# IDEMPOTENT-EQUIVALENT CONGRUENCES ON ORTHODOX SEMIGROUPS 

JOHN MEAKIN<br>(Received 9 December 1968)<br>Communicated by G. B. Preston

## Introduction

Any congruence on a semigroup $S$ with a nonempty set $E_{S}$ of idempotents induces a partition of the set $E_{S}$. Two congruences $\rho$ and $\sigma$ on the semigroup $S$ are defined to be idempotent-equivalent congruences on $S$ if $\rho$ and $\sigma$ induce the same partition of $E_{S}$. In this paper we investigate idempotent-equivalent congruences on orthodox semigroups (regular semigroups in which the set of idempotents forms a subsemigroup).

If $S$ is an orthodox semigroup and $\rho$ is a congruence on $S$, then the partition of $E_{S}$ induced by $\rho$ satisfies certain normality conditions. We determine those partitions of $E_{S}$ which are induced by congruences on $S$ and we characterize the largest and smallest congruences on $S$ corresponding to such a partition of $E_{S}$.

The set of all congruences which are idempotent-equivalent to a given congruence forms a sublattice of the lattice $\Lambda(S)$ of all congruences on $S$. We investigate some of the properties of this sublattice of $\Lambda(S)$. Specifically, we determine the regular kernels of the meet and join of two idempotent-equivalent congruences $\rho$ and $\sigma$ on $S$ in terms of the regular kernels of $\rho$ and $\sigma$. Finally, we show how this may be simplified in the special case when the lattice of idempotent-equivalent congruences considered coincides with the lattice of idempotent-separating congruences on $S$.

The corresponding results concerning idempotent-equivalent congruences on inverse semigroups have béen obtained by N. R. Reilly and H. E. Scheiblich [3], and the methods which we adopt provide an extension of the methods adopted in [3]. The essential difficulties which arise are due to the necessity to consider the transitive closures of several relations.

## 1. Preliminary Results and Notation

We shall adhere throughout to the notation and terminology of A. H. Clifford and G. B. Preston [1]. In addition, we shall denote the set of inverses of an element $x$ of a regular semigroup by $V(x)$.

We make frequent use of the following lemma ([3], lemma 1.3 and lemma 1.4).

Lemma 1.1. Let $S$ be an orthodox semigroup. Then
(i) if $a$ and $b$ are arbitrary elements of $S$, and if $a^{\prime}$ and $b^{\prime}$ are arbitrary inverses of $a$ and $b$ respectively, it follows that $b^{\prime} a^{\prime} \in V(a b)$;
(ii) if $a$ is an arbitrary element of $S$ and if $a^{\prime}$ is an arbitrary inverse of $a$, then $a^{\prime} E_{\mathrm{S}} a \subseteq E_{\mathrm{S}} ;$
(iii) ife is an arbitrary idempotent of $S$, then $V(e) \subseteq E_{S}$.

We now give a brief outline of some of the results of the author [2] concerning congruences on orthodox semigroups. The regular kernel $\mathscr{B}=\left\{B_{i}: i \in I\right\}$ of a congruence $\rho$ on an orthodox semigroup is defined to be the set of maximal regular subsemigroups of the elements of the kernel $\mathscr{A}=\left\{A_{i}: i \in I\right\}$ of $\rho$. Indeed, for all $i \in I$, we have the characterization

$$
\begin{equation*}
B_{i}=\left\{x \in A_{i}: V(x) \cap A_{i} \neq \square\right\} . \tag{1}
\end{equation*}
$$

A regular kernel normal system of the orthodox semigroup $S$ is defined to be a set $\mathscr{B}=\left\{B_{i}: i \in I\right\}$ of subsets of $S$ which satisfy the conditions:
(K1) each $B_{i}$ is a regular subsemigroup of $S$;
(K2) $B_{i} \cap B_{j}=\square$ if $i \neq j$;
(K3) each idempotent of $S$ is contained in some $B_{i}$;
(K4) for each $a \in S, a^{\prime} \in V(a)$, and $i \in I$, there is some $j=\left(a, a^{\prime}, i\right) \in I$ such that $a^{\prime} B_{i} a \subseteq B_{j} ;$
(K5) for each $i, j \in I$, there is some $k \in I$ such that $B_{i} B_{j} B_{i} \subseteq B_{k}$;
(K6) if $a, a b, b b^{\prime}, b^{\prime} b \in B_{i}$ for some $b^{\prime} \in V(b)$, then $b \in B_{i}$;
(K7) for each $i \in I$ and for each $j \in I$, there is some $k \in I$ such that $E_{i} E_{j} \subseteq E_{k}$, where $E_{i}$ denotes the set of idempotents of $B_{i}$.

Then we have the following theorem ([2], theorem 3.6).
ThEOREM 1.2. If $\rho$ is a congruence on an orthodox semigroup $S$ then the regular kernel $\mathscr{B}$ of $\rho$ is a regular kernel normal system of $S$, and $\rho=\rho_{\mathscr{B}}^{t}$, the transitive closure of the relation $\rho_{\mathscr{F}}$ defined by:

$$
\begin{align*}
& \rho_{\mathscr{B}}=\left\{(a, b) \in S \times S: \text { there exists } a^{\prime} \in V(a) \text { and } b^{\prime} \in V(b)\right. \text { such that } \\
& \left.a a^{\prime}, b b^{\prime}, a b^{\prime} \in B_{i}, a^{\prime} a, b^{\prime} b, a^{\prime} b \in B_{j} \text { for some } i, j \in I\right\} \text {. } \tag{2}
\end{align*}
$$

Conversely, if $\mathscr{B}$ is a regular kernel normal system of $S$, then there is precisely one congruence $\rho$ on $S$ such that $\mathscr{B}$ is the regular kernel of $\rho$, and then $\rho=\rho_{\mathscr{B}}^{t}$.

Now let $S$ be an orthodox semigroup and let $\rho$ be a congruence on $S$. Then as mentioned earlier, $\rho$ induces a partition

$$
\mathscr{E}=\left\{E_{i}: i \in I\right\}
$$

of the set $E_{S}$ of idempotents of $S$. By virtue of lemmi 1.1 , we easily see that $\mathscr{E}$ satisfies the conditions:
(N1) for all $i, j \in I$, there exists $k \in I$ such that $E_{i} E_{j} \subseteq E_{k}$;
(N2) for all $i \in I, a \in S$, and $a^{\prime} \in V(a)$, there exists $j \in I$ such that $a E_{i} a^{\prime} \subseteq E_{j}$.
We define a partition $\mathscr{E}=\left\{E_{i}: i \in I\right\}$ of the set $E_{S}$ of idempotents of the orthodox semigroup $S$ to be a normal partition of $E_{S}$ if $\mathscr{E}$ satisfies conditions N1 and N 2 . We denote by $\pi_{g}$ the equivalence relation on $E_{S}$ induced by such a partition $\mathscr{E}$ and show that there exists a congruence $\rho$ on $S$ such that $\left.\rho\right|_{E_{s}}=\pi_{s}$ : indeed we determine the maximal and minimal such congruences on $S$.

Before proceeding to the determination of these congruences, we introduce the following useful notation: if $e$ and $f$ are two idempotents of the orthodox semigroup $S$, then we define $e \approx f$ if and only if $e$ and $f$ are in the same class $E_{i}$ of the normal partition $\mathscr{E}=\left\{E_{i}: i \in I\right\}$ of $E_{S}$.

Using this notation, we have the following lemma.
Lemma 1.3. Let $s_{1}, s_{2}, \cdots, s_{n-1}$ be elements of the orthodox semigroup $S$, and let $s_{i}^{\prime}, s_{i}^{\prime \prime}$ be inverses of $s_{i}$ for $i=1, \cdots n-1$ such that relative to some normal partition $\mathscr{E}$ of $E_{S}$ we have $s_{r} s_{r}^{\prime \prime} \approx s_{r+1} s_{r+1}^{\prime}, s_{r}^{\prime \prime} s_{r} \approx s_{r+1}^{\prime} s_{r+1}$, for $r=1, \cdots n-2$.

Then the following formulae hold:

$$
\begin{align*}
& s_{1} s_{1}^{\prime} \approx\left(s_{n-1} s_{n-1}^{\prime}\right)\left(s_{n-2} s_{n-2}^{\prime}\right) \cdots\left(s_{1} s_{1}^{\prime}\right)  \tag{3}\\
& s_{1}^{\prime} s_{1} \approx\left(s_{1}^{\prime} s_{1}\right) \cdots\left(s_{n-2}^{\prime} s_{n-2}\right)\left(s_{n-1}^{\prime} s_{n-1}\right) ; \\
& s_{n-1}^{\prime \prime} s_{n-1} \approx\left(s_{n-1}^{\prime \prime} s_{n-1}\right) \cdots\left(s_{2}^{\prime \prime} s_{2}\right)\left(s_{1}^{\prime \prime} s_{1}\right)  \tag{4}\\
& s_{n-1} s_{n-1}^{\prime \prime} \approx\left(s_{1} s_{1}^{\prime \prime}\right)\left(s_{2} s_{2}^{\prime \prime}\right) \cdots\left(s_{n-1} s_{n-1}^{\prime \prime}\right) .
\end{align*}
$$

This may be proved by induction along precisely the same lines as the proof of lemma 3.3 in [2], using the condition (N1) in the appropriate places.

## 2. The Congruence $\zeta^{4}$

Let $\mathscr{E}=\left\{E_{i}: i \in I\right\}$ be a normal partition of the set $E_{S}$ of idempotents of the orthodox semigroup $S$ and consider the relation
$\zeta=\left\{(a, b) \in S \times S\right.$ : there exist inverses $a^{\prime}$ of $a$ and $b^{\prime}$ of $b$ such that $i \in I$
implies $a E_{i} a^{\prime}, b E_{i} b^{\prime} \subseteq E_{j}$ and $a^{\prime} E_{i} a, b^{\prime} E_{i} b \subseteq E_{k}$, for some $\left.j, k \in I\right\}$.
We prove that the transitive closure $\zeta^{t}$ of the relation $\zeta$ is the largest congruence on $S$ whose restriction to $E_{S}$ is $\pi_{8}$.

Lemma 2.1. Let $\mathscr{E}=\left\{E_{i}: i \in I\right\}$ be a normal partition of the set $E_{S}$ of idempotents of the orthodox semigroup $S$ and let $\zeta$ be defined by (5). Then the transitive closure $\zeta^{t}$ of the relation $\zeta$ is a congruence on $S$.

Proof. $\zeta$ is clearly reflexive by normality condition N 2 , and $\zeta$ is also clearly symmetric, so to prove that $\zeta^{t}$ is a congruence on $S$ it suffices to show that $\zeta$ is a compatible relation.

Suppose that $(a, b) \in \zeta$, and let $c$ be an arbitrary element of $S$. Let $c^{\prime}$ be an arbitrary inverse of $c$, and let $a^{\prime}$ and $b^{\prime}$ be the inverses of $a$ and $b$ respectively which appear in the definition of $\zeta$. Since $a^{\prime} c^{\prime} \in V(c a)$ and $b^{\prime} c^{\prime} \in V(c b)$, it suffices, in order to establish the left compatibility of $\zeta$, to show that given $i \in I$, there exists $l \in I$ and $m \in I$ such that

$$
(c a) E_{i}\left(a^{\prime} c^{\prime}\right),(c b) E_{i}\left(b^{\prime} c^{\prime}\right) \subseteq E_{l}
$$

and

$$
\left(a^{\prime} c^{\prime}\right) E_{i}(c a),\left(b^{\prime} c^{\prime}\right) E_{i}(c b) \subseteq E_{m}
$$

Now, given $i \in I$, there exists $j \in I$ such that $a E_{i} a^{\prime}, b E_{i} b^{\prime} \subseteq E_{j}$. Then

$$
(c a) E_{i}\left(a^{\prime} c^{\prime}\right)=c\left(a E_{i} a^{\prime}\right) c^{\prime} \subseteq c E_{j} c^{\prime} \subseteq E_{l}
$$

some $l \in I$, by condition N 2 , while

$$
(c b) E_{i}\left(b^{\prime} c^{\prime}\right)=c\left(b E_{i} b^{\prime}\right) c^{\prime} \subseteq c E_{j} c^{\prime} \subseteq E_{l}
$$

by N2.
Also, $c^{\prime} E_{i} c \subseteq E_{n}$, some $n \in I$ (by N2), and given $n \in I$, there exists $m \in I$ such that $a^{\prime} E_{n} a, b^{\prime} E_{n} b \subseteq E_{m}$. Hence $\left(a^{\prime} c^{\prime}\right) E_{i}(c a) \subseteq a^{\prime} E_{n} a \subseteq E_{m}$ and

$$
\left(b^{\prime} c^{\prime}\right) E_{i}(c b) \subseteq b^{\prime} E_{n} b \subseteq E_{m}
$$

Hence the left compatibility of $\zeta$ is established, and the proof that $\zeta$ is right compatible follows in a similar fashion. Thus $\zeta$ is compatible, and it follows that $\zeta^{t}$ is a congruence on $S$.

Lemma 2.2. Under the conditions of lemma 2.1 the restriction $\left.\zeta^{t}\right|_{E_{S}}$ of the congruence $\zeta^{t}$ to the set $E_{S}$ of idempotents of $S$ coincides with $\pi_{g}$, the equivalence relation on $E_{S}$ induced by $\mathscr{E}$.

Proof. Suppose first that $e$ and $f$ are idempotents of $S$ in the same class $E_{i}$ of the partition $\mathscr{E}$. Let $j$ be an arbitrary element of $I$. Then $e E_{j} e \subseteq E_{i} E_{j} E_{i} \subseteq E_{k}$, some $k \in I$, by N1, and $f E_{j} f \subseteq E_{i} E_{j} E_{i} \subseteq E_{k}$. Since $e \in V(e)$ and $f \in V(f)$, it follows that $(e, f) \in \zeta \subseteq \zeta^{t}$, and hence that $\left.\pi_{B} \subseteq \zeta^{t}\right|_{E_{S}}$.

Conversely, suppose that $e$ and $f$ are idempotents of $S$ for which $(e, f) \in \zeta^{t}$. We aim to prove that $e$ and $f$ are in the same class of the partition $\mathscr{E}$, i.e. that $e \approx f$. Now since $\zeta^{t}=\bigcup_{n=1}^{\infty} \zeta^{n}$, where $\zeta^{n}$ is the $n$-fold composition of $\zeta$ with itself, it follows that $(e, f) \in \zeta^{n}$ for some $n \geqq 1$. We consider the cases $n=1$ and $n>1$ separately.

Suppose first that $(e, f) \in \zeta$. Then there are inverses $e^{\prime}$ of $e$ and $f^{\prime}$ of $f$ such that $i \in I$ implies $e E_{i} e^{\prime}, f E_{i} f^{\prime} \subseteq E_{j}$ and $e^{\prime} E_{i} e, f^{\prime} E_{i} f \subseteq E_{k}$, some $j, k \in I$. Then $e e^{\prime}=e(e) e^{\prime} \approx f e f^{\prime}$, and similarly it follows that $e^{\prime} e \approx f^{\prime} e^{\prime} f$ and that $f f^{\prime} \approx e f^{\prime} e^{\prime}$.

Hence

$$
\begin{aligned}
e & =\left(e e^{\prime}\right)\left(e^{\prime} e\right) \\
& \approx\left(f e f^{\prime}\right)\left(f^{\prime} e^{\prime} f\right) \quad(\text { by N1) } \\
& =f\left(e f^{\prime} e^{\prime}\right) f \\
& \approx f\left(f f^{\prime}\right) f=f \quad(\text { by N1 })
\end{aligned}
$$

Hence $e \approx f$, and the proof for the case $n=1$ is complete. Now suppose that $(e, f) \in \zeta^{n}$, some $n>1$. Then there are elements $s_{1}, s_{2}, \cdots, s_{n-1}$ of $S$ such that $\left(e, s_{1}\right) \in \zeta,\left(s_{1}, s_{2}\right) \in \zeta, \cdots\left(s_{n-1}, f\right) \in \zeta$, and it follows that there are elements $e^{\prime} \in V(e), s_{l}^{\prime}, s_{l}^{\prime \prime} \in V\left(s_{l}\right)$, for $l=1, \cdots n-1$, and $f^{\prime} \in V(f)$ such that $i \in I$ implies the existence of $j_{1}, j_{2}, \cdots j_{n}, k_{1}, k_{2}, \cdots k_{n} \in I$ such that

$$
\begin{align*}
& e E_{i} e^{\prime}, s_{1} E_{i} s_{1}^{\prime} \subseteq E_{j_{1}} ; e^{\prime} E_{i} e, s_{1}^{\prime} E_{i} s_{1} \subseteq E_{k_{1}} ; \\
& s_{l} E_{i} s_{l}^{\prime \prime}, s_{l+1} E_{i} s_{l+1}^{\prime} \subseteq E_{j_{l+1}}, \quad \text { for } l=1, \cdots n-2  \tag{6}\\
& s_{l}^{\prime \prime} E_{i} s_{l}, s_{l+1}^{\prime} E_{i} s_{l+1} \subseteq E_{k_{l+1}}, \quad \text { for } l=1, \cdots n-2 \\
& s_{n-1} E_{i} s_{n-1}^{\prime \prime}, f E_{i} f^{\prime} \subseteq E_{j_{n}} ; s_{n-1}^{\prime \prime} E_{i} s_{n-1}, f^{\prime} E_{i} f \subseteq E_{k_{n}} .
\end{align*}
$$

As the first step in the proof that $e \approx f$, we prove the following formulae:

$$
\begin{aligned}
& e e^{\prime} \approx s_{1} s_{1}^{\prime}, e^{\prime} e \approx s_{1}^{\prime} s_{1} \\
& s_{i} s_{i}^{\prime \prime} \approx s_{i+1} s_{i+1}^{\prime}, s_{i}^{\prime \prime} s_{i} \approx s_{i+1}^{\prime} s_{i+1}, \quad \text { for } i=1, \cdots n-2, \\
& s_{n-1} s_{n-1}^{\prime \prime} \approx f f^{\prime}, s_{n-1}^{\prime \prime} s_{n-1} \approx f^{\prime} f .
\end{aligned}
$$

Now

$$
\begin{align*}
s_{1} s_{1}^{\prime} & =s_{1}\left(s_{1}^{\prime} s_{1}\right) s_{1}^{\prime} \approx e\left(s_{1}^{\prime} s_{1}\right) e^{\prime}  \tag{6}\\
& =e\left(s_{1}^{\prime} s_{1} e^{\prime}\right) e^{\prime} \approx s_{1}\left(s_{1}^{\prime} s_{1} e^{\prime}\right) s_{1}^{\prime}  \tag{6}\\
& =s_{1} e^{\prime} s_{1}^{\prime} \approx e e^{\prime} e^{\prime} \tag{6}
\end{align*}
$$

and hence $s_{1} s_{1}^{\prime} \approx e e^{\prime}$. Also, for $i=1, \cdots n-2$ we have

$$
\begin{align*}
s_{i} s_{i}^{\prime \prime} & =s_{i}\left(s_{i}^{\prime \prime} s_{i}\right) s_{i}^{\prime \prime} \approx s_{i+1}\left(s_{i}^{\prime \prime} s_{i}\right) s_{i+1}^{\prime}  \tag{6}\\
& =s_{i+1}\left[\left(s_{i}^{\prime \prime} s_{i}\right)\left(s_{i+1}^{\prime} s_{i+1}\right)\right] s_{i+1}^{\prime} \approx s_{i}\left(s_{i}^{\prime \prime} s_{i}\right)\left(s_{i+1}^{\prime} s_{i+1}\right) s_{i}^{\prime \prime} \tag{6}
\end{align*}
$$

and hence

$$
s_{i} s_{i}^{\prime \prime} \approx s_{i}\left(s_{i+1}^{\prime} s_{i+1}\right) s_{i}^{\prime \prime} \approx s_{i+1}\left(s_{i+1}^{\prime} s_{i+1}\right) s_{i+1}^{\prime}=s_{i+1} s_{i+1}^{\prime}
$$

Finally,

$$
\begin{aligned}
s_{n-1} s_{n-1}^{\prime \prime} & =s_{n-1}\left(s_{n-1}^{\prime \prime} s_{n-1}\right) s_{n-1}^{\prime \prime} \approx f\left(s_{n-1}^{\prime \prime} s_{n-1}\right) f^{\prime} \\
& =f\left[\left(s_{n-1}^{\prime \prime} s_{n-1}\right) f^{\prime}\right] f^{\prime} \approx s_{n-1}\left(s_{n-1}^{\prime \prime} s_{n-1}\right) f^{\prime} s_{n-1}^{\prime \prime} \\
& =s_{n-1} f^{\prime} s_{n-1}^{\prime \prime} \approx f f^{\prime} f^{\prime}=f f^{\prime} .
\end{aligned}
$$

By the dual arguments, we obtain

$$
e^{\prime} e \approx s_{1}^{\prime} s_{1}, s_{i}^{\prime \prime} s_{i} \approx s_{i+1}^{\prime} s_{i+1}, \quad \text { for } i=1, \cdots n-2
$$

and

$$
f^{\prime} f \approx s_{n-1}^{\prime \prime} s_{n-1}
$$

and this completes the verification of (7). By virtue of the formulae (7) we are now in a position to use lemma 1.3, of course. Now

$$
\begin{aligned}
e e^{\prime} & \left.=e e e^{\prime} \approx s_{1} e s_{1}^{\prime}(\text { by } 6)\right) \\
& =s_{1}\left[e\left(s_{1}^{\prime} s_{1}\right)\right] s_{1}^{\prime \prime}\left(s_{1} s_{1}^{\prime}\right)
\end{aligned}
$$

We use this as a basis for an inductive proof of the formula:

$$
\begin{equation*}
e e^{\prime} \approx s_{r} e\left(s_{1}^{\prime} s_{1}\right)\left(s_{2}^{\prime} s_{2}\right) \cdots\left(s_{r}^{\prime} s_{r}\right) s_{r}^{\prime \prime}\left(s_{r} s_{r}^{\prime}\right) \cdots\left(s_{2} s_{2}^{\prime}\right)\left(s_{1} s_{1}^{\prime}\right) \tag{8}
\end{equation*}
$$

for $r=1, \cdots n-1$. We have just seen that this holds true for $r=1$, so suppose that (8) holds for $r=k$. Then we have

$$
\begin{align*}
e e^{\prime} & \approx s_{k+1} e\left(s_{1}^{\prime} s_{1}\right)\left(s_{2}^{\prime} s_{2}\right) \cdots\left(s_{k}^{\prime} s_{k}\right) s_{k+1}^{\prime}\left(s_{k} s_{k}^{\prime}\right) \cdots\left(s_{2} s_{2}^{\prime}\right)\left(s_{1} s_{1}^{\prime}\right) \quad \text { (by (6 }  \tag{6}\\
& =s_{k+1} e\left(s_{1}^{\prime} s_{1}\right) \cdots\left(s_{k}^{\prime} s_{k}\right)\left(s_{k+1}^{\prime} s_{k+1}\right) s_{k+1}^{\prime \prime}\left(s_{k+1} s_{k+1}^{\prime}\right)\left(s_{k} s_{k}^{\prime}\right) \cdots\left(s_{1} s_{1}^{\prime}\right),
\end{align*}
$$

and this completes the inductive proof of (8). From (8), we deduce that

$$
\begin{align*}
e e^{\prime} & \approx s_{n-1} e\left(s_{1}^{\prime} s_{1}\right)\left(s_{2}^{\prime} s_{2}\right) \cdots\left(s_{n-1}^{\prime} s_{n-1}\right) s_{n-1}^{\prime \prime}\left(s_{n-1} s_{n-1}^{\prime}\right) \cdots\left(s_{2} s_{2}^{\prime}\right)\left(s_{1} s_{1}^{\prime}\right) \\
& \approx f e\left(s_{1}^{\prime} s_{1}\right)\left(s_{2}^{\prime} s_{2}\right) \cdots\left(s_{n-1}^{\prime} s_{n-1}\right) f^{\prime}\left(s_{n-1} s_{n-1}^{\prime}\right) \cdots\left(s_{2} s_{2}^{\prime}\right)\left(s_{1} s_{1}^{\prime}\right) \tag{6}
\end{align*}
$$

By the dual of the argument used to prove this, we also have

$$
e^{\prime} e \approx\left(s_{1}^{\prime} s_{1}\right)\left(s_{2}^{\prime} s_{2}\right) \cdots\left(s_{n-1}^{\prime} s_{n-1}\right) f^{\prime}\left(s_{n-1} s_{n-1}^{\prime}\right) \cdots\left(s_{2} s_{2}^{\prime}\right)\left(s_{1} s_{1}^{\prime}\right) e^{\prime} f
$$

Hence

$$
\begin{align*}
e & =\left(e e^{\prime}\right)\left(e^{\prime} e\right) \\
& \approx f e\left(s_{1}^{\prime} s_{1}\right)\left(s_{2}^{\prime} s_{2}\right) \cdots\left(s_{n-1}^{\prime} s_{n-1}\right) f^{\prime}\left(s_{n-1} s_{n-1}^{\prime}\right) \cdots\left(s_{2} s_{2}^{\prime}\right)\left(s_{1} s_{1}^{\prime}\right) e^{\prime} f  \tag{byN1}\\
& =u_{n} v_{n}
\end{align*}
$$

where

$$
u_{n}=f e\left(s_{1}^{\prime} s_{1}\right)\left(s_{2}^{\prime} s_{2}\right) \cdots\left(s_{n-1}^{\prime} s_{n-1}\right) f^{\prime}
$$

and

$$
v_{n}=f^{\prime}\left(s_{n-1} s_{n-1}^{\prime}\right) \cdots\left(s_{2} s_{2}^{\prime}\right)\left(s_{1} s_{1}^{\prime}\right) e^{\prime} f
$$

Now

$$
\begin{aligned}
u_{n} & \approx s_{n-1} e\left(s_{1}^{\prime} s_{1}\right)\left(s_{2}^{\prime} s_{2}\right) \cdots\left(s_{n-1}^{\prime} s_{n-1}\right) s_{n-1}^{\prime \prime} \\
& =s_{n-1}\left[e\left(s_{1}^{\prime} s_{1}\right)\left(s_{2}^{\prime} s_{2}\right) \cdots\left(s_{n-2}^{\prime} s_{n-2}\right)\right] s_{n-1}^{\prime}\left(s_{n-1} s_{n-1}^{\prime \prime}\right),
\end{aligned}
$$

and we use this result as a basis for an inductive proof of the formula:
$u_{n} \approx s_{n-r}\left[e\left(s_{1}^{\prime} s_{1}\right)\left(s_{2}^{\prime} s_{2}\right) \cdots\left(s_{n-r-1}^{\prime} s_{n-r-1}\right)\right] s_{n-r}^{\prime}\left(s_{n-r} s_{n-r}^{\prime \prime}\right) \cdots\left(s_{n-1} s_{n-1}^{\prime \prime}\right)$,
for $r=1, \cdots n-1$. Suppose inductively that (9) holds for $r=k$. Then

$$
\begin{aligned}
u_{n} & \left.\approx s_{n-k-1}\left[e\left(s_{1}^{\prime} s_{1}\right) \cdots\left(s_{n-k-1}^{\prime} s_{n-k-1}\right)\right] s_{n-k-1}^{\prime \prime}\left(s_{n-k} s_{n-k}^{\prime \prime}\right) \cdots s_{n-1} s_{n-k-1}^{\prime \prime}\right) \\
& =s_{n-k-1}\left[e\left(s_{1}^{\prime} s_{1}\right) \cdots\left(s_{n-k-2}^{\prime} s_{n-k-2}\right)\right] s_{n-k-1}^{\prime}\left(s_{n-k-1} s_{n-k-1}^{\prime \prime}\right) \cdots\left(s_{n-1} s_{n-1}^{\prime \prime}\right)
\end{aligned}
$$

and this completes the inductive proof of (9). From (9) we immediately deduce that

$$
\begin{aligned}
u_{n} & \approx\left(s_{1} e s_{1}^{\prime}\right)\left(s_{1} s_{1}^{\prime \prime}\right)\left(s_{2} s_{2}^{\prime \prime}\right) \cdots\left(s_{n-1} s_{n-1}^{\prime \prime}\right) \\
& \approx\left(e e e^{\prime}\right)\left(s_{1} s_{1}^{\prime \prime}\right)\left(s_{2} s_{2}^{\prime \prime}\right) \cdots\left(s_{n-1} s_{n-1}^{\prime \prime}\right) \quad \text { (by (6) and N1) } \\
& =\left(e e^{\prime}\right)\left(s_{1} s_{1}^{\prime \prime}\right)\left(s_{2} s_{2}^{\prime \prime}\right) \cdots\left(s_{n-1} s_{n-1}^{\prime \prime}\right) \\
& \approx\left(s_{1} s_{1}^{\prime}\right)\left(s_{1} s_{1}^{\prime \prime}\right)\left(s_{2} s_{2}^{\prime \prime}\right) \cdots\left(s_{n-1} s_{n-1}^{\prime \prime}\right) \quad \text { (by (7) and N1) } \\
& =\left(s_{1} s_{1}^{\prime \prime}\right)\left(s_{2} s_{2}^{\prime \prime}\right) \cdots\left(s_{n-1} s_{n-1}^{\prime \prime}\right) \\
& \approx s_{n-1} s_{n-1}^{\prime \prime} \quad \text { by }\left(4^{\prime}\right) \text { of lemma } 1.3 \\
& \approx f f^{\prime} .
\end{aligned}
$$

By the dual argument, we deduce that

$$
v_{n} \approx f^{\prime} f
$$

and hence that

$$
e \approx u_{n} v_{n} \approx\left(f f^{\prime}\right)\left(f^{\prime} f\right)=f
$$

as required.
Hence $\left.\zeta^{t}\right|_{E_{s}} \subseteq \pi_{\mathscr{E}}$, and since the converse inclusion has already been established, we deduce that $\left.\zeta^{t}\right|_{E_{s}}=\pi_{g}$, as required. This completes the proof of the lemma.

Theorem 2.3. Let $\mathscr{E}=\left\{E_{i}: i \in I\right\}$ be a normal partition of the set $E_{S}$ of idempotents of the orthodox semigroup $S$ and let $\zeta$ be defined by equation (5). Then $\zeta^{t}$, the transitive closure of $\zeta$, is the largest congruence $\rho$ on $S$ which satisfies $\left.\rho\right|_{E_{S}}=\pi_{\mathcal{E}}$.

Proof. We have already seen that $\zeta^{t}$ is a congruence on $S$ and that $\left.\zeta^{t}\right|_{E_{s}}=\pi_{g}$. It remains to verify that if $\rho$ is a congruence on $S$ satisfying $\left.\rho\right|_{E_{S}}=\pi_{g}$, then $\rho \subseteq \zeta^{t}$.

So let $\rho$ be a congruence on $S$ which satisfies $\left.\rho\right|_{E_{s}}=\pi_{g}$, and let $\mathscr{B}=\left\{B_{i}: i \in I\right\}$ be the regular kernel of $\rho$. Then since $\left.\rho\right|_{E_{S}}=\pi_{g}$, we have that $E_{i} \subseteq B_{i}$, for all $i \in I$, for a suitable indexing of the elements of $\mathscr{B}$. By theorem $1.2, \rho=\rho_{\mathscr{T}}^{t}$, the transitive closure of the relation $\rho_{B}$ defined by (2). Before proceeding to the proof that $\rho=\rho_{\mathscr{H}}^{t} \subseteq \zeta^{t}$ we remark that if $(a, b) \in \rho_{\mathscr{F}}$, then there exist inverses $a^{\prime}$ of $a$ and $b^{\prime}$ of $b$ such that $\left(a^{\prime}, b^{\prime}\right) \in \rho_{\mathscr{B}}$.

To prove this, suppose that we have $(a, b) \in \rho_{\mathscr{B}}$ for some $a, b \in S$. Then there are inverses $a^{\prime}$ of $a$ and $b^{\prime}$ of $b$ such that $a a^{\prime}, b b^{\prime}, a b^{\prime} \in B_{i}, a^{\prime} a, b^{\prime} b, a^{\prime} b \in B_{j}$, for some $i, j \in I$. Since $a \in V\left(a^{\prime}\right)$ and $b \in V\left(b^{\prime}\right)$, we clearly have that $\left(a^{\prime}, b^{\prime}\right) \in \rho_{\mathscr{A}}$.

We now prove that $\rho=\rho_{\mathscr{A}}^{t} \subseteq \zeta^{t}$. Let $(a, b) \in \rho_{\mathscr{A}}^{t}=\bigcup_{n=1}^{\infty} \rho_{\mathscr{A}}^{n}$. Then $(a, b) \in \rho_{\mathscr{P}}^{n}$, for some $n \geqq 1$. Hence there exist elements $a=s_{0}, s_{1}, s_{2}, \cdots s_{n-1}, s_{n}=b \in S$ such that for all $i=0, \cdots n-1$, we have $\left(s_{i}, s_{i+1}\right) \in \rho_{\mathscr{F}}$, and consequently there
are elements $s_{0}^{\prime \prime} \in V\left(s_{0}\right), s_{i}^{\prime}, s_{i}^{\prime \prime} \in V\left(s_{i}\right)$ for $i=1, \cdots, n-1$, and $s_{n}^{\prime} \in V\left(s_{n}\right)$ such that for $i=0, \cdots, n-1$,

$$
\left(s_{i}^{\prime \prime}, s_{i+1}^{\prime}\right) \in \rho_{\mathscr{A}} .
$$

Hence $a \rho=s_{0} \rho=s_{1} \rho=\cdots=s_{n-1} \rho=s_{n} \rho=b \rho$, and

$$
a^{\prime \prime} \rho=s_{0}^{\prime \prime} \rho=s_{1}^{\prime} \rho, s_{1}^{\prime \prime} \rho=s_{2}^{\prime} \rho, \cdots s_{n-1}^{\prime \prime} \rho=s_{n}^{\prime} \rho=b^{\prime} \rho
$$

Now choose $E_{j}$, an arbitrary element of the partition $\mathscr{E}$, and let $e$ be an arbitrary element of $E_{j}$. Then for $i=0, \cdots n-1$,

$$
\begin{aligned}
\left(s_{i} e s_{i}^{\prime \prime}\right) \rho=\left(s_{i} \rho\right)(e \rho)\left(s_{i}^{\prime \prime} \rho\right) & =\left(s_{i+1} \rho\right)(e \rho)\left(s_{i+1}^{\prime} \rho\right) \\
& =\left(s_{i+1} e s_{i+1}^{\prime}\right) \rho,
\end{aligned}
$$

and

$$
\begin{aligned}
\left(s_{i}^{\prime \prime} e s_{i}\right) \rho=\left(s_{i}^{\prime \prime} \rho\right)(e \rho)\left(s_{i} \rho\right) & =\left(s_{i+1}^{\prime} \rho\right)(e \rho)\left(s_{i+1} \rho\right) \\
& =\left(s_{i+1}^{\prime} e s_{i+1}\right) \rho
\end{aligned}
$$

Since $s_{i} e s_{i}^{\prime \prime}$ and $s_{i+1} e s_{i+1}^{\prime}$ are idempotents of $S$ which are equivalent under $\rho$, and since $\left.\rho\right|_{E_{s}}=\pi_{\delta}$, it follows that $s_{i} e s_{i}^{\prime \prime}$ and $s_{i+1} e s_{i+1}^{\prime}$ are in the same element $E_{k}$ of the partition $\mathscr{E}$, and hence by N 2 ,

$$
s_{i} E_{j} s_{i}^{\prime \prime}, s_{i+1} E_{j} s_{i+1}^{\prime} \subseteq E_{k}
$$

Since $\left(s_{i}^{\prime \prime} e s_{i}\right) \rho=\left(s_{i+1}^{\prime} e s_{i+1}\right) \rho$, we also deduce that

$$
s_{i}^{\prime \prime} E_{j} s_{i}, s_{i+1}^{\prime} E_{j} s_{i+1} \subseteq E_{l}, \quad \text { some } l \in I
$$

Hence, for $i=0, \cdots n-1$, we have $\left(s_{i}, s_{i+1}\right) \in \zeta$, and it follows that $\left(s_{0}, s_{n}\right) \in \zeta^{n}$, i.e. $(a, b) \in \zeta^{n} \subseteq \zeta^{2}$. Hence $\rho=\rho_{\mathscr{t}}^{t} \subseteq \zeta^{t}$, and the theorem is proved.

We devote the remainder of this section to the calculation of the regular kernel of the congruence $\zeta^{t}$. By virtue of theorem 1.2, this provides an alternative characterization of the congruence $\zeta^{2}$.

We make use of the following theorem, due to N. R. Reilly and H. E. Scheiblich ([3], theorem 1.5).

Theorem 2.4. Let $E$ be an idempotent subsemigroup of a semigroup $S$. Then $S$ has a unique subsemigroup $T$ with the property that $T$ is the largest regular subsemigroup of $S$ with $E$ as its set of idempotents.

Now let $\mathscr{E}=\left\{E_{i}: i \in I\right\}$ be a normal partition of the set $E_{S}$ of idempotents of the orthodox semigroup $S$. Then for each $i \in I, E_{i}$ is a subsemigroup of $S$ and hence there exists a unique subsemigroup $T_{i}$ of $S$ with the property that $T_{i}$ is the largest regular subsemigroup of $S$ with $E_{i}$ as its set of idempotents. It is obvious that $T_{i}$ is an orthodox subsemigroup of $S$. Using this definition of $T_{i}$, we now prove the following theorem.

Theorem 2.5. Let $S$ be an orthodox semigroup and let $\mathscr{E}=\left\{E_{i}: i \in I\right\}$ be a normal partition of $E_{S}$. For each $i \in I$, define

$$
\begin{aligned}
& Z_{i}=\left\{x \in T_{i}: \text { there exists } x^{\prime} \in V(x) \cap T_{i}\right. \text { such that } \\
& \left.\qquad E_{i} E_{j} E_{i} \subseteq E_{k} \text { inplies } x E_{j} x^{\prime}, x^{\prime} E_{j} x \subseteq E_{k}\right\} .
\end{aligned}
$$

Then $\mathscr{Z}=\left\{Z_{i}: i \in I\right\}$ is the regular kernel of the congruence $\zeta^{t}$.
Proof. Let $\mathscr{A}=\left\{A_{i}: i \in I\right\}$ be the kernel of $\zeta^{t}$ and let $\mathscr{B}=\left\{B_{i}: i \in I\right\}$ be the regular kernel of $\zeta^{t}$. We aim to show that for all $i \in I, B_{i}=Z_{i}$.

Suppose first that $x$ is an arbitrary element of $Z_{i}$ for some $i \in I$. Then there exists $x^{\prime} \in V(x) \cap T_{i}$ such that $E_{i} E_{j} E_{i} \subseteq E_{k}$ implies $x E_{j} x^{\prime} \subseteq E_{k}$ and $x^{\prime} E_{j} x \subseteq E_{k}$. Now $x x^{\prime} \in E_{i}$, and for all $j \in I$ we have,

$$
x x^{\prime} E_{j} x x^{\prime} \subseteq E_{i} E_{j} E_{i} \subseteq E_{k}, \quad \text { some } k \in I
$$

It follows that $x E_{j} x^{\prime} \subseteq E_{k}$ and $x^{\prime} E_{j} x \subseteq E_{k}$. Hence

$$
\left(x, x x^{\prime}\right) \in \zeta \subseteq \zeta^{t}, \text { and }\left(x^{\prime}, x x^{\prime}\right) \in \zeta \subseteq \zeta^{t}
$$

Thus $x \in A_{i}$ and $x^{\prime} \in A_{i}$, and so $x \in B_{i}$ by virtue of the characterization (1) of the $B_{i}$. Hence $Z_{i} \subseteq B_{i}$, for all $i \in I$.

Conversely, let $x$ be an arbitrary element of $B_{i}$ for some $i \in I$, and choose $x^{\prime} \in V(x) \cap B_{i}$. Then since $E_{i}$ is the set of idempotents of $B_{i}$, it follows that $B_{i} \subseteq T_{i}$ and hence that $x, x^{\prime} \in T_{i}$. Suppose now that given $j \in I$, we have $E_{i} E_{j} E_{i} \subseteq E_{k}$ (such a $k$ exists by N1). Choose $e \in E_{i}, f \in E_{j}, g \in E_{k}$, so that $\left(e \zeta^{t}\right)\left(f \zeta^{t}\right)\left(e \zeta^{t}\right)=g \zeta^{t}$. Now $x, x^{\prime} \in A_{i}$, and so $x \zeta^{t}=x^{\prime} \zeta^{t}=e \zeta^{t}$, and it follows that

$$
\left(x \zeta^{t}\right)\left(f \zeta^{t}\right)\left(x^{\prime} \zeta^{t}\right)=\left(x^{\prime} \zeta^{t}\right)\left(f \zeta^{t}\right)\left(x \zeta^{t}\right)=g \zeta^{t}
$$

i.e.

$$
\left(x f x^{\prime}\right) \zeta^{t}=\left(x^{\prime} f x\right) \zeta^{t}=g \zeta^{t^{t}}
$$

Hence $x f x^{\prime}, x^{\prime} f x \in E_{k}$, and so $x E_{j} x^{\prime}, x^{\prime} E_{j} x \subseteq E_{k}$. Thus $x \in Z_{i}$, and so $B_{i} \subseteq Z_{i}$, for all $i \in I$.

Hence we have $B_{i}=Z_{i}$ for all $i \in I$, and the theorem is proved.

## 3. The Congruence $\boldsymbol{\xi}^{\boldsymbol{*}}$

Let $\mathscr{E}=\left\{E_{i}: i \in I\right\}$ be a normal partition of the set $E_{S}$ of idempotents of the orthodox semigroup $S$ and consider the relation

$$
\begin{align*}
& \xi=\left\{(a, b) \in S \times S: \text { there exists } a^{\prime} \in V(a), b^{\prime} \in V(b) \text { and } i, j \in I\right. \\
& \text { such that } a a^{\prime}, b b^{\prime} \in E_{i}, a^{\prime} a, b^{\prime} b \in E_{j} \text {, and for some } e \in E_{i} \text { and } \\
& \left.f \in E_{j}, e a f=e b f \text { and } f a^{\prime} e=f b^{\prime} e\right\} . \tag{10}
\end{align*}
$$

In this section we prove that $\xi^{t}$, the transitive closure of the relation $\xi$ defined by (10) is the smallest congruence $\rho$ on $S$ which satisfies the condition $\left.\rho\right|_{E_{s}}=\pi_{g}$. We also determine the regular kernel of the congruence $\xi^{t}$, thus providing an alternative characterization of this congruence.

Lemma 3.1. Let $S$ be an orthodox semigroup and let $\mathscr{E}=\left\{E_{i}: i \in I\right\}$ be a normal partition of $E_{S}$. Then the transitive closure $\xi^{i}$ of the relation $\xi$ defined by (10) is a congruence on $S$.

Proof. It is trivial to verify that $\xi$ is reflexive and symmetric, so to prove that $\xi^{t}$ is a congruence on $S$ it suffices to prove that $\xi$ is left and rignt compatible. Let $(a, b) \in \xi$ and let $c$ be an arbitrary element of $S$. Then there exists $a^{\prime} \in V(a)$, $b^{\prime} \in V(b)$, and $i, j \in I$ such that $a a^{\prime}, b b^{\prime} \in E_{i}, a^{\prime} a, b^{\prime} b \in E_{j}$, and for some $e \in E_{i}$ and $f \in E_{j}$, eaf $=e b f$ and $f a^{\prime} e=f b^{\prime} e$. Let $c^{\prime}$ be an aroitrary inverse of $c$. Then since $a^{\prime} c^{\prime} \in V(c a)$ and $b^{\prime} c^{\prime} \in V(c b)$, in order to prove the left compatibility of $\xi$ it suffices to show that there exist $k, l \in I$ such that $(c a)\left(a^{\prime} c^{\prime}\right),(c b)\left(b^{\prime} c^{\prime}\right) \in E_{k}$ and $\left(a^{\prime} c^{\prime}\right)(c a),\left(b^{\prime} c^{\prime}\right)(c b) \in E_{l}$ and that for some $e_{1} \in E_{k}$ and $f_{1} \in E_{l}$, we have

$$
e_{1}(c a) f_{1}=e_{1}(c b) f_{1} \text { and } f_{1}\left(a^{\prime} c^{\prime}\right) e_{1}=f_{1}\left(b^{\prime} c^{\prime}\right) e_{1}
$$

Let $(c a)\left(a^{\prime} c^{\prime}\right) \in E_{k}$. Then since $c\left(a a^{\prime}\right) c^{\prime} \approx c\left(b b^{\prime}\right) c^{\prime}$ (by N2), we also have that $(c b)\left(b^{\prime} c^{\prime}\right) \in E_{k}$.

Let $\left(a^{\prime} c^{\prime}\right)(c a) \in E_{l}$ and let $\left(b^{\prime} c^{\prime}\right)(c b) \in E_{m}$. We prove now that $E_{l}=E_{m}$. Now,

$$
\begin{aligned}
\left(a^{\prime} c^{\prime}\right)(c a) & =\left(a^{\prime} a\right) a^{\prime}\left[\left(a a^{\prime}\right)\left(c^{\prime} c\right)\left(a a^{\prime}\right)\right] a\left(a^{\prime} a\right) \\
& \approx f a^{\prime}\left[e\left(c^{\prime} c\right) e\right] a f \quad(\text { by N1 and N2) } \\
& =\left(f a^{\prime} e\right)\left(c^{\prime} c\right)(e a f)=\left(f b^{\prime} e\right)\left(c^{\prime} c\right)(e b f) \\
& =f b^{\prime}\left[e\left(c^{\prime} c\right) e\right] b f \\
& \approx\left(b^{\prime} b\right) b^{\prime}\left[\left(b b^{\prime}\right)\left(c^{\prime} c\right)\left(b b^{\prime}\right)\right] b\left(b^{\prime} b\right) \text { (by N1 and N2) } \\
& =\left(b^{\prime} c^{\prime}\right)(c b), \text { and it follows that } E_{l}=E_{m} .
\end{aligned}
$$

Now choose $e_{1}=c e a f a^{\prime} e c^{\prime}=c e b f b^{\prime} e c^{\prime}$, and choose $f_{1}=f a^{\prime} e c^{\prime} c e a f=f b^{\prime} e c^{\prime} c e b f$. Note that

$$
\begin{aligned}
e_{1} & \approx c\left(a a^{\prime}\right) a\left(a^{\prime} a\right) a^{\prime}\left(a a^{\prime}\right) c^{\prime}(\text { by N1 and } \mathrm{N} 2) \\
& =(c a)\left(a^{\prime} c^{\prime}\right), \text { so } e_{1} \in E_{k} .
\end{aligned}
$$

Also,

$$
\begin{aligned}
f_{1} & \approx\left(a^{\prime} a\right) a^{\prime}\left(a a^{\prime}\right)\left(c^{\prime} c\right)\left(a a^{\prime}\right) a\left(a^{\prime} a\right)(\text { by N1 by N2) } \\
& =\left(a^{\prime} c^{\prime}\right)(c a), \quad \text { so } f_{1} \in E_{l}\left(=E_{m}\right) .
\end{aligned}
$$

Now,

$$
\begin{aligned}
e_{1}(c a) f_{1} & =\left(c e a f a^{\prime} e c^{\prime}\right)(c a)\left(f a^{\prime} e c^{\prime} c e a f\right) \\
& =c e\left(a f a^{\prime} e c^{\prime} c\right)\left(a f a^{\prime} e c^{\prime} c\right) e a f \\
& =c e\left(a f a^{\prime} e c^{\prime} c\right) e a f \\
& =c(e a f)\left(f a^{\prime} e\right)\left(c^{\prime} c\right)(e a f) \\
& =c(e b f)\left(f b^{\prime} e\right)\left(c^{\prime} c\right)(e b f) \\
& =(c e)\left(b f b^{\prime} e c^{\prime} c\right) e b f \\
& =(c e)\left(b f b^{\prime} e c^{\prime} c\right)\left(b f b^{\prime} e c^{\prime} c\right) e b f \\
& =\left(c e b f b^{\prime} e c^{\prime}\right)(c b)\left(f b^{\prime} e c^{\prime} c e b f\right) \\
& =e_{1}(c b) f_{1} .
\end{aligned}
$$

Also,

$$
\begin{aligned}
f_{1}\left(a^{\prime} c^{\prime}\right) e_{1} & =\left(f a^{\prime} e c^{\prime} c e a f\right)\left(a^{\prime} c^{\prime}\right)\left(c e a f a^{\prime} e c^{\prime}\right) \\
& =\left(f a^{\prime} e\right)\left(c^{\prime} \text { ceafa' }\right)\left(c^{\prime} c e a f a^{\prime}\right)\left(e c^{\prime}\right) \\
& =\left(f a^{\prime} e\right)\left(c^{\prime} c e a f a^{\prime}\right)\left(e c^{\prime}\right) \\
& =\left(f b^{\prime} e\right)\left(c^{\prime} c\right)(e b f)\left(f b^{\prime} e\right) c^{\prime} \\
& =\left(f b^{\prime} e\right)\left(c^{\prime} c e b f b^{\prime}\right) e c^{\prime} \\
& =\left(f b^{\prime} e\right)\left(c^{\prime} c e b f b^{\prime}\right)\left(c^{\prime} c e b f b^{\prime}\right) e c^{\prime} \\
& =\left(f b^{\prime} e c^{\prime} c e b f\right)\left(b^{\prime} c^{\prime}\right)\left(c e b f b^{\prime} e c^{\prime}\right) \\
& =f_{1}\left(b^{\prime} c^{\prime}\right) e_{1} .
\end{aligned}
$$

This completes the proof that $\xi$ is left compatible. The proof that $\xi$ is right compatible follows similarly and is omitted. Thus $\xi^{t}$ is a congruence on $S$, and the lemma is proved.

Lemma 3.2. Under the conditions of lemma 3.1, the restriction $\left.\xi^{t}\right|_{E_{s}}$ of the congruence $\xi^{i}$ to the set $E_{S}$ of idempotents of $S$ coincides with $\pi_{g}$, the equivalence relation on $E_{S}$ induced by $\mathscr{E}$.

Proof. Suppose first that $e$ and $f$ are idempotents of $S$ in the same class $E_{i}$ of the partition $\mathscr{E}$. Then $e f \in E_{i}$ and it is easily verified that $(e f) e(e f)=(e f)$ and that $(e f) f(e f)=e f$. Since $e \in V(e)$ and $f \in V(f)$, it follows that $(e, f) \in \xi \subseteq \xi^{t}$, and consequently that $\left.\pi_{s} \subseteq \xi^{t}\right|_{E_{S}}$.

Conversely, suppose that $e$ and $f$ are idempotents of $S$ for which $(e, f) \in \xi^{t}$. Then $(e, f) \in \xi^{n}$ for some $n \geqq 1$. We consider the cases $n=1$ and $n>1$ separately. Suppose first that $(e, f) \in \xi$. Then in particular, there exists inverses $e^{\prime}$ of $e$ and $f^{\prime}$ of $f$ such that $e e^{\prime}, f f^{\prime} \in E_{i}$ and $e^{\prime} e, f^{\prime} f \in E_{j}$ for some $i, j \in I$. In fact these conditions are sufficient to ensure that $e \approx f$, since $e=\left(e e^{\prime}\right)\left(e^{\prime} e\right) \approx\left(f f^{\prime}\right)\left(f^{\prime} f\right)=f$, by N1. This completes the proof for the case $n=1$.

Suppose now that $(e, f) \in \xi^{n}$ for some $n>1$. Then there exist elements $s_{1}, s_{2}, \cdots s_{n-1} \in S$ such that

$$
\left(e, s_{1}\right) \in \xi,\left(s_{1}, s_{2}\right) \in \xi, \cdots\left(s_{n-1}, f\right) \in \xi
$$

Then in particular, there exist elements $e^{\prime} \in V(e), s_{i}^{\prime}, s_{i}^{\prime \prime} \in V\left(s_{i}\right)$, for $i=1, \cdots n-1$, and $f^{\prime} \in V(f)$ such that

$$
\begin{align*}
& e e^{\prime} \approx s_{1} s_{1}^{\prime}, e^{\prime} e \approx s_{1}^{\prime} s_{1} \\
& s_{i} s_{i}^{\prime \prime} \approx s_{i+1} s_{i+1}^{\prime}, s_{i}^{\prime \prime} s_{i} \approx s_{i+1}^{\prime} s_{i+1}, \quad \text { for } i=1, \cdots n-2,  \tag{11}\\
& s_{n-1} s_{n-1}^{\prime \prime} \approx f f^{\prime}, s_{n-1}^{\prime \prime} s_{n-1} \approx f^{\prime} f .
\end{align*}
$$

Now $e=\left(e e^{\prime}\right)\left(e^{\prime} e\right) \approx\left(s_{1} s_{1}^{\prime}\right)\left(s_{1}^{\prime} s_{1}\right)$, by N1, and so by (3) and (3') of lemma 1.3, and by N1, we have,

$$
\begin{aligned}
e & \approx\left(s_{n-1} s_{n-1}^{\prime}\right) \cdots\left(s_{2} s_{2}^{\prime}\right)\left(s_{1} s_{1}^{\prime}\right)\left(s_{1}^{\prime} s_{1}\right)\left(s_{2}^{\prime} s_{2}\right) \cdots\left(s_{n-1}^{\prime} s_{n-1}\right) \\
& =\left(s_{n-1} s_{n-1}^{\prime \prime}\right)\left(s_{n-1} s_{n-1}^{\prime}\right) \cdots\left(s_{2} s_{2}^{\prime}\right)\left(s_{1} s_{1}^{\prime}\right)\left(s_{1}^{\prime} s_{1}\right)\left(s_{2}^{\prime} s_{2}\right) \cdots\left(s_{n-1}^{\prime} s_{n-1}\right)\left(s_{n-1}^{\prime \prime} s_{n-1}\right) \\
& \approx\left(f f^{\prime}\right)\left(s_{n-1} s_{n-1}^{\prime}\right) \cdots\left(s_{2} s_{2}^{\prime}\right)\left(s_{1} s_{1}^{\prime}\right)\left(s_{1}^{\prime} s_{1}\right)\left(s_{2}^{\prime} s_{2}\right) \cdots\left(s_{n-1}^{\prime} s_{n-1}\right)\left(f^{\prime} f\right) \\
& =f s f,
\end{aligned}
$$

where

$$
s=f^{\prime}\left(s_{n-1} s_{n-1}^{\prime}\right) \cdots\left(s_{2} s_{2}^{\prime}\right)\left(s_{1} s_{1}^{\prime}\right)\left(s_{1}^{\prime} s_{1}\right)\left(s_{2}^{\prime} s_{2}\right) \cdots\left(s_{n-1}^{\prime} s_{n-1}\right) f^{\prime}
$$

Now $f^{\prime}=\left(f^{\prime} f\right)\left(f f^{\prime}\right) \approx\left(s_{n-1}^{\prime \prime} s_{n-1}\right)\left(s_{n-1} s_{n-1}^{\prime \prime}\right)$, by N1, so

$$
\begin{aligned}
& s \approx\left(s_{n-1}^{\prime \prime} s_{n-1}\right)\left(s_{n-1} s_{n-1}^{\prime \prime}\right)\left(s_{n-1} s_{n-1}^{\prime}\right) \cdots\left(s_{2} s_{2}^{\prime}\right)\left(s_{1} s_{1}^{\prime}\right)\left(s_{1}^{\prime} s_{1}\right)\left(s_{2}^{\prime} s_{2}\right) \\
& \cdots\left(s_{n-1}^{\prime} s_{n-1}\right)\left(s_{n-1}^{\prime \prime} s_{n-1}\right)\left(s_{n-1} s_{n-1}^{\prime \prime}\right) \\
&=\left(s_{n-1}^{\prime \prime} s_{n-1}\right)\left(s_{n-1} s_{n-1}^{\prime}\right) \cdots\left(s_{1} s_{1}^{\prime}\right)\left(s_{1}^{\prime} s_{1}\right) \cdots\left(s_{n-1}^{\prime} s_{n-1}\right)\left(s_{n-1} s_{n-1}^{\prime \prime}\right) .
\end{aligned}
$$

Thus by (3), (3'), (4), and (4') of lemma 1.3, and by N1, we have

$$
\begin{aligned}
s & \approx\left(s_{n-1}^{\prime \prime} s_{n-1}\right) \cdots\left(s_{2}^{\prime \prime} s_{2}\right)\left(s_{1}^{\prime \prime} s_{1}\right)\left(s_{1} s_{1}^{\prime}\right)\left(s_{1}^{\prime} s_{1}\right)\left(s_{1} s_{1}^{\prime \prime}\right)\left(s_{2} s_{2}^{\prime \prime}\right) \cdots\left(s_{n-1} s_{n-1}^{\prime \prime}\right) \\
& =\left(s_{n-1}^{\prime \prime} s_{n-1}\right) \cdots\left(s_{2}^{\prime \prime} s_{2}\right) s_{1}^{\prime \prime}\left[s_{1} s_{1} s_{1}^{\prime} s_{1}^{\prime} s_{1} s_{1}\right] s_{1}^{\prime \prime}\left(s_{2} s_{2}^{\prime \prime}\right) \cdots\left(s_{n-1} s_{n-1}^{\prime \prime}\right) \\
& =\left(s_{n-1}^{\prime \prime} s_{n-1}\right) \cdots\left(s_{2}^{\prime \prime} s_{2}\right)\left(s_{1}^{\prime \prime} s_{1}\right)\left(s_{1} s_{1}^{\prime \prime}\right)\left(s_{2} s_{2}^{\prime \prime}\right) \cdots\left(s_{n-1} s_{n-1}^{\prime \prime}\right),
\end{aligned}
$$

since $s_{1}^{\prime} s_{1}^{\prime} \in V\left(s_{1} s_{1}\right)$. Hence by (4) and (4') of lemmà 1.3 , and by N1, we finally obtain

$$
s \approx\left(s_{n-1}^{\prime \prime} s_{n-1}\right)\left(s_{n-1} s_{n-1}^{\prime \prime}\right) \approx\left(f^{\prime} f\right)\left(f f^{\prime}\right)=f^{\prime}
$$

and so by N1,

$$
e \approx f s f \approx f f^{\prime} f=f
$$

as required. Hence $\left.\xi^{t}\right|_{E_{s}} \subseteq \pi_{g}$, and since we have already proved the reverse inclusion, it follows that $\left.\xi^{t}\right|_{E_{s}}=\pi_{\delta}$, and the proof of the lemma is completed.

Theorem 3.3. Let $\mathscr{E}=\left\{E_{i}: i \in I\right\}$ be a normal partition of the set $E_{S}$ of idempotents of the orthodox semigroup $S$ and let $\xi$ be defined by equation (10). Then $\xi^{t}$, the transitive closure of $\xi$, is the smallest congruence $\rho$ on $S$ which satisfies $\left.\rho\right|_{E_{S}}=\pi_{g}$.

Proof. We have already seen that $\xi^{t}$ is a congruence on $S$ which satisfies $\left.\xi^{t}\right|_{E_{S}}=\pi_{8}$. Thus it remains to verify that if $\rho$ is a congruence on $S$ such that $\left.\rho\right|_{E_{S}}=\pi_{g}$, then $\xi^{t} \subseteq \rho$. Let $\rho$ be a congruence on $S$ for which $\left.\rho\right|_{E_{S}}=\pi_{g}$. It suffices to prove that $\xi \subseteq \rho$, for then it follows that $\xi^{t} \subseteq \rho$, since $\xi^{t}$ is the smallest transitive relation containing $\xi$, and $\rho$ is a transitive relation on $S$.

So let $a$ and $b$ be elements of $S$ for which $(a, b) \in \xi$. Then there exist elements $a^{\prime} \in V(a)$ and $b^{\prime} \in V(b)$, and $i, j \in I$ such that $a a^{\prime}, b b^{\prime} \in E_{i}, a^{\prime} a, b^{\prime} b \in E_{j}$, and for some $e \in E_{i}, f \in E_{j}, e a f=e b f$ and $f a^{\prime} e=f b^{\prime} e$. Then

$$
\begin{aligned}
a \rho & =\left(\left(a a^{\prime}\right) a\left(a^{\prime} a\right)\right) \rho \\
& =\left(a a^{\prime}\right) \rho(a \rho)\left(a^{\prime} a\right) \rho \\
& =e \rho a \rho f \rho \\
& =(e a f) \rho=(e b f) \rho=e \rho b \rho f \rho \\
& =\left(b b^{\prime}\right) \rho b \rho\left(b^{\prime} b\right) \rho \quad\left(\text { since }\left.\rho\right|_{E_{s}}=\pi_{8}\right) \\
& =\left(b b^{\prime} b b^{\prime} b\right) \rho=b \rho, \quad \text { and so }(a, b) \in \rho
\end{aligned}
$$

Hence $\xi \subseteq \rho$, and the proof of the theorem is completed.
We now proceed to the determination of the regular kernel of the congruence $\xi^{\boldsymbol{t}}$. If $\mathscr{E}=\left\{E_{i}: i \in I\right\}$ is a normal partition of the set $E_{S}$ of idempotents of the orthodox semigroup $S$, then as in $\S 2$, we denote by $T_{i}$ the unique subsemigroup of $S$ having the property that $T_{i}$ is the largest orthodox subsemigroup of $S$ with $E_{i}$ as its set of idempotents. We now prove the following theorem.

Theorem 3.4. Let $S$ be an orthodox semigroup and let $\mathscr{E}=\left\{E_{i}: i \in I\right\}$ be a normal partition of $E_{S}$. For each $i \in I$, define

$$
\begin{aligned}
& X_{i}=\left\{x \in T_{i}: \text { there exists } x^{\prime} \in V(x) \cap T_{i}\right. \text { such that } \\
& \left.\qquad e x f=e f, f x^{\prime} e=f e, \text { for some } e, f \in E_{i}\right\} .
\end{aligned}
$$

Then $\mathscr{X}=\left\{X_{i}: i \in I\right\}$ is the regular kernel of the congruence $\xi^{t}$.
Proof. Let $\mathscr{A}=\left\{A_{i}: i \in I\right\}$ be the kernel of $\xi^{t}$ and let $\mathscr{B}=\left\{B_{i}: i \in I\right\}$ be the regular kernel of $\xi^{\tau}$. We aim to prove that for all $i \in I, B_{i}=X_{i}$.

Suppose first that $x$ is an arbitrary element of $X_{i}$. Then there exists $x^{\prime} \in V(x)$ $\cap T_{i}$ such that $e x f=e f$ and $f x^{\prime} e=f e$, for some $e, f \in E_{i}$. Then $x x^{\prime} \in E_{i}$ and $x^{\prime} x \in E_{i}$, and $e x f=e f=e e f, f x^{\prime} e=f e=f e e$, so it follows that $(x, e) \in \xi \subseteq \xi^{t}$ and that $\left(x^{\prime}, e\right) \in \xi \subseteq \xi^{t}$. Hence $x, x^{\prime} \in A_{i}$, and so $x \in B_{i}$, by virtue of the characterization (1) of the $B_{i}$. It follows that $X_{i} \subseteq B_{i}$, for all $i \in I$.

Conversely, let $x$ be an arbitrary element of $B_{i}$, for some $i \in I$, and choose $x^{*} \in V(x) \cap B_{i}$. Then since $E_{i}$ is the set of idempotents of $B_{i}$, we have $B_{i} \subseteq T_{i}$, and it follows that $x, x^{*} \in T_{i}$. To prove that $x \in X_{i}$ it suffices to prove the existence of elements $e, f \in E_{i}$ such that

$$
e x f=e f \text { and } f x^{*} e=f e
$$

To prove this, it suffices to show that there exist elements $g_{1}, h_{1} \in E_{i}$ such that $g_{1} x h_{1}=g_{1} h_{1}$ : for if this is true, then since $x^{*}$ is also an element of $B_{i}$, we also have that there exist elements $g_{2}, h_{2} \in E_{i}$ such that $g_{2} x^{*} h_{2}=g_{2} h_{2}$, and taking $e=h_{2} g_{1} \in E_{i}$ and $f=h_{1} g_{2} \in E_{i}$, we see that

$$
e x f=\left(h_{2} g_{1}\right) x\left(h_{1} g_{2}\right)=h_{2}\left(g_{1} x h_{1}\right) g_{2}=\left(h_{2} g_{1}\right)\left(h_{1} g_{2}\right)=e f
$$

and

$$
f x^{*} e=\left(h_{1} g_{2}\right) x^{*}\left(h_{2} g_{1}\right)=h_{1}\left(g_{2} x^{*} h_{2}\right) g_{1}=\left(h_{1} g_{2}\right)\left(h_{2} g_{1}\right)=f e
$$

Now $x, x^{*} \in A_{i}$, so $x x^{*} x^{*} x \in E_{i}$ and $\left(x, x x^{*} x^{*} x\right) \in \xi^{*}$. Hence $\left(x, x x^{*} x^{*} x\right) \in \xi^{n}$ for some $n \geqq 1$. As usual, we consider the cases $n=1$ and $n>1$ separateíy. Suppose first tnat $\left(x, x x^{*} x^{*} x\right) \in \xi$. Then there exist elernents $x^{\prime} \in V(x), z \in V\left(x x^{*} x^{*} x\right)$, and $j, k \in I$ such that $x x^{\prime}, x x^{*} x^{*} x z \in E_{j}$ and $x^{\prime} x, z x x^{*} x^{*} x \in E_{k}$, and for some $e_{1} \in E_{j}, f_{1} \in E_{k}$, we have

$$
e_{1} x f_{1}=e_{1} x x^{*} x^{*} x f_{1}, f_{1} x^{\prime} e_{1}=f_{1} z e_{1}
$$

Let $g_{1}=e_{1} x x^{*} \approx x x^{\prime} x x^{*}=x x^{*} \in E_{i}$, and let

$$
h_{1}=x^{*} x f_{1} \approx x^{*} x x^{\prime} x=x^{*} x \in E_{i}
$$

Then

$$
g_{1} x h_{1}=e_{1} x x^{*} x x^{*} x f_{1}=e_{1} x f_{1}=\left(e_{1} x x^{*}\right)\left(x^{*} x f_{1}\right)=g_{1} \dot{h}_{1} .
$$

Now suppose that $\left(x, x x^{*} x^{*} x\right) \in \xi^{* i}$ for some $n>1$. Then there exist elements $s_{1}, s_{2}, \cdots s_{n-1} \in S$ such that $\left(x, s_{1}\right) \in \xi,\left(s_{1}, s_{2}\right) \in \xi, \cdots\left(s_{n-1}, x x^{*} x^{*} x\right) \in \xi$, and hence there exist $x^{\prime} \in V(x), s_{i}^{\prime}, s_{i}^{\prime \prime} \in V\left(s_{i}\right)$ for $i=1, \cdots n-1$, and $z \in V\left(x x^{*} x^{*} x\right)$ such that

$$
\begin{align*}
& x x^{\prime} \approx s_{1} s_{1}^{\prime}, x^{\prime} x \approx s_{1}^{\prime} s_{1} \\
& s_{i} s_{i}^{\prime \prime} \approx s_{i+1} s_{i+1}^{\prime}, s_{i}^{\prime \prime} s_{i} \approx s_{i+1}^{\prime} s_{i+1}, \quad \text { for } i=1, \cdots, n-2,  \tag{12}\\
& s_{n-1} s_{n-1}^{\prime \prime} \approx x x^{*} x^{*} x z, s_{n-1}^{\prime \prime} s_{n-1} \approx z x x^{*} x^{*} x
\end{align*}
$$

and for some elements $e_{i}, f_{i} \in E_{S}$, for $i=1, \cdots, n$ which satisfy

$$
e_{i} \approx s_{i} s_{i}^{\prime}, f_{i} \approx s_{i}^{\prime} s_{i}, \text { for } i=1, \cdots, n-1
$$

and $e_{n} \approx s_{n-1} s_{n-1}^{\prime \prime}, f_{n} \approx s_{n-1}^{\prime \prime} s_{n-1}$, we have

$$
\begin{align*}
& e_{1} x f_{1}=e_{1} s_{1} f_{1}, f_{1} x^{\prime} e_{1}=f_{1} s_{1}^{\prime} e_{1} ; \\
& e_{i} s_{i-1} f_{i}=e_{i} s_{i} f_{i}, f_{i} s_{i-1}^{\prime \prime} e_{i}=f_{i} s_{i}^{\prime} e_{i}, \quad \text { for } i=2, \cdots n-1  \tag{13}\\
& e_{n} s_{n-1} f_{n}=e_{n} x x^{*} x^{*} x f_{n}, f_{n} s_{n-1}^{\prime \prime} e_{n}=f_{n} z e_{n}
\end{align*}
$$

Now rake

$$
g_{1}=x f_{n}\left(f_{1} x^{\prime} e_{1}\right) u_{n}\left(e_{n} s_{n-1} f_{n}\right) e_{n} x x^{*}
$$

and

$$
h_{1}=x^{*} x f_{n}\left(f_{1} x^{\prime} e_{1}\right) u_{n}\left(e_{n} s_{n-1} f_{n} e_{n}\right) x
$$

where

$$
u_{n}=\left(e_{2} s_{1} f_{2} s_{1}^{\prime \prime} e_{2}\right)\left(e_{3} s_{2} f_{3} s_{2}^{\prime \prime} e_{3}\right) \cdots\left(e_{n-1} s_{n-2} f_{n-1} s_{n-2}^{\prime \prime} e_{n-1}\right)
$$

Then,

$$
g_{1} x h_{1}=x\left(f_{n} f_{1} x^{\prime} e_{1} u_{n} e_{n} s_{n-1} f_{n} e_{n} x\right)\left(f_{n} f_{1} x^{\prime} e_{1} u_{n} e_{n} s_{n-1} f_{n} e_{n} x\right)
$$

but since $e_{n} s_{n-1} f_{n}=e_{n} x x^{*} x f_{n} \in E_{S}$, and since $u_{n} \in E_{S}$, it follows that

$$
f_{n} f_{1} x^{\prime}\left(e_{1} u_{n} e_{n} s_{n-1} f_{n} e_{n}\right) x \in E_{S}
$$

and hence that

$$
\begin{aligned}
g_{1} x h_{1} & =x\left(f_{n} f_{1} x^{\prime} e_{1} u_{n} e_{n} s_{n-1} f_{n} e_{n} x\right) \\
& =x\left(f_{n} f_{1} x^{\prime} e_{1} u_{n} e_{n} s_{n-1} f_{n}^{\prime}\right) e_{n} x .
\end{aligned}
$$

Now

$$
\begin{aligned}
& f_{n} f_{1} x^{\prime} e_{1} u_{n} e_{n} s_{n-1} f_{n} \\
& =f_{n}\left(f_{1} x^{\prime} e_{1}\right)\left(e_{2} s_{1} f_{2} s_{1}^{\prime \prime} e_{2}\right) \cdots\left(e_{n-1} s_{n-2} f_{n-1} s_{n-2}^{\prime \prime} e_{n-1}\right)\left(e_{n} s_{n-1} f_{n}\right) \\
& =f_{n}\left(f_{1} s_{1}^{\prime} e_{1}\right)\left(e_{2} s_{1} f_{2} s_{2}^{\prime} e_{2}\right) \cdots\left(e_{n-1} s_{n-2} f_{n-1} s_{n-1}^{\prime} e_{n-1}\right)\left(e_{n} s_{n-1} f_{n}\right) \\
& =f_{n} f_{1}\left(s_{1}^{\prime} e_{1} e_{2} s_{1}\right) f_{2}\left(s_{2}^{\prime} e_{2} e_{3} s_{2}\right) f_{3} \cdots f_{n-1}\left(s_{n-1}^{\prime} e_{n-1} e_{n} s_{n-1}\right) f_{n} \text {, }
\end{aligned}
$$

and hence $f_{n} f_{1} x^{\prime} e_{1} u_{n} e_{n} s_{n-1} f_{n} \in E_{S}$. It foilows that

$$
\begin{aligned}
g_{1} x h_{1} & =x\left(f_{n} f_{1} x^{\prime} e_{1} u_{n} e_{n} s_{n-1} f_{n}\right)\left(f_{n} f_{1} x^{\prime} e_{1} u_{n} e_{n} s_{n-1} f_{n}\right) e_{n} x \\
& =x f_{n} f_{1} x^{\prime} e_{1} u_{n}\left(e_{n} s_{n-1} f_{n}\right) f_{1} x^{\prime} e_{1} u_{n} e_{n} s_{n-1} f_{n} e_{n} x \\
& =x f_{n} f_{1} x^{\prime} e_{1} u_{n}\left(e_{n} s_{n-1} f_{n}\right)\left(e_{n} x x^{*} x^{*} x f_{n}\right) f_{1} x^{\prime} e_{1} u_{n} e_{n} s_{n-1} f_{n} e_{n} x \\
& =\left(x f_{n} f_{1} x^{\prime} e_{1} u_{n} e_{n} s_{n-1} f_{n} e_{n} x x^{*}\right)\left(x^{*} x f_{n} f_{1} x^{\prime} e_{1} u_{n} e_{n} s_{n-1} f_{n} e_{n} x\right) \\
& =g_{1} h_{1} .
\end{aligned}
$$

It remains to verify that $g_{1} \in E_{i}$ and $h_{1} \in E_{i}$. We first remark that, for $i=2, \cdots$ $n-1$,

$$
e_{i}\left(s_{i-1} f_{i} s_{i-1}^{\prime \prime}\right) e_{i} \approx\left(s_{i-1} s_{i-1}^{\prime \prime}\right)\left(s_{i-1} s_{i-1}^{\prime \prime} s_{i-1} s_{i-1}^{\prime \prime}\right)\left(s_{i-1} s_{i-1}^{\prime \prime}\right)=s_{i-1} s_{i-1}^{\prime \prime},
$$

and it follows that

$$
u_{n} \approx\left(s_{1} s_{1}^{\prime \prime}\right)\left(s_{2} s_{2}^{\prime \prime}\right) \cdots\left(s_{n-2} s_{n-2}^{\prime \prime}\right)
$$

Also, $e_{1} \approx s_{1} s_{1}^{\prime}, e_{n} \approx s_{n-1} s_{n-1}^{\prime \prime}$, and

$$
e_{n} s_{n-1} f_{n}=e_{n} x x^{*} x^{*} x f_{n} \approx\left(s_{n-1} s_{n-1}^{\prime \prime}\right)\left(x x^{*} x^{*} x\right)\left(s_{n-1}^{\prime \prime} s_{n-1}\right),
$$

while

$$
\begin{aligned}
x f_{n} f_{1} x^{\prime} & \approx x\left(s_{n-1}^{\prime \prime} s_{n-1}\right)\left(x^{\prime} x\right) x^{\prime}=x\left(s_{n-1}^{\prime \prime} s_{n-1}\right) x^{\prime} \\
& =x\left(x^{\prime} x\right)\left(s_{n-1}^{\prime \prime} s_{n-1}\right) x^{\prime} \approx x\left(s_{1}^{\prime} s_{1}\right)\left(s_{n-1}^{\prime \prime} s_{n-1}\right) x^{\prime} \\
& \approx x\left(s_{1}^{\prime} s_{1}\right)\left(s_{2}^{\prime} s_{2}\right) \cdots\left(s_{n-1}^{\prime} s_{n-1}\right)\left(s_{n-1}^{\prime \prime} s_{n-1}\right) x^{\prime} \\
& =x\left(s_{1}^{\prime} s_{1}\right)\left(s_{2}^{\prime} s_{2}\right) \cdots\left(s_{n-1}^{\prime} s_{n-1}\right) x^{\prime} \\
& \approx x\left(s_{1}^{\prime} s_{1}\right) x^{\prime} \approx x\left(x^{\prime} x\right) x^{\prime}=x x^{\prime} .
\end{aligned}
$$

Hence

$$
\begin{aligned}
g_{1} & \approx\left(x x^{\prime}\right)\left(x x^{\prime}\right)\left(s_{1} s_{1}^{\prime \prime}\right)\left(s_{2} s_{2}^{\prime \prime}\right) \cdots\left(s_{n-2} s_{n-1}^{\prime \prime}\right)\left(s_{n-1} s_{n-1}^{\prime \prime}\right) \\
& \quad\left(x x^{*} x^{*} x\right)\left(s_{n-1}^{\prime \prime} s_{n-1}\right)\left(s_{n-1} s_{n-1}^{\prime \prime}\right) x x^{*} \\
\approx & \left(x x^{\prime}\right)\left(s_{n-1} s_{n-1}^{\prime \prime}\right)\left(x x^{*} x^{*} x\right)\left(s_{n-1}^{\prime \prime} s_{n-1}\right)\left(s_{n-1} s_{n-1}^{\prime \prime}\right) x x^{*} \\
\approx & \left(s_{1} s_{1}^{\prime}\right)\left(s_{n-1} s_{n-1}^{\prime \prime}\right)\left(x x^{*} x^{*} x\right)\left(x^{\prime} x\right)\left(s_{n-1}^{\prime \prime} s_{n-1}\right)\left(s_{n-1} s_{n-1}^{\prime \prime}\right)\left(x x^{\prime}\right)\left(x x^{*}\right) \\
\approx & \left(s_{1} s_{1}^{\prime}\right)\left(s_{n-1} s_{n-1}^{\prime \prime}\right)\left(x x^{*} x^{*} x\right)\left(s_{1}^{\prime} s_{1}\right)\left(s_{n-1}^{\prime \prime} s_{n-1}\right)\left(s_{n-1} s_{n-1}^{\prime \prime}\right)\left(s_{1} s_{1}^{\prime}\right)\left(x x^{*}\right) .
\end{aligned}
$$

Using (3) and (3') of lemma 1.3, we obtain

$$
\begin{aligned}
g_{1} & \approx\left(s_{1} s_{1}^{\prime}\right)\left(x x^{*} x^{*} x\right)\left(s_{1}^{\prime} s_{1}\right)\left(s_{1} s_{1}^{\prime}\right)\left(x x^{*}\right) \\
& \approx\left(x x^{\prime}\right)\left(x x^{*} x^{*} x\right)\left(x^{\prime} x\right)\left(x x^{\prime}\right)\left(x x^{*}\right) \\
& =\left(x x^{*}\right)\left(x^{*} x\right)\left(x x^{*}\right) \in E_{i}, \text { and it follows that } g_{1} \in E_{i} .
\end{aligned}
$$

Since $h_{1}=x^{*} g_{1} x$, we have also.

$$
h_{1} \approx x^{*}\left(x x^{*}\right)\left(x^{*} x\right)\left(x x^{*}\right) x=x^{*} x^{*} x x \in E_{i}
$$

Hence $h_{1} \in E_{i}$, and we deduce that $x \in X_{i}$. Hence $B_{i} \subseteq X_{i}$, and since the reverse inclusion has already been proved, we have $B_{i}=X_{i}$, and this completes the proof of the theorem.

## 4. Lattice properties of idempotent-equivalent congruences

Let $\mathscr{E}=\left\{E_{i}: i \in I\right\}$ be a normal partition of the set $E_{S}$ of idempotents of the orthodox semigroup $S$ and denote by $\Lambda_{\mathscr{E}}(S)$ the set of congruences on $S$ which induce the partition $\mathscr{E}$ of $E_{S}$. In [3] (theorem 3.4), Reilly and Scheiblich have proved that $\Lambda_{\delta}(S)$ is a complete sublattice of $\Lambda(S)$ of commuting congruences on $X$. We make use of this theorem to calculate the regular kernels of the meet and join of two idempotent-equivalent congruences $\rho$ and $\sigma$ on $S$ in terms of the regular kernels of $\rho$ and $\sigma$.

We now introduce the following notation. If $T$ is a subsemigroup of the orthodox semigroup $S$ for which $T \cap E_{S} \neq \square$, then we denote by $R(T)$ the maximal regular subsemigroup of $S$ which is contained in $T$. (Since $E_{T}$ is a subsemigroup of $T, R(T)$ always exists, by virtue of lemma 2.4). Thus if $\mathscr{A}=\left\{A_{i}: i \in I\right\}$ is the kernel of a congruence $\rho$ on the orthodox semigroup $S$, and if $\mathscr{B}=\left\{B_{i}: i \in I\right\}$ is the regular kernel of $\rho$, then for all $i \in I, B_{i}=R\left(A_{i}\right)$. In general if $T$ is a subsemigroup of $S$, then we easily see that

$$
\begin{equation*}
R(T)=\{x \in T: V(x) \cap T \neq \square] . \tag{14}
\end{equation*}
$$

We also adopt the following notation: if $B$ is a subset of the semigroup $T$, and if $\rho$ is a congruence on $T$, then we define

$$
B \rho=\{x \in T:(b, x) \in \rho \text { for some } b \in B\}
$$

We now prove the following lemma.
Lemma 4.1. Let $\rho$ and $\sigma$ be idempotent-equivalent congruences on the orthodox semigroup $S$ and let $\mathscr{N}=\left\{N_{i}: i \in I\right\}$ be the kernel of $\rho$ and let $\mathscr{M}=\left\{M_{i}: i \in I\right\}$ be the kernel of $\sigma$. Then for all $i \in I$,

$$
N_{i} \sigma=M_{i} \rho=E_{i}(\rho \vee \sigma)
$$

where

$$
E_{i}=N_{i} \cap E_{S}=M_{i} \cap E_{S}
$$

Proof. We first remark that since $\rho$ and $\sigma$ are idempotent-equivalent congruences on $S$, it follows that $\rho \circ \sigma=\sigma \circ \rho$, by the result of Reilly and Scheiblich. Hence $\rho \circ \sigma$ is the smallest transitive relation containing $\rho$ and $\sigma$ ([1], lemma 1.4), and as the proof that $\rho \circ \sigma$ is compatible is trivial, it follows that $\rho \circ \sigma=\sigma \circ \rho=$ $\rho \vee \sigma$.

Now let $e$ be an arbitrary element of $E_{i}$ and let $x$ be an arbitrary element of $N_{i} \sigma$. Then there exists $n \in N_{i}$ such that $(n, x) \in \sigma$, and hence we have $(e, n) \in \rho$ and $(n, x) \in \sigma$, and it follows that $(e, x) \in \rho \circ \sigma=\rho \vee \sigma$; that is, $x \in e(\rho \vee \sigma)=$ $E_{i}(\rho \vee \sigma)$. Conversely, if $x \in E_{i}(\rho \vee \sigma)$, then $(x, e) \in \rho \vee \sigma=\sigma \circ \rho$ for some $e \in E_{i}$. Hence there exists $n \in S$ such that $(x, n) \in \sigma$ and $(n, e) \in \rho$, and it follows that $n \in N_{i}$ and that $x \in N_{i} \sigma$. Hence $N_{i} \sigma=E_{i}(\rho \vee \sigma)$ and the proof that $M_{i} \rho=E_{i}(\rho \vee \sigma)$ is similar.

Corollary 4.2. Under the conditions of Lemma 4.1, we have

$$
R\left(N_{i} \sigma\right)=R\left(M_{i} \rho\right)=R\left(E_{i}(\rho \vee \sigma)\right)
$$

for all $i \in I$.
Proof. Since $E_{i}(\rho \vee \sigma)$ is an element of the kernel of the congruence $\rho \vee \sigma$, $E_{i}(\rho \vee \sigma)$ is a subsemigroup of $S$, and the result follows immediately.

Suppose now that $\rho$ and $\sigma$ are idempotent-equivalent congruences on the orthodox semigroup $S$ and let $\mathscr{N}^{\prime}=\left\{N_{i}^{\prime}: i \in I\right\}$ and $\mathscr{M}^{\prime}=\left\{M_{i}^{\prime}: i \in I\right\}$ be the regular kernels of $\rho$ and $\sigma$ respectively. We prove that $\left\{\left(N^{\prime} \vee M^{\prime}\right)_{i}: i \in I\right\}$ is the regular kernel of the congruence $\rho \vee \sigma$, where for each $i \in I,\left(N^{\prime} \vee M^{\prime}\right)_{i}$ is defined by

$$
\begin{align*}
& \left(N^{\prime} \vee M^{\prime}\right)_{i}=\left\{k \in S \text { : there exists } k^{\prime} \in V(k) \text { such that } k k^{\prime}, k^{\prime} k \in E_{i}\right. \text {, }  \tag{15}\\
& \text { and } \left.k n, k^{\prime} n^{\prime} \in M_{i}^{\prime} \text {, some } n \in N_{i}^{\prime}, n^{\prime} \in V(n) \cap N_{i}^{\prime}\right\} \text {. }
\end{align*}
$$

Lemma 4.3. Let $\rho$ and $\sigma$ be idempotent-equivalent congruences on the orthodox semigroup $S$. Let $\mathscr{N}=\left\{N_{i}: i \in I\right\}$ and $\mathscr{M}=\left\{M_{i}: i \in I\right\}$ be the kernels of $\rho$ and $\sigma$ respectively, and let $\mathscr{N}^{\prime}=\left\{N^{\prime}: i \in I\right\}$ and $\mathscr{M}^{\prime}=\left\{M_{i}^{\prime}: i \in I\right\}$ be the regular kernels of $\rho$ and $\sigma$ respectively. Then for all $i \in I$, we have

$$
\left(N^{\prime} \vee M^{\prime}\right)_{i}=R\left(M_{i} \rho\right)=R\left(N_{i} \sigma\right)
$$

where $\left(N^{\prime} \vee M^{\prime}\right)_{i}$ is defined by (15).
Proof. It clearly suffices to prove that $\left(N^{\prime} \vee M^{\prime}\right)_{i}=R\left(N_{i} \sigma\right)$, since we have already proved that $R\left(N_{i} \sigma\right)=R\left(M_{i} \rho\right)$. Let $E_{i}=N_{i} \cap E_{S}=M_{i} \cap E_{S}$, for each $i \in I$. Suppose first that $k$ is an arbitrary element of $\left(N^{\prime} \vee M^{\prime}\right)_{i}$. Then there exists $k^{\prime} \in V(k)$ such that $k k^{\prime}, k^{\prime} k \in E_{i}$, and for some $n \in N_{i}^{\prime}$ and $n^{\prime} \in V(n) \cap N_{i}^{\prime}$, we have $k n, k^{\prime} n^{\prime} \in M_{i}^{\prime}$. Then $k k^{\prime}, n^{\prime} n \in E_{i}, k n \in M_{i}^{\prime}$, and $k^{\prime} k, n n^{\prime} \in E_{i}, k^{\prime} n^{\prime} \in M_{i}^{\prime}$, and so $\left(k, n^{\prime}\right) \in \rho_{\mathcal{M}^{\prime}} \subseteq \rho_{\mathcal{M}^{\prime}}^{t}=\sigma$. Hence $k \in N_{i}^{\prime} \sigma \subseteq N_{i} \sigma$, and it follows that $\left(N^{\prime} \vee M^{\prime}\right)_{i}$ $\subseteq N_{i} \sigma$. But if $k \in\left(N^{\prime} \vee M^{\prime}\right)_{i}$, then it follows from the definition of $\left(N^{\prime} \vee M^{\prime}\right)_{i}$
that there exists an element $k^{\prime} \in \mathscr{V}(k) \cap\left(N^{\prime} \vee M^{\prime}\right)_{i} \subseteq N_{i} \sigma$, and hence $\left(N^{\prime} \vee M^{\prime}\right)_{i}$ $\subseteq R\left(N_{i} \sigma\right)$.

Conversely, let $k$ be an arbitiary element of $R\left(N_{i} \sigma\right)$ and choose

$$
k^{*} \in V(k) \cap R\left(N_{i} \sigma\right)
$$

Since $R\left(N_{i} \sigma\right)=R\left(E_{i}(\rho \vee \sigma)\right)$ is the maximal regular subsemigroup of $E_{i}(\rho \vee \sigma)$, we have $k^{l} k^{* l}, k^{* l} k^{l} \in E_{i}$ for any positive integer $l$. Also, since $k \in R\left(N_{i} \sigma\right) \subseteq N_{i} \sigma$, and $k \in R\left(N_{i} \sigma\right)=R\left(M_{i} \rho\right) \subseteq M_{i} \rho$, there exist $n_{1} \in N_{i}$ and $m \in M_{i}$ such that $\left(k, n_{1}\right) \in \sigma$ and $(k, m) \in \rho$. We choose $n_{1}^{*} \in V\left(n_{1}\right)$ and $m^{*} \in V(m)$ arbitrarily.

Here we remark that $\left(k^{2} m^{* 2} k^{2}, k^{2}\right) \in \rho,\left(k^{2} m^{* 2} k^{2}, k^{4}\right) \in \sigma,\left(k n_{1}^{*} k, k^{2}\right) \in \rho$, and $\left(k n_{1}^{*} k, k\right) \in \sigma$. In fact. since $(k, m) \in \rho$, we have

$$
\left(k^{2} m^{* 2} k^{2}, m^{2}\right)=\left(k^{2} m^{* 2} k^{2}, m^{2} m^{* 2} m^{2}\right) \in \rho, \text { and }\left(m^{2}, k^{2}\right) \in \rho
$$

Hence $\left(k^{2} m^{* 2} k^{2}, k^{2}\right) \in \rho$. Also, since $\left(m^{2}, k^{2} k^{* 2}\right) \in \sigma$ and $\left(m^{2}, k^{* 2} k^{2}\right) \in \sigma$, we have

$$
\left(k^{2} m^{* 2} k^{2}, k^{2} m^{2} k^{2}\right)=\left(k^{2} k^{* 2} k^{2} m^{* 2} k^{2} k^{* 2} k^{2}, k^{2} m^{2} m^{* 2} m^{2} k^{2}\right) \in \sigma
$$

and $\left(k^{2} m^{2} k^{2}, k^{4}\right)=\left(k^{2} m^{2} k^{2}, k^{2}\left(k^{2} k^{* 2}\right) k^{2}\right) \in \sigma$. Hence $\left(k^{2} m^{* 2} k^{2}, k^{4}\right) \in \sigma$. That ( $k n_{1}^{*} k, k^{2}$ ) $\in \rho$ and $\left(k n_{1}^{*} k, k\right) \in \sigma$ can be proved similarly.

Now we set

$$
n=k^{* 2} m^{2} k^{* 2} k^{4} k^{*} n_{1} k^{*} \text { and } n^{\prime}=k n_{1}^{*} k k^{* 4} k^{2} m^{* 2} k^{2}
$$

Then clearly $n^{\prime} \in V(n)$. Moreover,

$$
\left(n, k^{* 2} k^{4} k^{* 2}\right)=\left(k^{* 2} m^{2} k^{* 2} k^{4} k^{*} n_{1} k^{*}, k^{* 2} k^{2} k^{* 2} k^{4} k^{*} k k^{*} k^{*}\right) \in \rho
$$

and

$$
\left(n^{\prime}, k^{2} k^{* 4} k^{2}\right)=\left(k n_{1}^{*} k k^{* 4} k^{2} m^{* 2} k^{2}, k^{2} k^{* 4} k^{2}\right) \in \rho
$$

and so $n, n^{\prime} \in N_{i}$. Hence $n, n^{\prime} \in R\left(N_{i}\right)=N_{i}^{\prime}$.
Furthermore,

$$
\begin{aligned}
& \left(k n, k k^{* 4} k^{4} k^{*}\right)=\left(k k^{* 2} m^{2} k^{* 2} k^{4} k^{*} n_{1} k^{*}, k k^{* 2}\left(k^{2} k^{* 2}\right) k^{* 2} k^{4} k^{*} k k^{*}\right) \in \sigma, \\
& \left(n^{\prime} k^{*}, k k^{* 4} k^{4} k^{*}\right)=\left(k n_{1}^{*} k k^{* 4} k^{2} m^{* 2} k^{2} k^{*}, k k^{* 4} k^{4} k^{*}\right) \in \sigma, \\
& \left(k^{*} n^{\prime}, k^{* 4} k^{4}\right)=\left(k^{*} k n_{\underline{1}}^{*} k k^{* 4} k^{2} m^{* 2} k^{2}, k^{*} k k^{* 4} k^{4}\right) \in \sigma, \\
& \left(n k, k^{* 4} k^{4}\right)=\left(k^{* 2} m^{2} k^{* 2} k^{4} k^{*} n_{1} k^{*} k, k^{* 2} k^{2} k^{* 4} k^{4} k^{*} k k^{*} k\right) \in \sigma
\end{aligned}
$$

and so $k n, n^{\prime} k^{*}, k^{*} n^{\prime}, n k \in M_{i}$. Hence $k n, k^{*} n^{\prime} \in R\left(M_{i}\right)=M_{i}^{\prime}$. Therefore, by definition, $k \in\left(M^{\prime} \vee N^{\prime}\right)_{i}$. Hence $R\left(N_{i} \sigma\right) \subseteq\left(M^{\prime} \vee N^{\prime}\right)_{i}$ and this completes the proof of the lemma.

We are now in a position to prove the following theorem.
Theorem 4.4. Let $\rho$ and $\sigma$ be idempotent-equivalent congruences on the orthodox semigroup $S$ with regular kernels $\mathscr{N}^{\prime}=\left\{N_{i}^{\prime}: i \in I\right\}$ and $\mathscr{M}^{\prime}=\left\{M_{i}^{\prime}: i \in I\right\}$ respectively. For each $i \in I$, define $\left(N^{\prime} \wedge M^{\prime}\right)_{i}=N_{i}^{\prime} \cap M_{i}^{\prime}$, and define $\left(N \vee M^{\prime}\right)_{i}$
by (15). Then $\left\{\left(N^{\prime} \wedge M^{\prime}\right)_{i}: i \in I\right\}$ is the regular kernel of $\rho \cap \sigma$ and $\left\{\left(N^{\prime} \vee M^{\prime}\right)_{i}: i \in I\right\}$ is the regular kernel of $\rho \vee \sigma$.

Proof. Let $\mathscr{N}=\left\{N_{i}: i \in I\right\}$ be the kernel of $\rho$ and let $\mathscr{M}=\left\{M_{i}: i \in I\right\}$ be the kernel of $\sigma$. Then we first remark that $\left\{N_{i} \cap M_{i}: i \in I\right\}$ is the kernel of $p \cap \sigma$. This follows easily since for each $e \in E_{i}, e(\rho \cap \sigma)=e \rho \cap e \sigma=N_{i} \cap M_{i}$. We now verify that for each $i \in I, R\left(N_{i} \cap M_{i}\right)=R\left(N_{i}\right) \cap R\left(M_{i}\right)$. It is trivial to verify that $R\left(N_{i} \cap M_{i}\right) \subseteq R\left(N_{i}\right) \cap R\left(M_{i}\right)$, so suppose that $x$ is an arbitrary element of $R\left(N_{i}\right) \cap R\left(M_{i}\right)$. Then $x \in R\left(N_{i}\right)$ and $x \in R\left(M_{i}\right)$, so there exist inverses $x^{\prime}$ and $x^{*}$ of $x$ such that $x, x^{\prime} \in N_{i}$ and $x, x^{*} \in M_{i}$. But then $x^{\prime} x x^{*} \in V(x)$, and $x^{\prime} x x^{*} \in N_{i} E_{i}$ $\subseteq N_{i}$, and $x^{\prime} x x^{*} \in E_{i} M_{i}$. Hence $x, x^{\prime} x x^{*} \in N_{i} \cap M_{i}$, and it follows that $x \in R\left(N_{i} \cap M_{i}\right)$. Thus $R\left(N_{i} \cap M_{i}\right)=R\left(N_{i}\right) \cap R\left(M_{i}\right)=N_{i}^{\prime} \cap M_{i}^{\prime}$, and we see that $\left\{\left(N^{\prime} \wedge M^{\prime}\right)_{i}: i \in I\right\}$ is the regular kernel of $\rho \cap \sigma$.

To prove that $\left\{\left(N^{\prime} \vee M^{\prime}\right)_{i}: i \in I\right\}$ is the regular kernel of $\rho \vee \sigma$ it suffices to note that $\left\{R\left(E_{i}(\rho \vee \sigma)\right): i \in I\right\}$ is the regular kernel of $\rho \vee \sigma$, and that for each $i \in I$, $R\left(E_{i}(\rho \vee \sigma)\right)=R\left(N_{i} \sigma\right)=\left(N^{\prime} \vee M^{\prime}\right)_{i}$, by lemma 4.3 and corollary 4.2.

## 5. The lattice of idemootent-separating congruences

We now show how the result of theorem 4.4 may be simplified in the case when the partition $\mathscr{E}$ of $E_{S}$ considered is the maximum partition of $E_{S}$. In this case, $\Lambda_{\mathscr{G}}(S)=\Sigma(\mathscr{H})$, the lattice of idempotent-separating congruences on $S$.

A set $\mathscr{N}=\left\{N_{e}: e \in E_{S}\right\}$ of normal subgroups of the maximal subgroups $\left\{H_{e}: e \in E_{S}\right\}$ of the orthodox semigroup $S$ is defined to be a group kernel normal system of $S$ if the $N_{e}$ satisfy the conditions:
(i) $a^{\prime} N_{e} a \subseteq N_{a^{\prime} e a}$ for all $a \in S, a^{\prime} \in V(a)$, and $e \in E_{S}$;
(ii) $N_{e} N_{f} \subseteq N_{e f}$ for all $e, f \in E_{S}$.

Then we have the following theorem ([2], theorem 4.2).
Theorem 5.1. If $\rho$ is an idempotent-separating congruence on an orthodox semigroup $S$ then the kernel $\mathfrak{N}$ of $\rho$ is a group kernel normal system of $S$, and $\rho=\rho_{\mathcal{N}}$, where $\rho_{\mathcal{N}}$ is defined by

$$
\begin{align*}
& \rho_{\mathcal{N}}=\left\{(a, b) \in S \times S: \text { there are inverses } a^{\prime} \text { of } a \text { and } b^{\prime} \text { of } b\right. \text { such that } \\
& \left.a a^{\prime}=b b^{\prime}=e, a b^{\prime} \in N_{e}, a^{\prime} a=b^{\prime} b=f, a^{\prime} b \in N_{f}, \text { for some } e, f \in E_{S}\right\} . \tag{17}
\end{align*}
$$

Conversely, if $\mathcal{N}$ is a group kernel normal system of $S$, then there is precisely one congruence $\rho$ on $S$ such that $\mathscr{N}$ is the kernel of $\rho$. This congruence $\rho$ is an idempo-tent-separating congruence on $S$ and $\rho=\rho_{\mathscr{H}}$.

We now determine the kernels of the meet and join of two idempotentseparating congruences $\rho$ and $\sigma$ on $S$ in terms of the kernels of $\rho$ and $\sigma$.

The following theorem has a precise analogue for inverse semigroups ([1], theorem 7.56).

Theorem 5.2. Let $\rho$ and $\sigma$ be idempotent-separating congruences on the orthodox semigroup $S$ with kernels $\mathscr{N}=\left\{N_{e}: e \in E_{S}\right\}$ and $\mathscr{M}=\left\{M_{e}: e \in E_{S}\right\}$ respectively. Define $\mathscr{M} \mathscr{N}=\mathscr{M} \vee \mathscr{N}=\left\{M_{e} N_{e}: e \in E_{S}\right\}$, and $\mathscr{M} \wedge \mathscr{N}=\left\{M_{e} \cap N_{e}: e \in E_{\mathrm{s}}\right\}$. Then $\mathscr{M} \vee \mathscr{N}$ and $\mathscr{M} \wedge \mathscr{N}$ are group kernel normal systems of $S$, and $\mathscr{M} \wedge \mathscr{N}$ is the kernel of $\rho \cap \sigma$ and $\mathscr{M} \vee \mathscr{N}$ is the kernel of $\rho \vee \sigma$.

Proof. That $\mathscr{M} \wedge \mathscr{N}$ is a group kernel normal system and is the kernel of $\rho \cap \sigma$ follows immediately from theorem 4.4 and theorem 5.1. Furthermore, by theorem 4.4, it follows that the kernel of the congruence $\rho \vee \sigma$ is $\left\{(N \vee M)_{e}: e \in E_{S}\right\}$, where for each $e \in E_{S}$,

$$
\begin{aligned}
(N \vee M)_{e}= & \left\{k \in S: \text { there exists } k^{\prime} \in V(k)\right. \text { such that } \\
& k k^{\prime}=k^{\prime} k=e, \text { and } k n, k^{\prime} n^{\prime} \in M_{e}, \text { some } \\
& \left.n \in N_{e}, n^{\prime} \in V(n) \cap N_{e}\right\} .
\end{aligned}
$$

Thus to complete the proof of the theorem it suffices to show that for each $e \in E_{\mathrm{S}}$ we have $M_{e} N_{e}=(N \vee M)_{e}$.

Let $k$ be an arbitrary element of $M_{e} N_{e}$. Then $k=m n$, for some $m \in M_{e}$, $n \in N_{e}$. Let $m^{\prime}$ be the inverse of $m$ which is in $M_{e}$ and let $n^{\prime}$ be the inverse of $n$ which is in $N_{e}$, and let $k^{\prime}=n^{\prime} m^{\prime}$. Then $k k^{\prime}=m\left(n n^{\prime}\right) m^{\prime}=m e m^{\prime}=m m^{\prime}=e$, and similarly $k^{\prime} k=e$. Moreover, $k n^{\prime}=m n n^{\prime}=m e=m \in M_{e}$, and $k^{\prime} n=n^{\prime} m^{\prime} n$ : but $n^{\prime} m^{\prime} n$ and $e=n^{\prime} e n$ are in the same element $M_{f}$ of the group kernel normal system $\mathscr{M}$ by condition (i) of the definition of group kernel normal systems, and hence $k^{\prime} n \in M_{e}$. Thus $k \in(N \vee M)_{e}$ and it follows that $M_{e} N_{e} \subseteq(M \vee N)_{e}$ for each $e \in E_{S}$.

Conversely, choose $k \in(N \vee M)_{e}$. Then there exists $k^{\prime} \in V(k)$ such that $k k^{\prime}=$ $k^{\prime} k=e$ and $k n, k^{\prime} n^{\prime} \in M_{e}$ for some $n \in N_{e}$ and $n^{\prime} \in V(n) \cap N_{e}$. Now $k e=k k^{\prime} k=k$, and hence $k=k e=k\left(n n^{\prime}\right)=(k n) n^{\prime} \in M_{e} N_{e}$, and it follows that for each $e \in E_{S},(N \vee M)_{e} \subseteq M_{e} N_{e}$. Hence $M_{e} N_{e}=(N \vee M)_{e}$ for each $e \in E_{S}$, and the theorem is proved.

## Acknowledgements

I wish to thank Professor T. Saitô for reading the manuscript and for his valuable comments and suggestions.

The research for this paper was carried out at Monash University under the supervision of Professor G. B. Preston, while the author held a Monash Graduate Scholarship.

## References

[1] A. H. Clifford and G. B. Preston, The Algebraic Theory of Semigroups (Math. Surveys, number 7, Amer. Math. Soc., Vol. I 1961, Vol. II 1967).
[2] J. C. Meakin, 'Congruences on Orthodox Semigroups', J. Australian Math. Soc. (to appear).
[3] N. R. Reilly and H. E. Scheiblich, 'Congruences on Regular Semigroups', Pacific J. of Mathematics 23 (1967), 349-360.

Department of Mathematics
Monash University
Clayton, Victoria

