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Abstract. A simple nonlinear model is introduced here to describe the rotational evolution of
main sequence cool (FGKM) stars. It is formulated only in terms of the ratio of a star’s rotation
period, P , to its convective turnover timescale, τ , and two dimensionless constants which are
specified using solar- and open cluster data. The model explains the origin of the two sequences,
C/fast and I/slow, of rotating stars observed in open cluster color-period diagrams, and describes
their evolution from C-type to I-type through the rotational gap, g, separating them. It explains
why intermediate-mass open cluster stars have the longest periods, while higher- and lower-mass
cool stars have shorter periods. It provides an exact expression for the age of a rotating cool
star in terms of P and τ , thereby generalizing gyrochronology. The possible range of initial
periods is shown to contribute upto 128 Myr to the gyro age errors of solar mass field stars. A
transformation to color-period space shows how this model explains some detailed features in
the color-period diagrams of open clusters, including the shapes and widths of the sequences,
and the observed number density of stars across these diagrams.
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1. Introduction
This paper is a condensed version of Barnes (2010), which introduces a simple nonlinear

model to describe the rotational evolution of cool stars, and solves it to provide an
improved understanding of their spin-down. The convective turnover timescale plays a key
role in this model. The theoretical context for this work can be traced to Parker (1958),
Schatzman (1962), Weber & Davis (1967), Mestel (1968), Kawaler (1988), MacGregor &
Brenner (1991), Chaboyer et al. (1995), and Noyes et al. (1984).

The immediate context for this work is provided by Barnes & Kim (2010), who showed
that the fast/C- and slow/I limits of stellar rotation, exemplified by two corresponding
sequences of stars in open cluster color-period diagrams, (identified and named by Barnes
2003), can be described by

dP

dt
=

{
kC P /τ , for early times/C sequence
τ /kI P , for late times/I sequence,

(1.1)

where P, t, τ are, respectively, the rotation period, age, and convective turnover timescale
in cool stars, and kI = 452Myr/d and kC = 0.65d/Myr are two dimensionless constants.
This work, described in detail in Barnes (2010), combines the two tines of that relation-
ship into the period evolution equation,

dP

dt
=

{
kI P

τ
+

τ

kC P

}−1

, (1.2)

and summarizes its consequences for open cluster color-period diagrams.
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Figure 1. The τ − P plane is split into two regions C/(lower-right) and I/(upper left) by the
straight line P = τ/

√
kI kC (diagonal) where dP/dt is maximum. Note (1) that this line is nec-

essarily cut by the initial period line, and (2) the locations of the individual stellar trajectories.

2. Consequences for the τ − P plane
dP/dt approaches zero for both P/τ → 0 and P/τ → ∞, and has a maximum of

0.02d/Myr when P = τ/
√

kI kC . Consequently, as displayed in Fig. 1, the τ −P plane is
split into two regions, lower-right/C and upper-left/I by the diagonal (Rotational gap)
line, where the model predicts a low number density of stars.

3. Generalized gyro age
Equation (1.2) can be immediately integrated to provide the gyro age, t, of a star:

t =
τ

kC
ln

(
P

P0

)
+

kI

2τ
(P 2 − P 2

0 ), (3.1)

where t is returned in Myr when P and τ are specified in d. The gyro ages are thus
generalized with respect to the original ones of Barnes (2007), where only the I-type
stars were considered. Initial period variations can be shown to contribute an additional
error of upto 128 Myr for a solar-mass star.

4. Solution in τ − P/P0 plane
The solutions to the period evolution equation are conveniently displayed in the τ −

P/P0 plane (Fig. 2) (see Barnes 2010 for the t−P plane), and are specified implicitly by

τ =
kC t ±

√
(kC t)2 − 2kI kC (P 2 − P 2

0 )ln(x)
2ln(P/P0)

. (4.1)

Isochrones for specified ages - 100 Myr and 1 Gyr are displayed - have a higher-mass
branch where periods increase with τ , and a lower-mass branch where they decline with
τ . Consequently, in the context of this model, open cluster stars are expected to have a
maximum rotation period at an intermediate mass, and short rotation periods for both
higher- and lower-mass stars. The 100 Myr → 1 Gyr trajectories of 1.25M�, 1M�, and
0.3M� models are also indicated.

5. Rotational gap
The τ − P plane of Fig. 1 is easily transformed into the color-period plane of observa-

tions, and this transformation warps the diagonal line of maximum dP/dt in the former
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Figure 2. The solution to the period evolution equation in the τ−P plane. Note the ascent with
τ of the higher-mass branch and the descent of the lower-mass branch, and the 100 Myr→1 Gyr
trajectories for illustrative stars. (See Barnes 2010 for the dual t − P plane.)

into the curved diagonal line marked in Fig. 3 for B − V color. (Other colors in the set
[UBV RIJHK] can be obtained by using the table provided in Barnes & Kim 2010.)
As expected from the theory, we observe a remarkable paucity of stars in the vicinity
of this (Rotational gap) line in both panels, the left displaying the young (100-150 Myr)
Pleiades (Hartman et al. 2010) and M35 (Meibom et al. 2009) open clusters, and the right
displaying the older (550 Myr) M37 open cluster (Hartman et al. 2009). The division of
rotating stars into fast/C- and slow/I sequences proposed by Barnes (2003) is also clearly
visible in both panels.

6. Isochrones
One can also calculate isochrones using an appropriate range of initial periods, and we

display two panels corresponding to (1) the classic Hyades/Coma Ber (600 Myr) data of
Radick et al. (1987; 1990) and (2) the Solar datum/age.

The left panel shows the fidelity with which the position and dispersion of the obser-
vations can be accounted for, including the downturn for the coolest stars, which shows
them to be of C-type. Note the absence of stars at the location of the rotational gap.
The right panel shows the convergence of periods expected at solar age. It also displays

Figure 3. A paucity of stars is expected and observed at the C/I boundary (rotational gap)
region (dotted pink lines) because dP/dt is at a maximum here. The fast/C- and slow/I sequences
proposed by Barnes (2003) are clearly visible. Left: The (100-150 Myr) Pleiades/M35 rotation
period data. Right: The (550 Myr) M37 period data.

https://doi.org/10.1017/S174392131101578X Published online by Cambridge University Press

https://doi.org/10.1017/S174392131101578X


468 S. A. Barnes

Figure 4. Left: Isochrones for 600 Myr, overlaid on the Hyades-Coma Ber rotation period data.
The model reproduces the tight rotational sequence for F- and G stars, the increasing dispersion
for K stars, and the fast C-type rotation for the M stars. (The dotted pink line is the calculated
rotational gap.) Right: The Solar datum is overlaid on the theoretical B − V Color-Period
isochrones for solar age, 4.57 Gyr. Note the very tight I sequence expected for all masses but the
lowest. The asymptotic relationship P →

√
t ×

√
2τ/kI (dotted black line) is also displayed.

the asymptotic relationship P →
√

t ×
√

2τ/kI , showing the connection to the work of
Skumanich (1972), and the mass dependence expected for late times.
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