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Classification of Finite Group-Frames and
Super-Frames

Deguang Han

Abstract. Given a finite group G, we examine the classification of all frame representations of G and

the classification of all G-frames, i.e., frames induced by group representations of G. We show that the

exact number of equivalence classes of G-frames and the exact number of frame representations can

be explicitly calculated. We also discuss how to calculate the largest number L such that there exists an

L-tuple of strongly disjoint G-frames.

1 Introduction

A finite frame for a Hilbert space H is a set of vectors (not necessarily linearly indepen-
dent) that spans H. Unlike linearly independent bases, frames have redundancy but
still provide stable expansions for signals. In particular, some special finite frames

(e.g., tight, normalized tight, uniform, harmonic frames) could play an important
role in many applications, including internet coding and wireless communications
[8, 14, 17, 19]. We refer to [4–9, 14, 17, 19] for more information and recent devel-
opments on finite frames. Since many finite frames are associated with group rep-

resentations, in this paper we plan to investigate the classification problem for finite
group-frames and their associated frame representations.

The redundancy property of frames also allows us to design disjoint bases for
super-spaces to deal with multiplexing problems in signal transmissions. The con-
cept of disjoint frames (also called orthogonal frames) was first formally introduced

and systematically studied by R. Balan [2], and D. Han and D. Larson [16], and was
used in the investigation of orthogonal Weyl–Heisenberg frames, super wavelets and
sampling [1, 3, 10–13, 16]. Another purpose of this paper is to examine the “disjoint-
ness” properties for finite group-frames.

Recall that a frame for a separable Hilbert space H is a sequence {ϕn}n∈J of H

such that there exist A,B > 0 with the property that

A‖x‖2 ≤
∑

n∈J

|〈φn〉|2 ≤ B‖x‖2

holds for all x ∈ H. The optimal constants (maximal for A and minimal for B) are

called frame bounds. A tight frame is a frame with frame bound A = B. A frame is
called normalized tight if A = B = 1, and uniform if all the elements in the frame
sequence have the same norm.
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Let {ϕn}n∈J be a frame for H. The analysis operator is the mapping L : H → ℓ2(J)
defined by:

Lx =

∑

n∈J

〈x, ϕn〉en,

where {en} is the standard orthonormal basis for ℓ2(J). Set S = L∗L. Then we have

Sx =

∑

n∈J

〈x, ϕn〉ϕn, x ∈ H.

Thus S is a positive invertible bounded linear operator on H, which is called the frame

operator for {ϕn}.

A direct calculation yields

x =

∑

n

〈x, S−1/2ϕn〉S−1/2ϕn =

∑

n

〈x, S−1ϕn〉ϕn x ∈ H,

which implies that {S−1/2ϕn} is a normalized tight frame and {S−1ϕn} is also a

frame. The frame {S−1ϕn} is called the canonical (or standard) dual of {xn}.

When H = C
N (the N-dimensional complex Hilbert space), the analysis operator

L for a frame {ϕ j}M
j=1 with M-elements is an M × N matrix with row vector ϕ j =

(ϕ j1, . . . , ϕ jN ) on its j-th row position. Let ηk (k = 1, . . . ,N) denote its column
vectors. Then span{ηk : k = 1, . . . ,N} is the range space of L. The following is
evident:

Proposition 1 Let L be the analysis operator associated with a sequence {ϕ1, . . . , ϕM}
in C

N . Then

(i) {ϕ1, . . . , ϕM} is a frame if and only if the set of column vectors of L is linearly

independent.

(ii) {ϕ1, . . . , ϕM} is a normalized tight frame if and only if the set of column vectors

of L is an orthonormal set.

(iii) {ϕ1, . . . , ϕM} is a uniform frame if and only if the set of column vectors of L are

linearly independent and the row vectors have the same ℓ2-norm.

There is a natural way to define equivalent frames: two frames {ϕn} (for H) and
{ψn} (for K) are said to be equivalent (or, similar) if there exists a bounded invertible
operator T from H onto K such that Tφn = ψn for all n. From the discussion prior to
Proposition 1, we know that every frame is similar to a normalized tight one. Thus,

when we discuss the classification of frames, we can focus only on the normalized
tight ones. The reader will have no difficulty in phrasing the results in more general
settings.

Let {ϕ(ℓ)
j } j∈J be a normalized frame for Hilbert spaces Hℓ (ℓ = 1, . . . , k). We say

that
(

{ϕ(1)
j }, {ϕ(2)

j }, . . . , {ϕ(k)
j }

)

is a disjoint k-tuple if {ϕ(1)
j ⊕ · · · ⊕ ϕ(k)

j } j∈J is a
frame for the orthogonal direct sum space H1 ⊕ · · · ⊕ Hk, and is a strongly disjoint

k-tuple if it is a normalized tight frame for the direct sum space. A strongly disjoint
k-tuple is also called a superframe [2]. The following was proved in [16]:
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Proposition 2 Let Lℓ be the analysis operator for {ϕ(ℓ)
j }. Then

(i)
(

{ϕ(1)
j }, {ϕ(2)

j }, . . . , {ϕ(k)
j }

)

is a disjoint k-tuple if and only if

Range(L1) + · · · + Range(Lk) is a direct sum in ℓ2(J);

(ii)
(

{ϕ(1)
j }, {ϕ(2)

j }, . . . , {ϕ(k)
j }

)

is a strongly disjoint k-tuple if and only if

Range(L1), . . . ,Range(Lk) are mutually orthogonal subspaces of ℓ2(J).

Strongly disjoint frames have potential applications to data transmission involv-
ing multiplexing: suppose that we have a k-tuple strongly disjoint normalized tight
frames {ϕ(ℓ)

j }(ℓ = 1, . . . , k) and are planning to transmit k-signals ( f1, . . . , fk). By
using the strong disjointness property of frame bases, instead of transmitting all the

k-groups of data {〈 fℓ, ϕ
(ℓ)
j 〉}, it suffices to transform only one group of data {c j},

where c j =
∑k

ℓ=1〈 fℓ, ϕ
(ℓ)
j 〉. For more discussion about disjoint frames we refer to

[16, Ch. 2].

The following is a simple consequence of Proposition 1.

Corollary 3 Let M ≥ N and {ϕ(1)
j }M

j=1 be a normalized tight frame for C
N . Then

there exist normalized tight frames {ϕ(ℓ)
j }M

j=1 for H (ℓ = 2, . . . , [M/N]) such that

(

{ϕ(1)
j }, {ϕ(2)

j }, . . . , {ϕ([M/N])

j }
)

is a strongly disjoint [M/N]-tuple, where [M/N] is the integer part of M/N.

Proof Let L be the analysis operator for the frame {ϕ(1)
j }M

j=1. Then, by Proposi-
tion 1, the set of the N-column vectors of L is orthonormal. Let k = [M/N]N . Then
we can complete the M × N matrix L to a M × k matrix such that all the column

vectors of the new matrix are orthonormal. Thus, by to Proposition 1(ii) and Propo-
sition 2(ii), we can use the added columns to construct the other k − 1 normalized
tight frames for C

N .

One of our goals is to investigate whether the above result still holds if we restrict
ourselves to a special class of finite frames. In particular, we will examine the case
when the frames are induced by group representations. More precisely, for a given
finite group G and a unitary representation, we want to know how to explicitly calcu-

late the largest number k such that there exists a k-tuple of strongly disjoint G-frames
(frames induced by the group representation of G).

Let G be a group. Recall that a unitary representation π of G is a group homomor-
phism from G into the group U (Hπ) of unitary operators on some nonzero Hilbert

space Hπ . Then Hπ is called the representation space and dim Hπ is called the di-

mension of the representation. Two unitary representations π and ∆ are said to be
equivalent if there is a unitary operator U : Hπ → H∆ such that Uπ(g)U ∗

= ∆(g)
holds for every g ∈ G. An invariant subspace for a unitary representation π is a

closed subspace M such that π(g)M ⊆ M for all g ∈ G, or equivalently, the orthog-
onal projection P onto M commutes with every unitary operator π(g). Apparently,
the restriction πP of π to M is also a unitary representation of G, and is called a
subrepresentation.
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A unitary representation π for a group G is called a frame representation if there is
a vector ϕ ∈ H such that {π(g)ϕ : g ∈ G} is a normalized tight frame for H, and

in this case we say that {π(g)ϕ : g ∈ G} is a G-frame. We emphasize that from the
definition of frames, we treat a G-frame as a sequence indexed by the elements of G.
We also remark that the existence of a normalized tight frame {π(g)ϕ : g ∈ G} is
equivalent to the existence of an arbitrary frame {π(g)ψ : g ∈ G}. In fact, let S be

the analysis operator for an arbitrary frame {π(g)ψ : g ∈ G}. Then S commutes
with every π(g), and thus {π(g)S−1/2ψ : g ∈ G} is a normalized tight one. Frame
unitary representations were introduced in [16, Ch. 6], and were investigated more
systematically and more generally in [10]. In particular, frame representations play

an interesting role in studying Gabor frames and semi-orthogonal wavelet frames
[10–12, 15]). Some recent results on frame representation of abelian groups can be
found in [1].

Any G-frame is clearly a uniform frame. When G is a cyclic group, a G-frame is

called a general harmonic frame in [8], and it is called a geometrically uniform frame in
[9] when G is abelian. In Section 2 we will give a complete classification for G-frames
and frame representations. In particular, we discuss how to calculate the cardinality
of the set of all the equivalence classes of G-frames (resp., frame representations).

Section 3 is devoted to studying strongly disjoint G-frames.

2 Classification of Group-Frames and Frame Representations

It is known [16] that two frames (indexed by the same set J) are equivalent if and
only if their analysis operators have the same range space in ℓ2(J). This implies that
there exists a one-to-one correspondence between all the equivalence classes of fi-
nite frames with M-elements for C

N and all the N-dimensional orthogonal projec-

tions in C
M . Similarly, there is a one-to-one correspondence between all the equiva-

lence classes of uniform normalized tight frames with M-elements in C
N and all the

N-dimensional orthogonal projections P in C
M such that ‖Pe j‖ ( j = 1, . . . ,M) are

equal, where {e j} is the standard orthonormal basis of C
M . Therefore, we have the

following:

Proposition 4 If M = N, then there is only one equivalence class of frames for C
N

with M elements. If M > N, then there are infinitely many equivalence classes of frames

for C
N (resp., uniform normalized tight frames) with M-elements.

Proof We only need to point out that when M > N , there are infinitely many
equivalence classes of uniform normalized tight frames for C

N with M-elements. In

fact, let {ϕ1, . . . , ϕM} be a uniform normalized tight frame for C
N with M > N .

Then {tϕ1, . . . , ϕM} would be a uniform normalized tight frame when |t| = 1, and
{tϕ1, . . . , ϕM} is not equivalent to {ϕ1, . . . , ϕM} for t 6= 1. This can be checked by
comparing L1L∗

1 with Lt L
∗
t , where Lt is the corresponding analysis operator.

The above simple fact suggests that if we are looking for finite classifications, we
need either to relax the definition of equivalence or to restrict ourselves to more spe-
cific frames. In this section we restrict our discussion to group frames.
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Let S be a set of bounded linear operators on a Hilbert space H. We use S ′ to
denote the commutant of S, which is the algebra of all the bounded linear operators

on H commuting with every number in S. The algebra generated by a representation
π is denoted by Aπ .

In what follows we always assume that G is a finite group of order M and H = C
N

is a finite-dimensional Hilbert space. Recall that a finite sequence is a frame for C
N

if and only if it spans the space, and that the frame operator for a G-frame {π(g)ϕ :
g ∈ G} always commutes with every π(g). Thus the following is evident:

Proposition 5 The following are equivalent:

(i) π is a frame representation;

(ii) there is a vector ψ ∈ H such that {π(g)ϕ : g ∈ G} is a frame for H;

(iii) there is a vector ψ ∈ H such that span{π(g)ϕ : g ∈ G} = H.

Therefore every unitary representation of a finite group G is a finite direct sum of

frame representations. This is not true for infinite groups [10].
The most basic model for unitary representations is the so-called left regular rep-

resentations λ of G on ℓ2(G), λ(g)eh = egh, h ∈ G, where {eh : h ∈ G} is the standard
orthonormal basis for ℓ2(G). Similarly, the right regular representation ρ is defined by

ρ(g)eh = ehg−1 , h ∈ G. A very useful fact is that the commutant of Aλ is Aρ.
We first point out that classifying G-frames is different from classifying frame rep-

resentations. In fact this can be easily seen from the following result:

Proposition 6 (i) If π(g)ϕ is a G-frame for H, then the range space of its analysis

operator is invariant under λ(G).

(ii) Every frame representation π is equivalent to a subrepresentation λP for some

orthogonal projection P ∈ λ(G) ′.
(iii) Let λP and λQ be two subrepresentations of the left regular representation of

G. Then they are equivalent if and only if there is an operator V ∈ λ(G) ′ such that

V ∗V = P and VV ∗
= Q, where V ∗ is the adjoint operator of V .

The operator V in (iii) is an isometry when it is restricted to the range space of P

and is zero on the orthogonal complement of P. An operator with such a property is
called a partial isometry in operator theory. The two projections P and Q satisfying
the condition in (iii) are called equivalent projection in the algebra λ(G) ′.

Proof For (i) and (ii) see [16]. For the sufficency of (iii), if we also regard V as
a unitary from the range space of P onto the range space of Q, then it induces the
unitary equivalence between λP and λQ since

VλP(g) = Vλ(g)P = λ(g)V P

= λ(g)V (V ∗V ) = λ(g)(VV ∗)V

= λ(g)QV = λQ(g)V.

Secondly, assume that λP and λQ are equivalent, and let U be a unitary operator from
the range of P onto the range of Q such that UλP(g) = λQ(g)U holds for every g ∈ G.
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We define an operator V on ℓ2(G) by letting it agree with U on Pℓ2(G) and be zero
on P⊥ℓ2(G). Then it is easy to check that V commutes with λg for all g, and thus

V ∈ λ(G) ′. Clearly VV ∗
= Q and V ∗V = P.

Corollary 7 The cardinality of the set of all the equivalence classes of frame repre-

sentations is at most equal to the cardinality of the set of all the equivalence classes of

G-frames. The equality holds when G is abelian.

Proof The first statement follows from Proposition 6(iii). For the second statement,
assume that G is abelian. Then λ(G) ′ is commutative. Thus VV ∗

= V ∗V for any V ∈
λ(G) ′, which implies that two different projections in λ(G) ′ can never be equivalent.

By Proposition 6, the number of equivalence classes of G-frames for C
N is exactly

the number of orthogonal projections in the algebra Aρ generated by the right regular
representation ρ, and the number of equivalence classes of frame representations of
G is exactly the number of equivalence classes of the orthogonal projections in Aρ.

To find these numbers we need to recall a few more definitions and results about
group representations. A unitary representation of a group G is called irreducible if
π(G) has no nontrivial invariant closed subspaces, which is equivalently to say that
π(G) ′ = CI, where I is the identity operator of H. If π = π1 ⊕ · · · ⊕ πk such that

π1, . . . , πk are equivalent irreducible representations, then we call π an irreducible

representation of multiplicity k. It is well known that for every finite group G, there
are only a finite number of equivalence classes of irreducible representations, and this
number is equal to the number of conjugacy classes of elements in G. We need the

following two lemmas. The second one is obvious and the first one can be found in
most standard books, cf. [18].

Lemma 8 If π = π1⊕· · ·⊕πk is the direct sum of pairwisely inequivalent irreducible

representations π j of G, then Aπ = Aπ1
⊕ · · · ⊕ Aπk

.

Lemma 9 Let π = π1 ⊕ · · · ⊕ πk be the direct sum of equivalent representations

π j . Then the number of n-dimensional projections in Aπ is the same as the number of

kn-dimensional projections in Aπ1
.

A set π1, . . . , πk of irreducible representations of a group G is called a complete

set of irreducible representations of G if they are pairwisely inequivalent and every

irreducible representation of G is equivalent to one of them. Given a group G of
order M, let π1, . . . , πk be a complete set of irreducible representations of G with
representation dimensions m1, . . . ,mk. Then, by Burnside’s theorem [18], m j divides
M and m2

1 + · · · + m2
k = M.
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Theorem 10 Let G be a finite group with |G| = M, and let N ≤ M.

(i) If there is a G-frame for C
N , then there exist integers 0 ≤ a j ≤ m j such that

N =
∑k

j=1 a jm j .

(ii) If N =
∑k

j=1 a jm j for a selection of integers 0 ≤ a j ≤ m j , and if there exists

some j0 such that 0 < a j0
< m j0

, then there are infinitely many equivalence classes of G-

frames for C
N . Otherwise, there are only finitely many equivalence classes of G-frames,

and the number of equivalence classes of G-frames for C
N is exactly the cardinality of the

set of all the possible selections (a1, . . . , ak), a j ∈ {0,m j}, such that N =
∑k

j=1 a jm j .

Proof We use the standard decomposition theorem for the right regular represen-

tation [18]. We can decompose ℓ2(G) into the orthogonal direct sum

ℓ2(G) =

k
∑

j=1

m j
∑

ℓ=1

⊕M
j
ℓ

such that each M
j
ℓ is an m j-dimensional invariant subspace of ρ(G), and the restric-

tion ρ
j
ℓ of ρ to M

j
ℓ is irreducible and equivalent to π j .

Let ρ j =
∑m j

ℓ=1 ⊕ρ
j
ℓ . Then ρ = ρ1 ⊕· · ·⊕ρk. By Lemma 8, Aρ = Aρ1

⊕· · ·⊕Aρk
.

By Lemma 9, every projection in Aρ j
has dimension am j for some integers 0 ≤ a ≤

m j . Moreover, the number of am j-dimensional projections in Aρ j
is the number of

a-dimensional projections in Aρ
j

ℓ
. Now we prove (i) and (ii).

(i) Assume that {π(g)ϕ : g ∈ G} is a frame for C
N . Let P be the orthogonal

projection onto the range space of the analysis operator of a G-frame for C
N . Then

P ∈ Aρ is an N-dimensional projection. Write P =
∑k

j=1 ⊕P j with P j ∈ Aρ j
. So, by

the previous discussion, for each j, there exists an integer a j such that 0 ≤ a j ≤ m j

and P j is a projection of dimension a jm j Therefore N =
∑k

j=1 a jm j .

(ii) Now assume that N =
∑k

j=1 a jm j for a selection of integers 0 ≤ a j ≤ m j .
We will see how many N-dimensional projections in Aρ we can define. Note that

every such projection has the form P =
∑k

j=1 ⊕P j with P j being a projection in
Aρ j

. We let P j = 0 if a j = 0 and P j = I j if a j = m j , where I j is the identity

matrix on the m2
j -dimensional space

∑m j

ℓ=1 ⊕M
j
ℓ . If 0 < a j < m j for some j, then we

have infinitely many a jm j-dimensional projections in Aρ. In fact, note that ρ
j
ℓ is an

m j-dimensional irreducible representation. It follows that Aρ
j

ℓ
is the algebra of all the

m j ×m j matrices. Thus it has infinitely many a j-dimensional projections. Therefore
we have infinitely many a jm j-dimensional projections in Aρ j

. Let P j be any one of

them. Then P =
∑k

j=1 ⊕P j is an N-dimensional projection in Aρ.

From the above argument, it is clear that there are infinitely many N-dimensional
projections in Aρ if 0 < a j0

< m j0
for some j0. The second part follows from the

above argument and part (i) immediately.

https://doi.org/10.4153/CMB-2007-008-9 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2007-008-9


92 D. Han

From the proof of the above theorem we can see that there is a one-to-one corre-
spondence between the equivalence classes of G-frames of C

N and the set

{(a1, . . . , ak) : N =

k
∑

j=1

a jm j , 0 ≤ a j ≤ m j}.

We will use this fact in the next section.

Similarly we have the following classification theorem for frame representations:

Theorem 11 Let G be a finite group and N ≤ M = |G|. Then the number of equiv-

alence classes of all the N-dimensional frame representations of G is exactly the number

of the integer vectors (a1, . . . , ak) (0 ≤ a j ≤ m j) such that
∑k

j=0 a jm j = N.

Proof Let P and Q be two N-dimensional orthogonal projections in Aρ. We use

the decomposition of Aρ as in the proof of Theorem 10: P = P1 ⊕ · · · ⊕ Pk, Q =

Q1 ⊕ · · · ⊕ Qk, where {P j} and {Q j} are two families of orthogonal projections in
Aρ j

. By re-arranging the order if necessary, we have that P and Q are equivalent in
Aρ if and only if P j and Q j are equivalent in Aρ j

( j = 1, . . . , k). Using Lemma 9 and

the fact that Aπ is the full-matrix algebra when π is irreducible, we have that P j and
Q j are equivalent in Aρ j

if and only if the have the same dimension.

Let a j , b j be nonnegative integers such that

dim Range(P j) = a jm j and dim Range(Q j) = b jm j .

Then N =
∑k

j=1 a jm j =
∑k

j=1 b jm j . From the above argument we have that P and
Q are equivalent in Aρ if and only if (a1, . . . , ak) = (b1, . . . , bk). Hence the proof is
complete.

Corollary 12 Let G be a finite group of order M.

(i) The cardinality of the set of all the equivalence classes of G-frames on C
N and the

cardinality of the set of all the equivalence classes of the N-dimensional frame represen-

tations are the same only when we have finitely many equivalence classes of G-frames

for C
N .

(ii) If G is abelian, then there are
(

M
N

)

number of equivalence classes of G-frames on

C
N and the same number of N-dimensional frame representations. In particular, there

are exactly
(

M
N

)

classes of general harmonic frames of M-elements for the N-dimensional

complex space C
N .

Proof Part (i) follows from Theorems 10, 11 and the fact that if P =
∑k

j=0 ⊕P j

and Q =
∑k

j=0 ⊕Q j with P j ,Q j being either 0 or I j , then P and Q can never be
equivalent unless they are the same projection. Part (ii) follows from (i) and the fact
that m j = 1 for all j when G is abelian.
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Example 1 Let G = S3 be the permutation group of three elements. Then the di-
mensions of the irreducible representations are m1 = m2 = 1 and m3 = 2. Therefore

the number of the equivalence classes of G-frames on C
N is 2 when N = 1 or 5,

∞ when N = 2, 3, or 4 and 1 when N = 6. The number of the equivalent frame
representations of G is 2 when N = 1, 2, 3, 4, 5 and 1 when N = 6.

3 Disjoint Group-Frames

Let G be a finite group of order M. In this section we discuss the existence of all the
possible strongly disjoint L-tuple G-frames on C

N . For this purpose, let π1, . . . , πk

be a complete set of irreducible representations of G with representation dimensions
m1, . . . ,mk. We have seen in the last section the importance of this set in classifying
the G-frames for C

N . We will see that this set also determines the largest number L

such that there exists a strongly disjoint L-tuple of G-frames for C
N . This number is

called the G-frame disjointness index (depending on N)

For two integer vectors ~a = (a1, . . . , ak) and~b = (b1, . . . , bk), we write ~a ≤ ~b if
a j ≤ b j for j = 1, . . . , k. The N-th level decompostion index of ~m = (m1, . . . ,mk) is

the largest integer L such that there exist integer vectors~0 ≤ ~a(n)
= 〈a(n)

1 , . . . , a(n)

k 〉
(n = 1, 2, . . . , L) such that

∑k
j=1 a(n)

j m j = N for 1 ≤ n ≤ L and
∑L

n=1~a
(n) ≤ ~m.

Theorem 13 The G-frame disjointness index is equal to the decomposition index of ~m.

Proof We adopt the notations of the decomposition of ℓ2(G) in the proof of Theo-

rem 10.
We first need to show that if

(

{π1(g)ϕ1}, . . . , {πL(g)ϕL}
)

is a list of strongly dis-
joint L-tuple G-frames on C

N , then there exist integer vectors

~0 ≤ ~a(n)
= 〈a(n)

1 , . . . , a(n)

k 〉

(n = 1, 2, . . . , L) such that
∑k

j=1 a(n)
j m j = N for 1 ≤ n ≤ L and

∑L
n=1~a

(n) ≤ ~m.

In fact, let P(n) be the orthogonal projection from ℓ2(G) onto the range space of
{πn(g)ϕn}, (n = 1, . . . , L). Then P(n) is an N-dimensional projection in Aρ. Thus,

by the proof of Theorem 10, there exist 0 ≤ a(n)
j ≤ m j such that N =

∑k
j=1 a(n)

j m j

and P(n)
=

∑k
j=1 ⊕P(n)

j , where P(n)
j is an a(n)

j m j-dimensional projection on the sub-

space
∑m j

ℓ=1 ⊕M
j
ℓ . The strong disjointness of the frames implies that P(n)

j ⊥ P(n ′)
j if

n 6= n ′. Thus
∑L

n=1 a(n)
j m j ≤ m2

j which implies that
∑L

n=1~a
(n) ≤ ~m.

Secondly, we need to show that if there are integer vectors

~0 ≤ ~a(n)
= 〈a(n)

1 , . . . , a(n)

k 〉, (n = 1, 2, . . . , L)

such that
∑k

j=1 a(n)
j = N for 1 ≤ n ≤ L and

∑L
n=1~a

(n) ≤ ~m, then we can find a

strongly disjoint L-tuple of G-frames on C
N . It suffices to show that there exist L

mutually orthogonal N-dimensional projections in Aρ. For each fixed 1 ≤ j ≤ k,

using the fact
∑L

n=1 a(n)
j ≤ m j and the structure of Aρ j

(where ρ j is as in the proof of
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Theorem 10), we can construct projections P(n)
j ∈ Aρ j

such that P(n)
j has dimension

a(n)
j m j and P(n)

j ⊥ P(n ′)
j when n 6= n ′. Now let P(n)

=
∑k

j=1 ⊕P(n)
j . Then P(n) ∈ Aρ

is an N-dimensional projection and {P(n) : n = 1, . . . , L} are mutually orthogonal.

Remark The power of Theorem 10 and Theorem 13 is that without explicitly con-
structing any inequivalence classes of G-frames or any strongly disjoint G-frames, we
can easily calculate the number of the equivalence classes and the disjoint G-frame

index if we know ~m. In some simple cases, it is not very hard to find the num-
ber of all the conjugacy classes of a group G and then use the property m j |M and
∑k

j=1 m2
j = M to find ~m = 〈m1, . . . ,mk〉, where M is the order of G. In Example

1 we have ~m = 〈1, 1, 2〉. So, from Theorem 13, we can easily find out that the G-
frame disjointness index is 2 when N = 1; 3 when N = 2; 2 when N = 3; 1 when
N = 4, 5, 6.

From the proof of Theorem 13, we also have

Corollary 14 Let G be a finite group with |G| = M and L be its G-frame disjointness

index. If {π1(g)ϕ1 : G ∈ G} is a normalized tight frame for C
N , then there exist L − 1

G-frames {π j(g)ϕ j : g ∈ G} ( j = 2, . . . , L) such that {∑L
j=1 ⊕π j(g)ϕ j : g ∈ G} is a

normalized tight frame for direct space
∑L

j=1 ⊕C
N .

In general, those representations π j in Corollary 14 are different. This can be seen
clearly from the following result, which was proved in [16].

Proposition 15 Let {π(g)ϕ : g ∈ G} and {π(g)ψ : g ∈ G} be two frames for C
N ,

and let P and Q be the orthogonal projections onto the range spaces of their analysis

operators, respectively. Then {π(g)ϕ : g ∈ G} and {π(g)ψ : g ∈ G} are strongly

disjoint if and only if P ⊥ Q and P and Q are equivalent in A ′
ρ. In particular, if G is

an abelian group, then {π(g)ϕ : g ∈ G} and {π(g)ψ : g ∈ G} can never be strongly

disjoint (in fact they are always equivalent).

Note that group-frames are special uniform frames. Therefore for each M ≥ N ,
we can construct [M/N] strongly disjoint uniform normalized tight frames for C

N

(by using Corollary 14 in the case that G is a cyclic group of order M). However, in

general we still do not know the answer to the following question:

Given a uniform normalized tight frame {ϕ(1)
1 , . . . , ϕ(1)

M } for C
N , what is the

largest number L such that there exist L − 1 uniform normalized tight frames

{ϕ( j)
1 , . . . , ϕ

( j)
M } for C

N such that {
∑L

j=1 ⊕ϕ
( j)
1 , . . . ,

∑L
j=1 ⊕ϕ

( j)
M } is a normal-

ized tight frame for
∑L

j=1 ⊕C
N ?

We expect, as in the normalized tight frame case, that L = [M/N]. If we rephrase
the above question in terms of projections, then the problem becomes: given an
N-dimensional projection P1 in CM such that P1e j ( j = 1, . . . ,M) have the same
norm, is it always possible that we can find [M/N]−1 N-dimensional projections in
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C
M such that {P j : j = 1, . . . , [M/N]} are mutually orthogonal, and P jek have the

same norm for all j, k? A naive idea is to prove this by using the step-down method:

for any projection P such that ‖Pe1‖ = · · · = ‖PeM‖, there exists a non-trivial sub-
projection Q of P satisfying ‖Qe1‖ = · · · = ‖QeM‖. However, this statement is false
in general. Peter Casazza and J. Kovačević constructed a counterexample [8] for a dif-
ferent purpose in the real case, but their example does not serve as a counterexample

for the complex case. Here is an example for the complex case:

Example 2 Let P be the orthogonal projection from C
6 onto the 2-dimensional

space spanned by

ξ = (1/
√

6, 1/
√

6, 1/
√

6, 1/
√

6, 1/
√

3, 0),

η = (1/
√

6,−1/
√

6, i/
√

6,−i/
√

6, 0, 1/
√

3).

Then ‖Pe1‖ = · · · = ‖Pe6‖ = 1/
√

3. If Q is a one-dimensional subprojection of P

such that ‖Qe1‖ = · · · = ‖Qe6‖, then there is a vector aξ + bη such that all of its
components have equal modules. In particular, we have |a + b| = |a−b| = |a + ib| =

|a − ib|, which implies a = 0 or b = 0. Thus a = b = 0, which is a contradiction.
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