ELEMENTARY PROOFS OF PARITY RESULTS FOR 5-REGULAR PARTITIONS

MICHAEL D. HIRSCHHORN ${ }^{\boxtimes}$ and JAMES A. SELLERS

(Received 11 February 2009)

Abstract

In a recent paper, Calkin et al. [N. Calkin, N. Drake, K. James, S. Law, P. Lee, D. Penniston and J. Radder, 'Divisibility properties of the 5-regular and 13-regular partition functions', Integers $\mathbf{8}$ (2008), \#A60] used the theory of modular forms to examine 5-regular partitions modulo 2 and 13-regular partitions modulo 2 and 3; they obtained and conjectured various results. In this note, we use nothing more than Jacobi's triple product identity to obtain results for 5-regular partitions that are stronger than those obtained by Calkin and his collaborators. We find infinitely many Ramanujan-type congruences for $b_{5}(n)$, and we prove the striking result that the number of 5-regular partitions of the number n is even for at least 75% of the positive integers n.

2000 Mathematics subject classification: primary 11P83; secondary 05A17.
Keywords and phrases: partitions, regular partitions, congruences, Jacobi's triple product identity.

1. Introduction

In the seven-author paper [1], Calkin et al. examined the parity of 5-regular partitions which are defined by

$$
\sum_{n \geq 0} b_{5}(n) q^{n}=\frac{\left(q^{5} ; q^{5}\right)_{\infty}}{(q ; q)_{\infty}}
$$

Using the theory of modular forms, they proved results equivalent to the following:

$$
b_{5}(2 n) \text { is odd if and only if } 12 n+1 \text { is a square; }
$$

and, for all $n \geq 0$,

$$
b_{5}(20 n+5) \text { is even and } b_{5}(20 n+13) \text { is even. }
$$

Combining these two results, one can deduce that $b_{5}(n)$ is even for at least 60% of the positive integers n.

In this note we use nothing more than Jacobi's triple product identity to prove the two results above.

[^0]We also prove infinitely many new Ramanujan-type congruences for $b_{5}(n)$, of which the 'smallest' is

$$
b_{5}(1156 n+65) \equiv 0 \quad(\bmod 2)
$$

and we prove that

$$
b_{5}(n) \text { is even for at least } 75 \% \text { of the positive integers } n \text {. }
$$

This theorem is striking, because it is believed that the unrestricted partition function, $p(n)$, is even for half of the positive integers n.

2. The proofs

We begin with a fundamental theorem which provides the 2-dissection of the generating function of $b_{5}(n)$.

Theorem 2.1.

$$
\sum_{n \geq 0} b_{5}(n) q^{n}=\frac{\left(q^{8} ; q^{8}\right)_{\infty}\left(q^{20} ; q^{20}\right)_{\infty}^{2}}{\left(q^{2} ; q^{2}\right)_{\infty}^{2}\left(q^{40} ; q^{40}\right)_{\infty}}+q \frac{\left(q^{4} ; q^{4}\right)_{\infty}^{3}\left(q^{10} ; q^{10}\right)_{\infty}\left(q^{40} ; q^{40}\right)_{\infty}}{\left(q^{2} ; q^{2}\right)_{\infty}^{3}\left(q^{8} ; q^{8}\right)_{\infty}\left(q^{20} ; q^{20}\right)_{\infty}}
$$

where $(a ; q)_{\infty}=(1-a)(1-a q)\left(1-a q^{2}\right)\left(1-a q^{3}\right) \cdots$.
Proof. We start by noting that

$$
\begin{aligned}
\sum_{n \geq 0} b_{5}(n) q^{n} & =\frac{\left(q^{5} ; q^{5}\right)_{\infty}}{(q ; q)_{\infty}} \\
& =\frac{1}{\left(q, q^{2}, q^{3}, q^{4} ; q^{5}\right)_{\infty}} \\
& =\frac{1}{\left(q, q^{2}, q^{3}, q^{4}, q^{6}, q^{7}, q^{8}, q^{9} ; q^{10}\right)_{\infty}} \\
& =\frac{\left(-q,-q^{3},-q^{7},-q^{9}, q^{10}, q^{10} ; q^{10}\right)_{\infty}}{\left(q^{2}, q^{2}, q^{4}, q^{6}, q^{6}, q^{8}, q^{10}, q^{10}, q^{12}, q^{14}, q^{14}, q^{16}, q^{18}, q^{18}, q^{20}, q^{20} ; q^{20}\right)_{\infty}} \\
& =\frac{\left(q^{4} ; q^{4}\right)_{\infty}\left(-q,-q^{3},-q^{7},-q^{9}, q^{10}, q^{10} ; q^{10}\right)_{\infty}}{\left(q^{2} ; q^{2}\right)_{\infty}^{2}\left(q^{20} ; q^{20}\right)_{\infty}},
\end{aligned}
$$

where $\left(a_{1}, a_{2}, \ldots, a_{k} ; q\right)_{\infty}=\left(a_{1} ; q\right)_{\infty}\left(a_{2} ; q\right)_{\infty} \cdots\left(a_{k} ; q\right)_{\infty}$.
Now,

$$
\begin{aligned}
(-q, & \left.-q^{3},-q^{7},-q^{9}, q^{10}, q^{10} ; q^{10}\right)_{\infty} \\
& =\sum_{m, n=-\infty}^{\infty} q^{5 m^{2}-4 m+5 n^{2}-2 n} \quad(\text { by Jacobi's triple product identity }) \\
& =\sum_{r, s=-\infty}^{\infty} q^{5(r+s)^{2}-4(r+s)+5(r-s)^{2}-2(r-s)} \\
\quad & \quad+\sum_{r, s=-\infty}^{\infty} q^{5(r+s+1)^{2}-4(r+s+1)+5(r-s)^{2}-2(r-s)}
\end{aligned}
$$

$$
\begin{aligned}
= & \sum_{r, s=-\infty}^{\infty} q^{10 r^{2}-6 r+10 s^{2}-2 s}+q \sum_{r, s=-\infty}^{\infty} q^{10 r^{2}+4 r+10 s^{2}+8 s} \\
= & \left(-q^{4},-q^{8},-q^{12},-q^{16}, q^{20}, q^{20} ; q^{20}\right)_{\infty} \\
& \quad+q\left(-q^{2},-q^{6},-q^{14},-q^{18}, q^{20}, q^{20} ; q^{20}\right)_{\infty} \\
= & \frac{\left(-q^{4} ; q^{4}\right)_{\infty}\left(q^{20} ; q^{20}\right)_{\infty}^{2}}{\left(-q^{20} ; q^{20}\right)_{\infty}}+q \frac{\left(-q^{2} ; q^{2}\right)_{\infty}\left(-q^{20} ; q^{20}\right)_{\infty}\left(q^{20} ; q^{20}\right)_{\infty}^{2}}{\left(-q^{4} ; q^{4}\right)_{\infty}\left(-q^{10} ; q^{10}\right)_{\infty}} \\
= & \frac{\left(q^{8} ; q^{8}\right)_{\infty}\left(q^{20} ; q^{20}\right)_{\infty}^{3}}{\left(q^{4} ; q^{4}\right)_{\infty}\left(q^{40} ; q^{40}\right)_{\infty}}+q \frac{\left(q^{4} ; q^{4}\right)_{\infty}^{2}\left(q^{10} ; q^{10}\right)_{\infty}\left(q^{40} ; q^{40}\right)_{\infty}}{\left(q^{2} ; q^{2}\right)_{\infty}\left(q^{8} ; q^{8}\right)_{\infty}} .
\end{aligned}
$$

Therefore,

$$
\sum_{n \geq 0} b_{5}(n) q^{n}=\frac{\left(q^{8} ; q^{8}\right)_{\infty}\left(q^{20} ; q^{20}\right)_{\infty}^{2}}{\left(q^{2} ; q^{2}\right)_{\infty}^{2}\left(q^{40} ; q^{40}\right)_{\infty}}+q \frac{\left(q^{4} ; q^{4}\right)_{\infty}^{3}\left(q^{10} ; q^{10}\right)_{\infty}\left(q^{40} ; q^{40}\right)_{\infty}}{\left(q^{2} ; q^{2}\right)_{\infty}^{3}\left(q^{8} ; q^{8}\right)_{\infty}\left(q^{20} ; q^{20}\right)_{\infty}}
$$

as claimed.
THEOREM 2.2. [1, Theorem 1] For all $n \geq 0, b_{5}(2 n)$ is odd if and only if $12 n+1$ is a perfect square.
Proof. Thanks to Theorem 2.1 above, we know that

$$
\begin{aligned}
\sum_{n \geq 0} b_{5}(2 n) q^{n} & =\frac{\left(q^{4} ; q^{4}\right)_{\infty}\left(q^{10} ; q^{10}\right)_{\infty}^{2}}{(q ; q)_{\infty}^{2}\left(q^{20} ; q^{20}\right)_{\infty}} \\
& \equiv \frac{\left(q^{4} ; q^{4}\right)_{\infty}\left(q^{20} ; q^{20}\right)_{\infty}}{\left(q^{2} ; q^{2}\right)_{\infty}\left(q^{20} ; q^{20}\right)_{\infty}} \quad(\bmod 2) \\
& =\left(-q^{2} ; q^{2}\right)_{\infty} \\
& \equiv\left(q^{2} ; q^{2}\right)_{\infty}(\bmod 2) \\
& =\sum_{n=-\infty}^{\infty}(-1)^{n} q^{3 n^{2}+n} \\
& \equiv \sum_{n=-\infty}^{\infty} q^{3 n^{2}+n}(\bmod 2)
\end{aligned}
$$

Thus,

$$
\sum_{n \geq 0} b_{5}(2 n) q^{12 n+1} \equiv \sum_{n=-\infty}^{\infty} q^{(6 n+1)^{2}}(\bmod 2)
$$

from which the result follows.
THEOREM 2.3. For all $n \geq 0, b(4 n+1)$ is even unless $24 n+7=2 x^{2}+5 y^{2}$ for some integers x and y.

Proof. From Theorem 2.1, we know that

$$
\sum_{n \geq 0} b_{5}(2 n+1) q^{n}=\frac{\left(q^{2} ; q^{2}\right)_{\infty}^{3}}{(q ; q)_{\infty}^{3}} \cdot \frac{\left(q^{5} ; q^{5}\right)_{\infty}\left(q^{20} ; q^{20}\right)_{\infty}}{\left(q^{4} ; q^{4}\right)_{\infty}\left(q^{10} ; q^{10}\right)_{\infty}}
$$

Now,

$$
\begin{aligned}
\frac{\left(q^{2} ; q^{2}\right)_{\infty}^{3}}{(q ; q)_{\infty}^{3}} & =\prod_{n \geq 1}\left(\frac{1-q^{2 n}}{1-q^{n}}\right)^{3}=\prod_{n \geq 1}\left(1+q^{n}\right)^{3} \\
& \equiv \prod_{n \geq 1}\left(1+q^{n}+q^{2 n}+q^{3 n}\right) \quad(\bmod 2) \\
& =\prod_{n \geq 1} \frac{1-q^{4 n}}{1-q^{n}} \\
& =\frac{\left(q^{4} ; q^{4}\right)_{\infty}}{(q ; q)_{\infty}}
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\sum_{n \geq 0} & b_{5}(2 n+1) q^{n} \\
& \equiv \frac{\left(q^{5} ; q^{5}\right)_{\infty}\left(q^{20} ; q^{20}\right)_{\infty}}{(q ; q)_{\infty}\left(q^{10} ; q^{10}\right)_{\infty}} \quad(\bmod 2) \\
& =\prod_{n \geq 1}\left(1+q^{10 n}\right) \sum_{n \geq 0} b_{5}(n) q^{n} \\
& \equiv \sum_{n=-\infty}^{\infty} q^{10\left(3 n^{2}+n\right) / 2}\left(\sum_{n=-\infty}^{\infty} q^{2\left(3 n^{2}+n\right)}+\sum_{n \geq 0} b_{5}(2 n+1) q^{2 n+1}\right) \quad(\bmod 2)
\end{aligned}
$$

This means that

$$
\sum_{n \geq 0} b_{5}(4 n+1) q^{n} \equiv \sum_{m, n=-\infty}^{\infty} q^{\left(3 m^{2}+m\right)+5\left(3 n^{2}+n\right) / 2} \quad(\bmod 2),
$$

which implies that

$$
\sum_{n \geq 0} b_{5}(4 n+1) q^{24 n+7} \equiv \sum_{m, n=-\infty}^{\infty} q^{2(6 m+1)^{2}+5(6 n+1)^{2}} \quad(\bmod 2)
$$

The result follows.
Theorem 2.4. [1, Theorem 3] For all $n \geq 0$,

$$
\begin{aligned}
b_{5}(20 n+5) & \equiv 0 \quad(\bmod 2) \\
\text { and } \quad b_{5}(20 n+13) & \equiv 0 \quad(\bmod 2) .
\end{aligned}
$$

Proof. From Theorem 2.3, we know $b(20 n+5)$ is even unless $24(5 n+1)+7=$ $2 x^{2}+5 y^{2}$ for some integers x and y. Consideration of this equation modulo 5 yields $x^{2} \equiv 3(\bmod 5)$. Since 3 is a quadratic nonresidue modulo 5 , we know that there can be no such solutions. This proves the first congruence. A proof of the second congruence can be obtained from the fact that 2 is the other quadratic nonresidue modulo 5.

THEOREM 2.5. Suppose that p is any prime greater than 3 such that -10 is a quadratic nonresidue modulo p, u is the reciprocal of 24 modulo p^{2}, and $r \not \equiv 0$ $(\bmod p)$. Then, for all m,

$$
b_{5}\left(4 p^{2} m+4 u(p r-7)+1\right) \equiv 0 \quad(\bmod 2)
$$

Proof. If we set $n=p^{2} m+u(p r-7)$, then

$$
24 n+7 \equiv 24 p^{2} m+p r=p(24 p m+r) \quad\left(\bmod p^{2}\right)
$$

is divisible by p but not by p^{2}. If $24 n+7=2 x^{2}+5 y^{2}$, then $2 x^{2}+5 y^{2} \equiv 0(\bmod p)$ but $2 x^{2}+5 y^{2} \not \equiv 0\left(\bmod p^{2}\right)$. This is impossible; so, by Theorem 2.3, $b_{5}(4 n+1) \equiv 0$ $(\bmod 2)$.

EXAMPLES. With $p=17$, we find that for $r \not \equiv 0(\bmod 17)$ and for all m,

$$
b_{5}(1156 m+340 r+337) \equiv 0 \quad(\bmod 2)
$$

In particular, with $r=6$ (and m replaced by $m-2$),

$$
b_{5}(1156 m+65) \equiv 0 \quad(\bmod 2)
$$

We close with one last observation about the parity of $b_{5}(n)$.
THEOREM 2.6. $b_{5}(n)$ is even for at least 75% of the positive integers n.
Proof. By Theorem 2.2, $b_{5}(2 n)$ is almost always even; and, by Theorem 2.3, $b_{5}(4 n+1)$ is almost always even. The latter statement is true because in the prime factorization of $24 n+7=2 x^{2}+5 y^{2}$, primes congruent to

$$
3,17,21,27,29,31,33 \text { or } 39(\bmod 40),
$$

those for which -10 is a quadratic nonresidue, necessarily occur to an even power (3 itself does not occur). The density of such numbers is

$$
\frac{1}{\prod_{\text {such } p>3}\left(1+\frac{1}{p}\right)}=0
$$

Reference

[1] N. Calkin, N. Drake, K. James, S. Law, P. Lee, D. Penniston and J. Radder, 'Divisibility properties of the 5-regular and 13-regular partition functions’, Integers 8 (2008), \#A60.

MICHAEL D. HIRSCHHORN, School of Mathematics and Statistics, University of New South Wales, Sydney 2052, Australia
e-mail: m.hirschhorn@unsw.edu.au
JAMES A. SELLERS, Department of Mathematics, Pennsylvania State University, University Park, PA 16802, USA
e-mail: sellersj@math.psu.edu

[^0]: (C) 2009 Australian Mathematical Publishing Association Inc. 0004-9727/2009 \$16.00

