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THE RADII OF POLYHEDRONS 

T. C. ENNS 

1. Introduction. Let P be a polyhedron (i.e., a 3-dimensional poly-
tope). A path in P is defined as a sequence of edges (xi, x2), . . . , (#<_i, #<), 
(xiy Xi_i), . . . , (Xfl-i, xn) where (xu xi+i) denotes the edge with endpoints 
Xi and Xi+i. Define the length \A\ of a path A to be the number of edges of 
said path. The distance between any two vertices x and y of P is defined 
to be the least length of all paths of P between x and y. For the purposes 
of this paper, if x and y lie on a particular path A, the distance between x 
and y along A will be defined to be the length of the segment of A between 
x and y. The radius of P is defined to be the smallest integer r for which 
there exists a vertex v of P such that the distance from v to any other 
vertex of P is at most r. It has been conjectured by Jucovic and Moon 
(see [1]) that the maximum radius among all polyhedrons with n vertices 
{n ^ 6) is [n/4: + 1] where the brackets about the value indicate the 
greatest integer less than or equal to said value. (Note that for n = 4 or 
5, the maximum radius is one.) This conjecture is resolved by the follow
ing theorem. 

THEOREM. Given any integer n ^ 6, the greatest value of the radii of all 
convex polyhedrons with n vertices is [»/4 + 1]. 

It is easily shown that, given any integer n ^ 6, there exists a poly
hedron with radius [w/4 + 1]. (This is done at the end of the introduction.) 
The difficult part of the proof is in showing that no polyhedron with 
n ^ 6 vertices has radius greater than [w/4 + 1]. 

The basic idea of the proof of this latter part is to show that if a poly
hedron P has radius r, it must have at least 4r — 4 vertices. This is done 
using the following two lemmas. 

LEMMA 1. Let P be a polyhedron and x and y be vertices of P. Then there 
exist three disjoint {except at x and y) paths A, B, and C connecting x and y 
with the following property: Given any vertex v of {A \J B KJ C)\{x, y}, 
v is connected to some vertex w d {x, y) of one of the paths A, B, or C to which 
v does not belong by a path of P disjoint from AKJ B\J C except at v and w. 

LEMMA 2. Let P be a polyhedron of radius r and let x and y be vertices of P 
of distance at least r apart. Let paths A, B, and C connect x and y as in 
Lemma 1. Then there must be enough vertices of P in addition to those of 
Ay B, and C to total at least \r — 4. 
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Section 2 will prove Lemma 1 and Section 3 will prove Lemma 2. The 
following definitions and theorems will be used in these proofs. 

The image G of the projection of a polyhedron P onto the plane of one 
of its faces is called a Schlegel diagram of the polyhedron. A graph G is 
called 3-connected if it cannot be disconnected by the removal of any two 
of its vertices. 

THEOREM (Whitney-Menger). A graph G is 3-connected if and only if 
any two vertices of G are connected by three paths in G which are disjoint 
except at their endpoints. 

THEOREM (Steinitz). A planar graph G is isomorphic to the Schlegel 
diagram of some convex polyhedron P if and only if G is 3-connected. 

Using Steinitz's theorem, it is simple to prove that, given any integer 
n ^ 6, there exists a poly tope P with radius [w/4 + 1]. Note that the 
radius of P is the same value as the radius of any of its Schlegel diagrams. 
It then suffices to exhibit a 3-connected graph G with exactly n vertices 
and radius [w/4 + 1]. If n is even, a graph as illustrated in figure 1 may 
be used. (This is the Schlegel diagram of a prism with two n/2-gonal faces 
and is taken after [1].) If n is odd, a graph as indicated by figure 2 may 
be used. 

FIG. 1 FIG. 2 

2. Proof of lemma 1. This is done by noting that between any two 
vertices of P there are three disjoint paths and then constructing the 
paths mentioned in Lemma 1 from these paths. Let G be a Schlegel 
diagram of a convex polyhedron P and x and y be distinct vertices of G. 
Then by the 3-connectedness of G and the Whitney-Menger theorem 
there exist three paths A', B', and C which connect x and y and which 
are pairwise disjoint except where they all meet x and y. Pick one of 
these paths, say B'. If each vertex of B' is connected to A' KJ C by a 
path not intersecting B' at other than an endpoint, then let B = B'. 
Otherwise, let z be the first vertex, going from x to y on Bf, which is not 
connected to A' or C by a path not intersecting B! except at an endpoint. 
Let A" be the region enclosed by B' and A' but not including B' and A' 
and let C" be the region enclosed by B' and C but not including B' and 
C . Then let Kx be the set of all vertices and edges of G connected to z by 
paths in A" which intersect B! at an endpoint and no vertices other than 
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their endpoints. Define K2 similarly with respect to B', C , and C". Let 
W\ and w2 be the vertices of K\ and K2 respectively lying on B' and closest 
to x along B'. Let Wz and W\ be defined similarly with respect to K\ and 
K2 respectively and y. 

Note that any of Wi, w2j w3, or w± may be z, but at least one, say W\ or 
Wz, must be distinct from z. Let P / be a path in i£i connecting W\ and w3 

(at least one such path exists because paths in K\ exist connecting z to 
W\ and Wz, and the union of a pair of such would do). If some path K of 
Ki goes outside the region bounded by P / and the segment of Br between 
Wi and Wz then let e a n d / be the vertices where K or some extension of K 
in i£i meets P ' . By replacing e/on P / by k or its extension one can denote 
a new path P / ' as indicated by the heavy line in figure 3. Note that the 

. - - . A' 
k 

' / I \ 

y Wz W\ x 

FIG. 3 

region then enclosed by and including P / ' and the segment wxWz of B' 
contains the region so determined by the previous path P / . One can then 
so construct a path Pi which is maximal in the sense that it includes or 
encloses (along with W\Wz) all the paths in Kx. Let P 2 be similar relative 
to the vertices of K2. 

Assume first that W] or w2j say wu is not the vertex z nor the vertex 
adjacent to z on zx C B'. If z is on Ply replace the segment of B' between 
z and W\ by the segment of P\ between z and W\, otherwise replace the 
segment of B' between W\ and Wz by Pi . Then P i has the property that 
any vertex / of it is connected to C by a path not intersecting B'. To see 
this, first note that the segment of B' which has been replaced has, by the 
selection of z, at least one vertex z' which is connected to C by a path not 
intersecting B''. If / G Pi is not connected to s by a path not intersecting 
Pi , let xi and x3 be the vertices of Pi closest to W\ and wz respectively 
(along Pi) to which t is connected by some paths Di or D2 intersecting Pi 
only at their endpoints (see figure 4). Then any path 5 where {xi, x3) <£ S, 
which connects t to B' must intersect Di or D2 as indicated in figure 4. 
Thus some path between t and W\W2 C B' not intersecting Pi between X\ 
and Xz exists (as indicated by the dark line in figure 4) a contradiction to 
the assumption that none such exists. Therefore / is connected to z only 
by paths containing xz or xi. But then the removal of Xi and Xz disconnects 
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LPi 

w* ' ')z'w\ 

FIG. 4 

/ from B' and so contradicts the 3-connectedness of the graph of P . 
Therefore such a / is connected to B' by a pa th not intersecting P i . This 
pa th can be connected to a segment of WiWZ with z' (given above) as an 
endpoint. These two pa ths combined, along with the previously mentioned 
pa th connecting z' to C give the desired pa th connecting / to C bu t not 
intersecting (B'/w\W%) VJ P i except a t its endpoints as indicated by the 
dot ted line in figure 4. From here on, a pa th " n o t intersecting" another 
shall mean not meeting it except a t the first pa th ' s endpoint . 

If neither W\ nor w2 are as assumed above, then either wz or w4, say wZj 

is dist inct from z, and a t least as close as the other (along B') to y. If 
some pa th not intersecting B' connects w%Wi to C a si tuation such as 
t ha t in the previous paragraph follows. If not, then some pa th R disjoint 
from B' from a vertex 5 on wzz to a vertex q' on wzy or w^x on B' exists. 
(Otherwise, G would not be 3-connected, i.e., removal of wz and one of W\ 
or w2 would disconnect G.) Assume qf G w^y C B' with no such on W\X G 
B'. Pick the vertex s jus t mentioned to be the closest such to W\ along B' 
and then q' G B' the closest such along B' to y which is connected to 5 by 
a pa th R disjoint from B'. Make R maximal in the way t h a t P i and P 2 

were made maximal. If some vertex v on wzq
r C B' is connected to A' by 

a pa th not intersecting B', then replace sq' on B' by R (see figure 5) . 
Note t h a t every vertex of R VJ swi mus t be connected to ? ! W g^ by a 
pa th not intersecting R W swi by an a rgument similar to the one con-

- - ^ . A' 

P i \ 

V Wz J W\ 

R 

FIG. 5 
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cerning the vertices of P i previously. Replacing q's by R on B' y note that 
any vertex of R \J sw\ can then be connected to A' by a path not inter
secting the new B'. If a vertex such as v above does not exist, continue 
constructing paths as above (making them maximal and alternating on 
the sides of B') until a vertex q' of one of them on B' comes between y 
and such a vertex v on B'. Note that such a v must exist or else removing 
Wi and y would disconnect G, which is 3-connected. Replace q'wi U B' by 
the paths constructed as Pi or P 2 which lie on the opposite side of B' to 
the path from v to A' or C , along with the segments of B' which connect 
the consecutive paths constructed as P i or P 2 (see figures 6 and 7). By 
extensions of previous arguments, any vertex / in this newly constructed 
segment of B' has the desired property that any vertex of it is connected 
to Ar or C by a path not intersecting the new B'. If q' £ W\X on B', do 
the same type of construction as above. 

A' 

Jr AOO 
W\ l 

Wi X 

FIG. 6 FIG. 7 

After each of the above constructions has been completed, consider the 
vertex adjacent to q' on qfy C B' and continue as before. When y is finally 
reached, designate the resulting path B. Then, by the constructions each 
vertex of B is connected to A' or C by a path not intersecting B. This 
construction can then be done for A' and C as well. Noting that the 
resulting paths are disjoint, the statement of Lemma 1 is proven. 

3. Proof of l e m m a 2. Let r denote the radius of the polyhedron P , x 
and y vertices of its Schlegel diagram G a distance r apart, and A, B, and 
C paths between x and y as described in Lemma 1. Let a, b, and c be 
vertices of A, B, and C respectively which are of distances [|-4|/2] along 
A, [\B\/2] along B, and [|C|/2] along C respectively from x. 

The strategy of the proof will be to show that if there exists some vertex 
k of G a distance at least r from 6, then at least 4r — 4 vertices must be 
constructed, that is 4r — 3 — \A\ — \B\ — \C\ vertices in addition to 
those of A, B, and C. 

Call a path D in the following constructions proper if it connects some 
vertex v (7e x or y) of A, B, or C to some other vertex v' (?* x or y) of 
another of the paths A, B, or C and intersects A, B, and C only at the 
endpoints of D. Then, by Lemma 1, there exist proper paths D, E, and F 
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with endpoints at a, b, and c (as previously described) respectively. The 
following restrictions may be made without loss of generality. 

a. If one of A, B, or C is met by D, E, and F, it is B. 

b. A vertex k which is a farthest vertex of A VJ B U C from b lies on C. 

Then one of the following hold. 

I. D, F meet B, E meets C 
II. D, F meet B, E meets 4̂ 

III. D meets C, £ meets A, F meets B 
IV. D meets £ , £ meets C, .F meets 4̂ 

Let / be a vertex of G of distance r (the radius of G) from b, k as above, 
and h the distance of & from b. Then, if h 9e r, there exist, by the 3-
connectedness of G, three disjoint paths from A VJ B U C to t. If fc is the 
only vertex of yl U B \J C a distance h from Z>, then the total number of 
vertices added by paths connecting / to A U B U C must be at least 
3r — 3fr (/ is included). If two or three vertices of A KJ B VJ C are of 
distance h from b, then the number of added vertices of paths connecting 
A \J BKJ C to t must total at least 3r — 3h — 1 or 3r — 3fr — 2 respec
tively. It will then suffice to show that, if there are one, two, or three 
vertices of A VJ B \J C a distance h from 6, at least 3h + r — \A \ — \B\ — 
\C\ - 3,3/^ + r - \A\ - \B\ - \C\ - 2, or 3* + r - \A\ - \B\ - \C\ - 1 
vertices respectively must be added to those which connect i U 5 U C 
to /. These vertices will come from those of D, E, F and other necessary 
paths. 

Cases I and IV, which have the common properties that D meets B 
and E meets C, will be looked at first. Define 

a' = D r\ (B \J C), V = E C\ {A \J C), and c' = F H (A U B). 

Let k be as described above. By Lemma 1, k is connected by a proper path 
/ to either JE, bx C B, or A (see figure 8, 9a, or 10a for example). If k is 
so connected to £ , the path indicated by the heavy line in figure 8 is of 
length at least h and so at least h — 1 vertices are added by it to those of 
A \J B \J C. In this and the following cases it will be assumed that the 
paths added do not intersect those which connect the vertex / (as described 

y y y 
FIG. 8 FIG. 9a FIG. 10a 
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above) to A U B U C, as such a situation can be handled in the same 
manner as the cases given here. Finally note that when ft — 1 vertices 
are added, at least 3ft + r — \A\ — \B\ — \C\ — 1 are added and so by 
the preceding paragraph the theorem holds in this case. 

Next assume that J meets bx C_ B and k G bfx C C. The paths indicated 
by figures 9a, 9b, and 9c are of length at least ft, 2ft, and r respectively 
and the corresponding inequalities are 

| / | + \k'b\ ^ ft, \E\ + \b'x\ + \xb\ è 2ft, and 
|̂ cfe| + \E\ + \b'y\ ^ f. 

Adding two times the first inequality to the second and third inequalities, 
one may conclude that 

| / | + |£ | è 2fc + r/2 - 2[\B\/2] - \C\/2 + 1. 

Thus at least 2h + r/2 - \B\ - \C\/2 - l ^ 3ft + r - | 4 | - |B| - |C| 
— 1 vertices are added and the theorem holds in this case. When / meets 
ax C A and a' G by C £ , the paths indicated by the figures 9c, 10a, 10b, 

and 10c lead to the conclusion that at least 2ft + .r — {\A\/2\ — \B\/2 
— [\B\/2] — \C\/2 — 3 vertices are added. From this one may conclude 
that at least 3ft + r — \A\ — \B\ — \C\ — 1 vertices are added when 
ft ^ r — 1 and 4r — 3 — \A\ — \B\ — \C\ when r = ft, proving the 
theorem in this case. Finally, if / meets ay C A and a' Ç by C B, then 
paths as indicated by figures 9c, 10c, 11a, and l i b lead to inequalities 
which show that D} E, and / add at least 3ft + r - \A\ - \B\ - \C\ - 3 
vertices. Similar paths lead to the same conclusion when a' G bx C B 
as well as in the cases when k G b'y C C. 
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Note that cases II and III have the common property that E meets A 
and F meets B. Paths and calculations analogous to those preceding then 
apply except when J meets F. As before, assume that k G xc C C. Then 
assuming / meets F, there is a vertex w £ xc which is connected by a 
proper path ww' to F and which is the closest such to x along C. Let u be 
the next closest vertex along C to x. 

Assuming the conditions and definitions of the above, assume further 
that c' £ by C B. Then u is connected by a proper path to either xc' C B, 
xb' C A, or b'y C A. In the first case, the circuit and paths indicated by 
figures 12a, 12b, and 12c yield the inequality 

\uu + \ww'\ + \F\ ^ h + r - \B\/2 - \C\/2 - 1. 

In the second case, the paths and circuits indicated by figures 13a, 13b, 
13c, and 13d indicate that 

\uu'\ + \ww'\ + \E\ + \F\ è 2ft + r - \A\/2 - \B\/2 

- [\B\/2] - [\C\/2] - 1. 
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Therefore, at least 2h + r - \A\/2 - | 5 | - [\C\/2] - 5 vertices are 
added by uu', W , E, and F. If h ^ r — 2, this means at least 3/* + r 
— \A\ — \B\ — \C\ — 3 vertices are added. This suffices unless there are 
two or three vertices of A KJ B KJ C of distance h from b. If this is the case 
and two or three such vertices lie on xc C C, at least one or two vertices 
respectively must be added to the previous number of those of £ , F, 
or ww'. Otherwise, a vertex of distance h from b lies elsewhere o n i U C 
and another case holds, thus necessitating more paths and so more 
vertices. If h — r = \A\ = |C|, k is the only vertex of distance d from b, 
and the paths above are of the minimal length given above, then the 
vertex next to b on by C B is of distance r — 1 from all vertices of G, 
a contradiction since the radius of G is assumed to be r. There are then 
at least two or more vertices added here and the theorem holds in this 
case. When u' G b'y, paths indicated by figures 13a, 14a, 14b, and 14c 
are used similarly. 

FIG. 14a FIG. 14b FIG. 14C 

When d G bx C B, let w be the vertex of cy C C closest to y along C 
which is connected by a proper path to F (w may be c). Let u be the 
vertex adjacent to w on wy C C. Then u is connected by a proper path 
to c'y C B, b'x C A, or b'y C A. In the first case, the paths indicated by 
figures 15a through 15d imply that 

\F\ + \ww'\ + \uu'\ ^ 2h + r - 151/2 - [\B\/2] - \C\/2 

- l\C\/2] - 1. 

X X X 

In the second case, paths as indicated by figures 13d, 15d, 16a, 16b, and 
16c indicate that 

|£ | + \F\ + \ww'\ + \uu'\ ^2h + 3r/2 - \A\/2 - 2 p | / 2 ] - \C\. 

y 
FIG. 15a 
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y y y 
FIG. 16a FIG. 16b FIG. 16C 

In the third case, the paths indicated by figures 17a, 17b, and 17c indicate 
that 

|£ | + \F\ + \uu'\ + \ww'\ ^2h + r/2 - \A\/2 - [\B\/2] 

- [\C\/2] - 1. 

As before, note that the number of vertices added is at least 3h + r — \A\ 
— \B\ — \C\ — 1. The arguments in the other cases are similar to those 
above. 

Finally note that in cases II and III the subcase of k G cy C C may be 
handled using similar paths and inequalities. This completes the proof of 
Lemma 2 as in each case it has been shown that G must have a total of 
at least 4r — 4 vertices. 

The fact that any polyhedron of radius r, r ^ 2, must have at least 
4r — 4 vertices implies that any polyhedron with n vertices, n ^ 6, must 
have a radius of at most [w/4 + !] • This concludes the proof of the main 
theorem of this paper. 
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