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Abstract

In a recent paper, Calkin et al. [N. Calkin, N. Drake, K. James, S. Law, P. Lee, D. Penniston and J. Radder,
‘Divisibility properties of the 5-regular and 13-regular partition functions’, Integers 8 (2008), #A60] used
the theory of modular forms to examine 5-regular partitions modulo 2 and 13-regular partitions modulo 2
and 3; they obtained and conjectured various results. In this note, we use nothing more than Jacobi’s
triple product identity to obtain results for 5-regular partitions that are stronger than those obtained by
Calkin and his collaborators. We find infinitely many Ramanujan-type congruences for b5(n), and we
prove the striking result that the number of 5-regular partitions of the number n is even for at least 75%
of the positive integers n.
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1. Introduction

In the seven-author paper [1], Calkin et al. examined the parity of 5-regular partitions
which are defined by ∑

n≥0

b5(n)qn
=

(q5
; q5)∞

(q; q)∞
.

Using the theory of modular forms, they proved results equivalent to the following:

b5(2n) is odd if and only if 12n + 1 is a square;

and, for all n ≥ 0,

b5(20n + 5) is even and b5(20n + 13) is even.

Combining these two results, one can deduce that b5(n) is even for at least 60% of the
positive integers n.

In this note we use nothing more than Jacobi’s triple product identity to prove the
two results above.
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We also prove infinitely many new Ramanujan-type congruences for b5(n), of
which the ‘smallest’ is

b5(1156n + 65)≡ 0 (mod 2),

and we prove that

b5(n) is even for at least 75% of the positive integers n.

This theorem is striking, because it is believed that the unrestricted partition function,
p(n), is even for half of the positive integers n.

2. The proofs

We begin with a fundamental theorem which provides the 2-dissection of the
generating function of b5(n).

THEOREM 2.1.∑
n≥0

b5(n)qn
=

(q8
; q8)∞(q20

; q20)2
∞

(q2; q2)2
∞(q40; q40)∞

+ q
(q4
; q4)3

∞(q10
; q10)∞(q40

; q40)∞

(q2; q2)3
∞(q8; q8)∞(q20; q20)∞

,

where (a; q)∞ = (1− a)(1− aq)(1− aq2)(1− aq3) · · · .

PROOF. We start by noting that∑
n≥0

b5(n)qn
=

(q5
; q5)∞

(q; q)∞

=
1

(q, q2, q3, q4; q5)∞

=
1

(q, q2, q3, q4, q6, q7, q8, q9; q10)∞

=
(−q,−q3,−q7,−q9, q10, q10

; q10)∞

(q2, q2, q4, q6, q6, q8, q10, q10, q12, q14, q14, q16, q18, q18, q20, q20; q20)∞

=
(q4
; q4)∞(−q,−q3,−q7,−q9, q10, q10

; q10)∞

(q2; q2)2
∞(q20; q20)∞

,

where (a1, a2, . . . , ak; q)∞ = (a1; q)∞(a2; q)∞ · · · (ak; q)∞.
Now,

(−q,−q3,−q7,−q9, q10, q10
; q10)∞

=

∞∑
m,n=−∞

q5m2
−4m+5n2

−2n (by Jacobi’s triple product identity)

=

∞∑
r,s=−∞

q5(r+s)2
−4(r+s)+5(r−s)2

−2(r−s)

+

∞∑
r,s=−∞

q5(r+s+1)2
−4(r+s+1)+5(r−s)2

−2(r−s)
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=

∞∑
r,s=−∞

q10r2
−6r+10s2

−2s
+ q

∞∑
r,s=−∞

q10r2
+4r+10s2

+8s

= (−q4,−q8,−q12,−q16, q20, q20
; q20)∞

+ q(−q2,−q6,−q14,−q18, q20, q20
; q20)∞

=
(−q4
; q4)∞(q20

; q20)2
∞

(−q20; q20)∞
+ q

(−q2
; q2)∞(−q20

; q20)∞(q20
; q20)2

∞

(−q4; q4)∞(−q10; q10)∞

=
(q8
; q8)∞(q20

; q20)3
∞

(q4; q4)∞(q40; q40)∞
+ q

(q4
; q4)2

∞(q10
; q10)∞(q40

; q40)∞

(q2; q2)∞(q8; q8)∞
.

Therefore,∑
n≥0

b5(n)qn
=

(q8
; q8)∞(q20

; q20)2
∞

(q2; q2)2
∞(q40; q40)∞

+ q
(q4
; q4)3

∞(q10
; q10)∞(q40

; q40)∞

(q2; q2)3
∞(q8; q8)∞(q20; q20)∞

as claimed. 2

THEOREM 2.2. [1, Theorem 1] For all n ≥ 0, b5(2n) is odd if and only if 12n + 1 is
a perfect square.

PROOF. Thanks to Theorem 2.1 above, we know that∑
n≥0

b5(2n)qn
=

(q4
; q4)∞(q10

; q10)2
∞

(q; q)2
∞(q20; q20)∞

≡
(q4
; q4)∞(q20

; q20)∞

(q2; q2)∞(q20; q20)∞
(mod 2)

= (−q2
; q2)∞

≡ (q2
; q2)∞ (mod 2)

=

∞∑
n=−∞

(−1)nq3n2
+n

≡

∞∑
n=−∞

q3n2
+n (mod 2).

Thus, ∑
n≥0

b5(2n)q12n+1
≡

∞∑
n=−∞

q(6n+1)2
(mod 2),

from which the result follows. 2

THEOREM 2.3. For all n ≥ 0, b(4n + 1) is even unless 24n + 7= 2x2
+ 5y2 for

some integers x and y.
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PROOF. From Theorem 2.1, we know that∑
n≥0

b5(2n + 1)qn
=

(q2
; q2)3

∞

(q; q)3
∞

·
(q5
; q5)∞(q20

; q20)∞

(q4; q4)∞(q10; q10)∞
.

Now,

(q2
; q2)3

∞

(q; q)3
∞

=

∏
n≥1

(
1− q2n

1− qn

)3

=

∏
n≥1

(1+ qn)3

≡

∏
n≥1

(1+ qn
+ q2n

+ q3n) (mod 2)

=

∏
n≥1

1− q4n

1− qn

=
(q4
; q4)∞

(q; q)∞
.

It follows that∑
n≥0

b5(2n + 1)qn

≡
(q5
; q5)∞(q20

; q20)∞

(q; q)∞(q10; q10)∞
(mod 2)

=

∏
n≥1

(1+ q10n)
∑
n≥0

b5(n)qn

≡

∞∑
n=−∞

q10(3n2
+n)/2

( ∞∑
n=−∞

q2(3n2
+n)
+

∑
n≥0

b5(2n + 1)q2n+1
)

(mod 2).

This means that∑
n≥0

b5(4n + 1)qn
≡

∞∑
m,n=−∞

q(3m2
+m)+5(3n2

+n)/2 (mod 2),

which implies that∑
n≥0

b5(4n + 1)q24n+7
≡

∞∑
m,n=−∞

q2(6m+1)2
+5(6n+1)2

(mod 2).

The result follows. 2

THEOREM 2.4. [1, Theorem 3] For all n ≥ 0,

b5(20n + 5) ≡ 0 (mod 2)

and b5(20n + 13) ≡ 0 (mod 2).
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PROOF. From Theorem 2.3, we know b(20n + 5) is even unless 24(5n + 1)+ 7=
2x2
+ 5y2 for some integers x and y. Consideration of this equation modulo 5 yields

x2
≡ 3 (mod 5). Since 3 is a quadratic nonresidue modulo 5, we know that there

can be no such solutions. This proves the first congruence. A proof of the second
congruence can be obtained from the fact that 2 is the other quadratic nonresidue
modulo 5. 2

THEOREM 2.5. Suppose that p is any prime greater than 3 such that −10 is a
quadratic nonresidue modulo p, u is the reciprocal of 24 modulo p2, and r 6≡ 0
(mod p). Then, for all m,

b5(4p2m + 4u(pr − 7)+ 1)≡ 0 (mod 2).

PROOF. If we set n = p2m + u(pr − 7), then

24n + 7≡ 24p2m + pr = p(24pm + r) (mod p2)

is divisible by p but not by p2. If 24n + 7= 2x2
+ 5y2, then 2x2

+ 5y2
≡ 0 (mod p)

but 2x2
+ 5y2

6≡ 0 (mod p2). This is impossible; so, by Theorem 2.3, b5(4n + 1)≡ 0
(mod 2). 2

EXAMPLES. With p = 17, we find that for r 6≡ 0 (mod 17) and for all m,

b5(1156m + 340r + 337)≡ 0 (mod 2).

In particular, with r = 6 (and m replaced by m − 2),

b5(1156m + 65)≡ 0 (mod 2).

We close with one last observation about the parity of b5(n).

THEOREM 2.6. b5(n) is even for at least 75% of the positive integers n.

PROOF. By Theorem 2.2, b5(2n) is almost always even; and, by Theorem 2.3,
b5(4n + 1) is almost always even. The latter statement is true because in the prime
factorization of 24n + 7= 2x2

+ 5y2, primes congruent to

3, 17, 21, 27, 29, 31, 33 or 39 (mod 40),

those for which −10 is a quadratic nonresidue, necessarily occur to an even power
(3 itself does not occur). The density of such numbers is

1∏
such p>3(1+

1
p )
= 0. 2
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