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Abstract

In a recent paper, Calkin et al. [N. Calkin, N. Drake, K. James, S. Law, P. Lee, D. Penniston and J. Radder,
‘Divisibility properties of the 5-regular and 13-regular partition functions’, Integers 8 (2008), #A60] used
the theory of modular forms to examine 5-regular partitions modulo 2 and 13-regular partitions modulo 2
and 3; they obtained and conjectured various results. In this note, we use nothing more than Jacobi’s
triple product identity to obtain results for 5-regular partitions that are stronger than those obtained by
Calkin and his collaborators. We find infinitely many Ramanujan-type congruences for bs(n), and we
prove the striking result that the number of 5-regular partitions of the number 7 is even for at least 75%
of the positive integers .
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1. Introduction

In the seven-author paper [ 1], Calkin et al. examined the parity of 5-regular partitions
which are defined by

(q q)oo
bs
,; =

Using the theory of modular forms, they proved results equivalent to the following:
bs(2n) is odd if and only if 12n + 1 is a square;
and, for all n > 0,
bs(20n + 5)iseven and b5(20n 4+ 13) is even.

Combining these two results, one can deduce that b5(n) is even for at least 60% of the
positive integers n.

In this note we use nothing more than Jacobi’s triple product identity to prove the
two results above.
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We also prove infinitely many new Ramanujan-type congruences for bs(n), of
which the ‘smallest’ is

b5(1156n + 65)=0 (mod 2),
and we prove that
bs(n) is even for at least 75% of the positive integers n.
This theorem is striking, because it is believed that the unrestricted partition function,
p(n), is even for half of the positive integers .
2. The proofs

We begin with a fundamental theorem which provides the 2-dissection of the
generating function of bs(n).

THEOREM 2.1.

3 bsn)g" = @ %) (a*; 4205 q @* aH3.@'" 400 (@"; 4%
n=0 @2 4H% @ ¢ )0 T (4% 49343 ¢¥)00(@: ¢0)oo

where (a; @)oo = (1 —a)(1 —aq)(1 —ag®)(1 —agq®) - - -.
PROOF. We start by noting that

5. .5
S bsng” = (g 4 )oo
7=0 (4 Do
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Now,

)
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= Z g —AmESn?=2n (b Jacobi’s triple product identity)
m,n=—00
o
_ Z q5(r+s)2—4(r+s)+5(r—s)2—2(r—s)
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Therefore,
3" bsng” = @3 40 (@*; ¢*0% . (@* 434" 450 (@*; ¢ o0
= (4% 49%(q*; ¢ (@% 493.(4% ¢*)0e (@ ¢*0) s
as claimed. O

THEOREM 2.2. [1, Theorem 1] For all n > 0, bs(2n) is odd if and only if 12n + 1 is
a perfect square.

PROOF. Thanks to Theorem 2.1 above, we know that

10)2
[

4, 4 10.
st(zn)qn — (‘] ’ q QOO(ZO ) ZO
=0 (@3 9575 470

~(q% 4% ¢

= (mod 2)
(0% 4% o00(@?%; ¢%) 0

= (—¢% 4o
= (¢ ¢")oc (mod 2)
o0
— Z (_l)nq3n2+l’l
n=—oo
o 2
= Z ¢+ (mod 2).
n=—00
Thus,
0 2
Z b5(2n)q12"+1 = Z q(6n+1) (mod 2)’
n>0 n=-—00
from which the result follows. O

THEOREM 2.3. For all n >0, b(4n + 1) is even unless 24n + 7 = 2x2 + Sy2 for
some integers x and y.
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PROOF. From Theorem 2.1, we know that

S bs2n + g" = @* 3% (@ 4@ 4%
n=0 @ D3 (0% 4Hx@"% ¢

Now,
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4 Do
It follows that
> bs@n+1)q"
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n>1 n>0

x o0
Z q10(3n2+n)/2( Z q2(3n2+n) +Zb5(2n+ l)q2n+1> (mOd 2)

n=—00 n=—o0 n>0

(mod 2)

This means that
00
Z b5 (47’[ + l)qn = Z q(3m2+m)+5(3n2+n)/2 (mOd 2),
n>0 m,n=—00
which implies that
00
Z b5(4n + 1)q24n+7 = Z q2(6m+1)2+5(6n+1)2 (mOd 2)
n>0 m,n=—00
The result follows. o
THEOREM 2.4. [1, Theorem 3] For all n > 0,

bs(20n +5) =0 (mod 2)
and bs(20n+13) =0 (mod 2).
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PROOF. From Theorem 2.3, we know b(20n + 5) is even unless 24(5n + 1) +7 =
2x? + 5y? for some integers x and y. Consideration of this equation modulo 5 yields
x2=3 (mod 5). Since 3 is a quadratic nonresidue modulo 5, we know that there
can be no such solutions. This proves the first congruence. A proof of the second
congruence can be obtained from the fact that 2 is the other quadratic nonresidue
modulo 5. O

THEOREM 2.5. Suppose that p is any prime greater than 3 such that —10 is a
quadratic nonresidue modulo p, u is the reciprocal of 24 modulo p% and r #0
(mod p). Then, for all m,

bs(4p’m + 4u(pr —7) +1)=0 (mod 2).
PROOF. If we set n = p>m + u(pr — 7), then
24n 4+ 7=24p’m + pr = pQ4pm +r) (mod p?)
is divisible by p but not by p?. If 24n + 7 = 2x2 + 5y?, then 2x? + 5y> =0 (mod p)
but 2x2 4+ 5y2 20 (mod p?). This is impossible; so, by Theorem 2.3, bs(4n + 1) =0
(mod 2). O
EXAMPLES. With p = 17, we find that for » 20 (mod 17) and for all m,
bs(1156m + 340r +337) =0 (mod 2).
In particular, with » = 6 (and m replaced by m — 2),
b5(1156m +65) =0 (mod 2).

We close with one last observation about the parity of bs(n).

THEOREM 2.6. bs(n) is even for at least 75% of the positive integers n.

PROOF. By Theorem 2.2, b5(2n) is almost always even; and, by Theorem 2.3,
bs(4n + 1) is almost always even. The latter statement is true because in the prime
factorization of 24n + 7 = 2x? 4 5y?, primes congruent to

3,17, 21, 27, 29, 31, 33 0r39 (mod 40),

those for which —10 is a quadratic nonresidue, necessarily occur to an even power
(3 itself does not occur). The density of such numbers is

1
—=0.
Hsuch p>3(1 + ;)
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