the following theorem.

THEOREM 2.5. Let S be an orthodox semigroup and let ^ = { £ f : i e /} be a
normal partition of Es. For each i e /, define
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[9] Congurences on semigroups 229

Z, = {x e Tj : there exists x' e V(x) n T{ such that
EiEjEi £ £* implies x£,x', x'EjX £ £k}.

77ie« ^ = {Z;: i 6 /} is the regular kernel of the congruence £'.

PROOF. Let J / = {^,:ie /} be the kernel of (' and let 3& = {5,-: i e /} be the
regular kernel of ('. We aim to show that for all i e I, Bt = Z;.

Suppose first that x is an arbitrary element of Z; for some i e /. Then there
exists x' e V(x) n Tt such that £,£,£'( £ £t implies x£,x' £ £fc and x'EjX £ £k.
Now xx' e E{, and for ally e / we have,

xx'EjXx' £ EiEjEi £ isn, some A:e/.

It follows that xEj-x' £ £ t and x'EjX £ £k. Hence

(x, xx') e C £ T, and (*', xx') e C £ T-

Thus x e Ai and x' e At, and so x e Bt by virtue of the characterization (1) of the
Bt. Hence Zt £ 5f , for all i e / .

Conversely, let x be an arbitrary element of B( for some i e I, and choose
x' e F(x) n Z?;. Then since £( is the set of idempotents of Bt, it follows that B( £ Tt

and hence that x, x' e r ( . Suppose now that given ye /, we have E^EjEi £ £ t

(such a k exists by Nl). Choose e e £ , , / e £,-, ^ e Ek, so that (eC')(y%')(eC) = ffC-
Now x, x' e Ai, and so xC' = x'(' = eC, and it follows that

i.e.

Hence x/x', x'/x e £,,, and so xEjX1, x'EjX £ Ek. Thus x e Zf, and so B( £ Zj,
for all / e /.

Hence we have Bt = Z; for all i e /, and the theorem is proved.

3. The Congruence £

Let $ — {£•,-: i e /} be a normal partition of the set £s of idempotents of the
orthodox semigroup S and consider the relation

£ = {(a, b)eSxS: there exists a' e V(a), V e V(b) and i,jel
such that aa', bb' e £;, da, b'b e £}, and for some e e E% and
/ e £,-, ea/ = ebf and /a'e = /&'<?}. (10)

In this section we prove that <f, the transitive closure of the relation £ defined by
(10) is the smallest congruence p on S which satisfies the condition p\Es = ng.
We also determine the regular kernel of the congruence <!;', thus providing an
alternative characterization of this congruence.
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LEMMA 3.1. Let S be an orthodox semigroup and let $ = {Et :iel} be a

normal partition ofEs. Then the transitive closure ^ of the relation £ defined by (10)

is a congruence on S.

PROOF. It is trivial to verify that £ is reflexive and symmetric, so to prove that
£' is a congruence on 5 it suffices to prove that £ is left and right compatible. Let
(a, b)e £ and let c be an arbitrary element of S. Then there exists a' e V(a),
b' e V(b), and i,j e I such that aa', bb' e E(, a'a, b'b e Ej, and for some e e Et

and feEj, eaf = ebf and fa'e = fb'e. Let c' be an arbitrary inverse of c. Then
since a'c' e V(ca) and b'c' e V(cb), in order to prove the left compatibility of
^ it suffices to show that there exist k, le I such that (ca)(a'c'), (cb)(b'c') e Ek and
(a'c')(ca), (b'c'){cb) e E{ and that for some ex e Ek and/x e Eu we have

«I (M) / I = ei(c*)/i and/i(a 'c>! =fi{b'c')e1.

Let (ca)(a'c')e Ek. Then since c(aa')c' « c(bb')c' (by N2), we also have that
(cb)(b'c')eEk.

Let (a'c')(ca) e Et and let (b'c')(cb) e Em. We prove now that Et — Em. Now,

(a'c')(ca) = (a'a)a'[(aa')(c'c)(aa')]a(a'a)
x fa' [e(c'c)e]af (by N1 and N2)
= (fa'e){c'c)(eaf) = (fb'e)(c'c)(ebf)
= fb'[e(c'c)e]bf
x (b'b)b'[(bb')(c'c)(bb')]b(b'b) (by Nl and N2)
= (b'c')(cb), and it follows that E, = Em.

Now choose et = ceafa'ec' = cebfb'ec', and choose / t = fa'ec'ceaf = fb'ec'cebf.
Note that

et « c(aa')a(a'ay(aa')c' (by Nl and N2)
= (ca)(a'cr), s o exe Ek.

Also,
/ t a (a'a)a'(aa')(c'c)(aa>(a'a) (by Nl by N2)

= (a'c')(ca), s o / i e £,(=£„).
Now,

e1(ca)/1 = (ceafa'ec')(ca)(fa'ec'ceaf)
= ce(afa'ec'c)(afa'ec'c)eaf
= ce(afa'ec'c)eaf

= c(ebf)(fb'e)(c'c){ebf)
= (ce)(bfb'ec'c)ebf
= (ce)(bfb'ec'c)(bfb'ec'c)ebf
= (cebfb'ec')(cb)(fb'ec'cebf)
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Also,
fi(a'c')el = (fa'ec'ceaf)(a'c')(ceafa'ec')

= (fa'e)(c'ceafa'){c'ceafa')(ec')
= (fa'e)(c'ceafa')(ec')
= (fb'e)(c'c)(ebf)(fb'e)c'
= (fb'e)(c'cebfb')ec'
= {fb'e)(c'cebfb')(c'cebfb')ec'
= {fb'ec'cebf)(b'c')(cebfb'ec')

This completes the proof that £ is left compatible. The proof that £ is right com-
patible follows similarly and is omitted. Thus <f is a congruence on 5, and the
lemma is proved.

LEMMA 3.2. Under the conditions of lemma 3.1, the restriction <f|£s of the con-
gruence £' to the set Es of idempotents of S coincides with ng, the equivalence re-
lation on Es induced by S.

PROOF. Suppose first that e and/are idempotents of S in the same class E% of
the partition S. Then efe Et and it is easily verified that (ef)e(ef) = (ef) and that
(ef)f{ef) = ef. Since e e V(e) and fe V(f), it follows that (e,f) e f £ ?, and
consequently that ng s <f|Es.

Conversely, suppose that e and/are idempotents of S for which (e,f)e g.
Then (e,f) e £" for some n ^ 1. We consider the cases n = 1 and « > 1 separately.
Suppose first that (e,f)e £. Then in particular, there exists inverses c' of e and/ '
of/such that ee',ff e Et and e'e,f'fe E} for some /,./ 6 /. In fact these conditions
are sufficient to ensure that e « / since e = (ee')(e'e) « (ff')(f'f) = / , by Nl.
This completes the proof for the case n = 1.

Suppose now that (e , / )e^n for some n > 1. Then there exist elements
st,s2, • • • sn^tB S such that

(e, s^ e £, ( j , , 52)e f, • • • (•?„_!,/) e {.

Then in particular, there exist elements e' e V(e), s't ,s'f' e V(st), for i = 1, • • • n— 1,
and / ' e V(f) such that

ee' x s1s'l, e'e « ^i^i,

s,S|" « sI+1 «;+1, s,"s, « s'l+1 s i+1, for £ = 1, • • • n-2, (11)
Sn-1SB-1 W / / > sn-lsn-l Kff-

Now e = {ee')(e'e) w (Ji*i)(siJi)> ^y Nl, and so by (3) and (3') of lemma 1.3,
and by Nl, we have,

https://doi.org/10.1017/S1446788700006418 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700006418


232 John Meakin [12]

e « (sn-1 s'n-,) • • • (s2 s2)(si s;)(si st)(s2 s2) • • • (sn_1 sn_,)

= (sB_ i sB'_ ocs,,-! sB_ t ) • • • (s2 s2)(s!«;)(«; s ^ s i s2) • • • (sB_ t s._,)(«,'-i sB_,)

* (//')(*--! *:- 0 • • • («2 six*! six*! siX«i s2) • • • (S;_, sn_ oa'/)
= /«/,

where

s = /'(s«-1 <-1) • ' • (s2 s2)(si «iXsi Si)(s2 s2) • • • (sB-1 sB_,)/'.

Now/' = (/'/)(//') * K ' - . V i X V i C i ) , by Nl, so

s « (sB'_! sB_!)(sB-1 sB'_i)(sB_! sB_i) • • • (s2 s'zXsi s[)(s[ s,)(s2 s2)

•••(s;_1sB_1)(s;'_1sB_1)(sn-is;'_1)

= ( C l S n - l ) ( s B - i S B _ 1 ) - - - ( s 1 s ; ) ( s ' 1 S 1 ) • • • ( « , ; _ ! S B _ 1 ) ( s B - i S B ' _ i ) .

Thus by (3), (3'), (4), and (4') of lemma 1.3, and by Nl, we have

l'l>l «1 Sj S'j St J ^ S ' ^ S2 ) • * ' (SB- j SB'_ i)

(S'1's1)(s1 s7)(s2 s2') • • • (sB_, s ;_ , ) ,

since sjjj e V(sis1). Hence by (4) and (4') of lemma 1.3, and by Nl, we finally ob-
tain

and so by Nl,

as required. Hence <f|Es ^ ng, and since we have already proved the reverse in-
clusion, it follows that £,'\Es = ng, and the proof of the lemma is completed.

THEOREM 3.3. Let £ = {Et:ie 1} be a normal partition of the set Es of idem-
potents of the orthodox semigroup S and let £ be defined by equation (10). Then £,', the
transitive closure of £, is the smallest congruence p on S which satisfies p\Es = ng.

PROOF. We have already seen that £,' is a congruence on S which satisfies
£\ES

 = ns • Thus it remains to verify that if p is a congruence on S such that
P\ES — %t-> then £r c p. Let p be a congruence on S for which p\Es = ne. It suffi-
ces to prove that £, £ p, for then it follows that if £ p, since <f is the smallest
transitive relation containing <!;, and p is a transitive relation on 5.

So let a and Z» be elements of S for which (a, b) e f. Then there exist elements
a' e V(a) and b' e V(b), and i,y e / such that aa\ bb' e Eiy a'a, b'b e Ejy and for
some e e E(,fe Ej, eaf = ebf and fa'e = fb'e. Then
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ap = {{aa')a{a'a))p

= (aa')p(ap)(a'a)p

= epapfp (since p\Es = nt)

= (eaf)p = («&/> = epbpfp

= (bb')pbp(b'b)p (since p\Es = n,)

= (bb'bb'b)p = fep, and so (a, b) e p.

Hence <!; £ p, and the proof of the theorem is completed.
We now proceed to the determination of the regular kernel of the congruence

<!;'. If £ = {£(: i e /} is a normal partition of the set Es of idempotents of the
orthodox semigroup S, then as in § 2, we denote by Tt the unique subsemigroup
of 5 having the property that T, is the largest orthodox subsemigroup of S with
Et as its set of idempotents. We now prove the following theorem.

THEOREM 3.4. Let S be an orthodox semigroup and let $ = {E( : ie 1} be a
normal partition of Es. For each i e /, define

Xi = {xeTi-. there exists x' e V(x) n T, such that
exf = ef,fx'e = fe, for some e,fe £,}.

Then 2£ = {.Jfj: ie 1} is the regular kernel of the congruence £'.

PROOF. Let si = {At : i e /} be the kernel of £ and let 8& = {Bt : i e 1} be
the regular kernel of £'. We aim to prove that for all i e I, Bt = Xt.

Suppose first that x is an arbitrary element of X,. Then there exists x' e V(x)
n Tt such that exf = ef and fx'e = fe, for some e, fe Et. Then xx' e Et and
x'x e £f, and ex/ = ef = ee/, /x'e = fe = fee, so it follows that (x, e) 6 £ £ £
and that (*', e) e £ e £'. Hence x,x'eAt, and so x e B{, by virtue of the charac-
terization (1) of the fij. It follows that Xt £ Bt, for all / e /.

Conversely, let x be an arbitrary element of Bt, for some iel, and choose
x* e F(x) n Bj. Then since Et is the set of idempotents of Bt, we have Bt £ Tf,
and it follows that x, x* e Tt. To prove that x e Xt it suffices to prove the existence
of elements e, fe Et such that

exf= ef&ndfx*e = fe.

To prove this, it suffices to show that there exist elements gt, h^e Et such that
g1xhl = gihy: for if this is true, then since x* is also an element of Bt, we also
have that there exist elements g2, h2e E{ such that g2 x*h2 = g2h2, and taking
e = n29i 6 Ei a n d / = h^g2e Et, we see that

exf= {hig^xQi^g^ = h2(glxhl)g2 =
and
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Now x, x* e Aj, so xx*x*x e E{ and (x, xx*x*x) e £'. Hence (x, xx*x*x) e <*"
for some n ^ 1. As usual, we consider the cases n = 1 and n > 1 separately. Sup-
pose first that (x, xx*x*x) e £. Then there exist elements x' e V(x), z e V(xx*x*x),
and j , kel such that xx', xx*x*xzeE} and x'x, z x i V j r e f ' u , and for some
et e Ej,fx e Ek, we have

Let ^j = etXA:* « xx'xx* = JCX* e £",-, and let

/?! = x*xfi x x*xx'x = x*xe Et.
Then

Now suppose that (x, xx*x*x) e Ij" for some n > 1. Then there exist elements
5 t , s2, • • • sn_ t e S such that (x, J t ) e ^, (st ,s2)e(,--- (JB_I , xx*x¥x) e <!;, and
hence tnere exist x' e V(x), s'f, s't' e V{si) for i = 1, • • • «— 1, and z e F(xx*x*x)
such that

/ t t t
XX ' ^ S^ 5 i 3 XX ' ^ S i S i }

s^l' x st+ls'i + 1, si's, w sf'+1 5,+ 1 , for i = 1, • • •, « - 2 , (12)

and for some elements et,ft e £ s , for / = 1, • • •, n which satisfy

f; « Sis'^fi x s-Si, for j = 1, • • •, « - 1 ,

and <?„ « sn_! ^ 1 X , /„ « j ; ' _ 15n_ t , we have

*i ̂ /i = «i «! / j , A x'et = / t si ct;

^Sf-i/i = eisifi,fis'iLlei =fis'iei, for i = 2, • • • n - 1 ; (13)

ensn- Jn = enxx*x*xfn, fns'nLten=fnzen.

Now take

and
^i = x*xfn(fix'e1)un(ensn^Jnen)x,

where
"B = (e2 Sj/2si 'e2)(e3 s2/3s2 'e3) • • • {en_x sn_2/„_! sB'_2 en_t

Then,

but since ensn_xfn = enxx*x/n e £ s , and since une Es, it follows that

fJix'(elUnensn^Jne^x e Es,
and hence ihat
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glxhl = x{fjlx'elunensn.lfaeax)

Now

fj1x'e1unensn-ifn

= fn(fix'e1)(e2slf2s'ie2)- • • (en-1 sn_2fn-.ls'ttl2en-l)(ensn-1fn)

= fnfi{s'iele2sl)f2(s'2e2e3s2)f3 • • •/n_

and hencsfnf1x'elunensn-.lfn e £s . It follows that

gvxhx = 4/«/i*'ei"»ens»-i/»)(/»/i*'eiM"e»s«-i

= xfji x'et un(ensn_ Jn)fx x'el unensn_ Jnenx

= xfnfi x'el un(ensn_ Jn)(enxx*x*xfn)f1 x'e^ unensn_ Jnenx

= (xfnfi x'et unensn- lfRenxx*)(x*xfnfl x'et unensn_ Jnenx)

It remains to verify that gt £ Et and hte Et. We first remark that, for i = 2, •

and it follows that

«» ~ (si s'i')(s2S2) • • • (s»-2Ca)'

Also, et « j ^ i , en w ^ - i ^ L i , and

e.s»-i/« = enxx*x*xfn x (sn-ls'nLi)(xx*x*x)(s'n'-1sn-1),
while

x / n / i * ' « ^(CiSn- i ) (x 'x)x ' = x(s;'_1sB_1)x'

= x(x'x)(s;'_1sn_1)x' « x(s'1s1)(CiS»-iK

«* (« i si)(«i s2) • • • « - 1 « . - i X C i *.- i K (fey (3'))
= X(s[ S^S^ S2) • • • (Sn_ ! Sn_ t )x '

« x(si sjx' « x(x'x)x' = xx'.
Hence

a (xx')(sn_! sB'_ x)(xx*x*x)(s;'_, s,,_ , ) («„-1 si'_ t ) xx*

W (Sl S[)(sn- t Si'. J C X X ^ ^ X X ' X ) ^ ' , t Sn_ O(S._ , Si#_

« (S, S'O(».-1 S;_1XXX*X*XXS'1 S . X C l S. - lX». - l S»-
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Using (3) and (3') of lemma 1.3, we obtain

0i » («i s[)(xx*x*x)(s'1 Sl)(Sl si)(xx*)

« (xx')(;c;c*jc*;t)(;t';t)(**')(***)

= (xx*)(x*x)(xx*) e £ ; , and it follows that ^ e £ , .

Since ht = x*^* , we have also-

hv K, x*(xx*)(x*x)(xx*)x = x*x*xxe Et.

Hence ht e Et, and we deduce that x e Xt. Hence Bt ^ xt, and since the reverse
inclusion has already been proved, we have B{ = Xt, and this completes the proof
of the theorem.

4. Lattice properties of idempotent-equivalent congruences

Let $ = {£•; : / e /} be a normal partition of the set Es of idempotents of
the orthodox semigroup S and denote by AS(S) the set of congruences on S which
induce the partition g of Es. In [3] (theorem 3.4), Reilly and Scheiblich have
proved that Ae(S) is a complete sublattice of A(S) of commuting congruences on X.
We make use of this theorem to calculate the regular kernels of the meet and join
of two idempotent-equivalent congruences p and a on S in terms of the regular
kernels of p and a.

We now introduce the following notation. If T is a subsemigroup of the ortho-
dox semigroup S for which T n Es # • , then we denote by R(T) the maximal
regular subsemigroup of S which is contained in T. (Since ET is a subsemigroup
of T, R(T) always exists, by virtue of lemma 2.4). Thus if s/ = {At : i e 1} is the
kernel of a congruence p on the orthodox semigroup 5, and if 38 = {B(: iel}
is the regular kernel of p, then for all / e /, Bt = R(Ai). In general if Tis a subsemi-
group of S, then we easily see that

R(T) = {x e T: V(x) n T ± • } . (14)

We also adopt the following notation: if B is a subset of the semigroup T,
and if p is a congruence on T, then we define

Bp = {x 6 T: (b, x) e p for some 6 e B).

We now prove the following lemma.

LEMMA 4.1. Let p and a be idempotent-equivalent congruences on the orthodox
semigroup S and let ̂ V = {N( : ie 1} be the kernel of p and let Jl — {Mt : ie 1}
be the kernel of a. Then for all i e /,

where
E, = Nt n Es = Mt n Es.
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PROOF. We first remark that since p and a are idempotent-equivalent congruen-
ces on S, it follows that p o a = a o p, by the result of Reilly and Scheiblich.
Hence p o a is the smallest transitive relation containing p and a ([1], lemma 1.4),
and as the proof that p o a is compatible is trivial, it follows that poo = oo p =
p v a.

Now let e be an arbitrary element of Et and let x be an arbitrary element of
Nt<r. Then there exists ne Nt such that (n, x) e o, and hence we have {e, n)e p
and (n, x) e a, and it follows that (e, x) e p o o — p v a; that is, x e e(p v <r) =
£f(p v o). Conversely, if x e Et{p v a), then (x, e) e p v cr = a o p for some e e £,-.
Hence there exists n e S such that (x, n)ea and (n, e) e p, and it follows
that neNt and that xeNta. Hence Nto = £,(pvCT) and the proof that
Mjp = E^pva) is similar.

COROLLARY 4.2. £/Mt/er fAe conditions of Lemma 4.1, we

for all i e I.

PROOF. Since Et(p v a) is an element of the kernel of the congruence p v a,
Et(p v a) is a subsemigroup of S, and the result follows immediately.

Suppose now that p and a are idempotent-equivalent congruences on the
orthodox semigroup S and let JV' — \N[ : ie 1} and <J(' = {A// : ie 1} be the
regular kernels of p and a respectively. We prove that {(N' vM'){ : ie 1} is the
regular kernel of the congruence p v a, where for each / e /, (N' v M'),• is defined by

(TV' v M')i = {keS : there exists fc' £ K(fc) such that kk', k'k e Eit

and kn, k'ri e M[, some n e TV/, n' e F(n) n TV/}.

LEMMA 4.3. Le/ p and a be idempotent-equivalent congruences on the orthodox
semigroup S. Let Jf = {TVf: ie 1} and J( = {Mt: ie 1} be the kernels of p and
a respectively, and let Jf' = {TV' : ie 1} and Jt' = {M{ : ie 1} be the regular ker-
nels of p and a respectively. Then for all i e I, we have

where (TV' v M'); is defined by (15).

PROOF. It clearly suffices to prove that (TV'v M'), = R(Nto-), since we have
already proved that R{Nta) = R(Mtp). Let Et = TVf n Es = Mtn Es, for each
/ e /. Suppose first that k is an arbitrary element of (TV' v M')t. Then there exists
k' e V(k) such that kk', k'k e Et, and for some n e TV/ and ri e V(n) n TV/, we
have kn, k'n' e M/. Then fcfc', «'« eEhkneM[, and fc'fc, /m' 6 £ f , k'ri e TV//, and
so (k, n')e pM, <=, p'M, = a. Hence keN[a s TVfo-, and it follows that (TV' v Af')i
S TVj<7. But if fce(TV'vM% then it follows from the definition of (TV'vM')i
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that there exists an element k' e V(k) n (N' v M'); s AT, a, and hence (N' v M')t

Conversely, let A: be an arbitrary element of R(N,:a) and choose

k* e K(jfc) n i?(A».

Since R{Nta) = R{Et(p v CT)) is the maximal regular subsemigroup of Et(pv<r),
we have Ar'fc*', £*'&' e Et for any positive integer /. Also, since k e R(Nsa) c Mta,
and keR{Nta) = R(Mtp) £ M;p, there exist nt 6 A7; and me M, such that
(/t, n^sa and (A:, w) e p. We choose n* e K ^ ) and w* e F(w) arbitrarily.

Here we remark that (k2m*2k2,k2)e p, (k2m*2k2,k*)e<r, {kn\k,k2)ep,
and (kn* k, k) e a. In fact, since (k, m) e p, we have

(k2m*2k2, m2) = (ic2m*2k2, m2m*2m2) e p, and (m2, k2) e p.

Hence (k2m*2k2,k2)e p. Also, since (m2,k2k*2)eo and (m2, k*2k2)e a, we
have

(k2m*2k2,k2m2k2) = {k2k*2k2m*2k2k*2k2,k2m2rn*2m2k2)ea

and (k2m2k2, A:4) = (k2m2k2, k2(k2k*2)k2) e a. Hence (k2m*2k2, k*) e a. That
(£«*&, fc2) e p and (kn*k, k)e a can be proved similarly.

Now we set

„ = k*2m2k*2k4k*nik* and «' = kn*kk**k2m*2k2.

Then clearly «' e F(«). Moreover,

(n, k*2k*k*2) = (k*2m2k*2k4k*ni k*, k*2k2k*2k*k*kk*k*) e p
and

(«', k2k*4k2) = {kn*kk*4k2rn*2k2, k2k*Ak2) e p

and so n, ri eNt. Hence «, n' e ^(A';) = A^.
Furthermore,

{kn, kk**k4k*) = (kk*2m2k*2k4k*nik*, kk*2{k2k*2)k*2kAk*kk*) e a,

{n'k*, kk**k4k*) = {knXkk*Ak2rn*2k2k*, kk*4kAk*) e a,

(k*n',k*4k4) = (k*kn!kk**k2m*2k2, k*kk*4k4) e a,

(nk,k*4k4) = {k*2m2k*2kAk*nik*k, k*2k2k*4k*k*kk*k) e a

and so kn, n'k*, k*n', nkeMt. Hence kn, k*n' eR(Mi) = M[. Therefore, by
definition, ke(M'vN')t. Hence R(NI<T)Q (M' V N')( and this completes the
proof of the lemma.

We are now in a position to prove the following theorem.

THEOREM 4.4. Let p and a be idempotent-equivalent congruences on the ortho-
dox semigroup S with regular kernels JV'1 = {N[ : ie 1} and J(' = {M[: iel}
respectively. For each i e I, define (N' A M'); = N( n M[, and define (N v M')t
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by {15). Then {(N'A M')i: i e 1} is the regular kernel of p n a and {(N'v M')t: iel}
is the regular kernel of p v a.

PROOF. Let Jf = {Nt :iel} be the kernel of p and let^f = {Mt :iel} be
the kernel of <r. Then we first remark that {Nt n M f : i e /} is the kernel of >̂ n <r.
This follows easily since for each ee Eh e(p r\ o) = ep r\ eo = Nt n Mt. We
now verify that for each i e /, R(Nt n Mf) = i?(7Vj) n /?(M;). It is trivial to verify
that R(N( n Mf) £ ?̂(-Wj) n R(Mt), so suppose that x is an arbitrary element of
R(Ni) n R(Mt). Then x e -R(Nj) and x e R(Mi), so there exist inverses x' and x*
of x such that x, x' e Nt and JC, x* e Mt. But then x'xx* e V(x), and x'xx* e A^£j
S iVj, and x'xx* e EiMi. Hence x, x'xx* e N( n Mh and it follows that
x e i?(Af; n M;). Thus /?(Af; n M£) = i?(AT() n /?(M£) = N( n M/, and we see
that {(JV' A Af')j: i e /} is the regular kernel of p n a.

To prove that {(N' v M')j : ie 1} is the regular kernel of p v a it suffices to note
that {R(Ei(p v a)) :iel} is the regular kernel of p v a, and that for each i e /,
R{Ei(pwa)) = R{Nta) = ( iV'vM') ; , by lemma 4.3 and corollary 4.2.

5, The lattice of idenrootent-senarating congruences

We now show how the result of theorem 4.4 may be simplified in the case
when the partition $ of Es considered is the maximum partition of Es. In this
case, Ag(S) = T,{3C), the lattice of idempotent-separating congruences on S.

A set JV = {Ne : e e Es} of normal subgroups of the maximal subgroups
{He : e e Es} of the orthodox semigroup S is defined to be a group kernel normal
system of S if the Ne satisfy the conditions:

(i) a'Nea £ Na.ea for all aeS, a' e V(a), and eeEs;

(ii) NeNfsNef for all e,feEs.

Then we have the following theorem ([2], theorem 4.2).

THEOREM 5.1. If p is an idempotent-separating congruence on an orthodox
semigroup S then the kernel ^V of p is a group kernel normal system of S, and
p = px, where p^ is defined by

PJT — {(a> b)eSxS: there are inverses a' of a and b' of b such that

aa' = bb' = e, ab' e Ne, a'a = b'b = / , a'b e Nf, for some e,fe Es}.

Conversely, if J/~ is a group kernel normal system of S, then there is precisely one
congruence p on S such that JV is the kernel of p. This congruence p is an idempo-
tent-separating congruence on S and p = p^.

We now determine the kernels of the meet and join of two idempotent-
separating congruences o and a on 5 in terms of the kernels of p and a.

The following theorem has a precise analogue for inverse semigroups ([1],
theorem 7.56).
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THEOREM 5.2. Let p and a be idempotent-separating congruences on the ortho-
dox semigroup S with kernels ~V = {Ne : e e Es} and ̂ tf = {Me : e e Es} respect-
ively. Define J(JV =Jfv^ = {MeNe :eeEs}, andJlr^^ = {Me n Ne :eeEs}.
Then*y#vjV and ̂  /\JV are group kernel normal systems of S, and <Jt AJV
is the kernel of p n a and~# v^V is the kernel of pv<r.

PROOF. That J ' A y T is a group kernel normal system and is the kernel of
p n a follows immediately from theorem 4.4 and theorem 5.1. Furthermore, by
theorem 4.4, it follows that the kernel of the congruence p v a is {(N v M)e: e e Es},
where for each ee Es,

(Nv M)e = {keS: there exists k' e- V(k) such that
kk' = k'k = e, and kn, k'ri e Me, some
neNe,n'e V(n) n Ne}.

Thus to complete the proof of the theorem it suffices to show that for each ee Es

we have MeNe = (NvM)e.
Let k be an arbitrary element of MeNe. Then k = mn, for some me Me,

neNe. Let m' be the inverse of m which is in Me and let ri be the inverse of n
which is in A^, and let fc ' = n'm'. Then kk' = m(nn')m' = mem' = mm' = e, and
similarly k'k = e. Moreover, kn' = mnri = me = m e Me, and k'n = n'm'n : but
n'm'n and e = n'en are in the same element Mf of the group kernel normal system
JK by condition (i) of the definition of group kernel normal systems, and hence
k'neMe. Thus ke(NvM)e and it follows that MeNe ^ (MvN)e for each
eeEs.

Conversely, choose k e (Nv M)e. Then there exists k' e V(k) such that kk' =
k'k = e and kn, k'n' e Me for some ne Ne and ri e V(n) n Ne. Now ke = kk'k = k,
and hence k = ke = k(nri) = (kn)ri e MeNe, and it follows that for each
eeEs, (NvM)e s MeNe. Hence MeNe = (NvM)e for each eeEs, and the
theorem is proved.
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