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ON THE STRUCTURE OF INTEGRAL GROUP RINGS
OF SPORADIC GROUPS

FRAUKE M. BLEHER and WOLFGANG KIMMERLE

Abstract

The object of this article is to examine a conjecture of Zassenhaus
and certain variations of it for integral group rings of sporadic groups.
We prove theQ-variation and the Sylow variation for all sporadic
groups and their automorphism groups. The Zassenhaus conjecture
is established for eighteen of the sporadic simple groups, and for
all automorphism groups of sporadic simple groupsG which are
different fromG. The proofs are given with the aid of theGAP
computer algebra program by applying a computational procedure
to the ordinary and modular character tables of the groups. It is also
shown that the isomorphism problem of integral group rings has a
positive answer for certain almost simple groups, in particular for
the double covers of the symmetric groups.

1. Introduction and variations on a theme of Zassenhaus

With respect to the structure of torsion subgroups of integral group rings of finite groups
the following conjecture due to Zassenhaus has been central to the research conducted over
the last twenty years. The conjecture may be stated as follows. LetG be a finite group.

1.1. The Zassenhaus conjecture, (ZC).Let ZG be the integral group ring ofG. Denote
the group of units of augmentation 1 byV (ZG) and letH be a subgroup ofV (ZG) of the
same order asG; that is,H is a group basis ofZG. Then there exists a central automorphism
σ of ZG with σ(G) = H. In other words,G andH are conjugate withinQG.

The conjecture is also of interest for more general coefficient rings thanZ. We say that
(ZC) holds for a group ringRG, if the content of the conjecture holds inRG. Roggenkamp
and Scott constructed a counterexample to (ZC) of order 2880 [21, 25]. In the meantime
more counterexamples have become known, and possibly the smallest counterexample has
order 144 [1,11, Satz 2.2.1]. However there is no counterexample known to the following
block variations.

1.2. The block variation, (B-ZC)C. LetH be a group basis ofZG. LetB be a block of
the Wedderburn decomposition ofCG. Let π be the projection ofCG ontoB. Thenπ(G)
andπ(H) are conjugate withinB.

1.3. The principal block variation, (B-ZC)0,p. Let H be a group basis ofZG. Let p
be a rational prime dividing|G| and letB1, . . . , Bk be the blocks of the Wedderburn
decomposition ofCG associated to the irreducibleC-characters ofG that belong to the
principalp-block. Letπ be the projection ofCG ontoB0 := ⊕k

i=1Bi . Thenπ(G) and
π(H) are conjugate withinB0.
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Integral group rings of sporadic groups

The isomorphism problem, (IP), is the question as to whetherZG ∼= ZH implies that
G ∼= H. Note that the conjecture (ZC) provides a strong answer to the isomorphism prob-
lem. However, the block variations do not in general provide a positive solution to the
isomorphism problem. They do when one of the blocks involved is faithful. M. Hertweck
has shown that in general the isomorphism problem has a negative solution [11]. As was
pointed out by Hertweck, the counterexamples to the isomorphism problem do not supply
a counterexample to (B-ZC)C or to (B-ZC)0,p. It is known that the principal block varia-
tion (B-ZC)0,p is valid whenG is p-constrained, cf. [12,24, 29]. Recall thatG is called
p-constrainedif CG(Op′,p(G)/Op′(G)) 6 Op′,p(G). In particularp-soluble groups are
p-constrained. There are many classes of finite groups for which even (ZC) holds. For a
survey see [17,18,11]. The results of [4], [3] and [5] indicate that it might hold for many
classes of simple groups. Note that the isomorphism problem has a positive solution for
simple groups [19]. Thus the Zassenhaus conjecture for such groups is a question on the
automorphism group of the group ring, cf. Section3.

We remark that the block variations stated as above also make sense modularly. It might
be possible that projections of group bases ofZG are conjugate within the principal block
of KG, whereK denotes an algebraically closed field of characteristicp.

Other variations of the Zassenhaus conjecture (ZC) that have been considered in recent
years deal with Sylow-like theorems and class sums ofp-elements. LetX andY be group
bases ofZG.

1.4. The Sylow variation, (SYL).Let S ∈ Sylp(X) andT ∈ Sylp(Y ). ThenS andT are
conjugate withinQG.

1.5. Thep-variation, (ZC)p. There exists a group isomorphismX → Y whoseZ-linear
extension preserves all class sums ofZG corresponding to elements ofp-power order.

Note that if (ZC)p is satisfied, then Sylowp-subgroups ofX andY are conjugate within
QG. Thus the difference between (SYL) and (ZC)p is that (ZC)p implies a positive solution
to (IP), while (SYL) does not. No counterexample to (SYL) is known. IfG is soluble then
(ZC)p holds for each primep (see [20]). For other results on these variations we refer to
[9] and [16].

The counterexamples to (ZC) give the impression that automorphisms coming from
Galois automorphisms of the character field of a block of the Wedderburn decomposition
of CG provide an obstruction to the validity of (ZC). This makes it reasonable to study the
following rational variation.

1.6. TheQ-variation, (ZC)Q. LetX andY be group bases ofZG. Then there is an auto-
morphismσ of QG such thatσ(X) = Y andσ fixes each component of the Wedderburn
decomposition ofQG.

Note that (ZC)Q and (ZC) coincide whenQ is a splitting field forG. Clearly, (ZC)Q
contains a positive answer to (IP), and thus cannot hold in this form for every finite group.

If one tries to extend the above-mentioned results on the variations of the Zassenhaus
conjecture fromp-constrained groups or from soluble groups to general finite groups,
then simple groups are certainly the first candidates that have to be considered. By the
classification of the finite simple groups, the simple groups may be roughly divided into
three types: the alternating groups, the simple groups of Lie type, and the twenty-six sporadic
groups. Most of the known properties of the sporadic groups are encoded in their character
tables, and it is therefore natural to deal with them via their character tables. The object of this
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Integral group rings of sporadic groups

paper is to give a purely character-theoretical approach to the variations of the Zassenhaus
conjecture, and to apply this computer-aided method to the sporadic groups.

The paper is organized as follows. In Section2 we state our results on the sporadic
simple groups and their automorphism groups. In Section3 we explain the reduction of
the problems to the study of special automorphisms of spectral tables. In Section4 the
proofs of the results of Section2 are given. Section5 discusses the relationship of the defect
group problem and the Green correspondence of automorphisms to our approach. Finally, in
Section6 we consider the isomorphism problem (IP) for almost simple groups. It is shown
that (IP) has a positive solution for the double covers of the symmetric groups, and for all
almost sporadic simple groups.

Finally, we would like to mention that we were both partially supported by the DFG
Schwerpunktsprogramm ‘Algorithmische Zahlentheorie und Algebra’.

2. Results on the Zassenhaus variations

Theorem 2.1. LetX be a finite sporadic simple group with nontrivial outer automorphism
group. Then(ZC) is valid forAut(X) = X.2.

Theorem 2.2. The variation(SYL) is valid for all sporadic simple groups and their auto-
morphism groups.

Theorem 2.3. The variation(ZC)Q is valid for all sporadic simple groups and their auto-
morphism groups.

Remark 2.4. Let G be an alternating group. Then (ZC)p holds forG, cf. [18, Corollary
2.8.2]. It is also known that (ZC)Q holds forG, cf. [15, Satz 5.9]. The proof is similar to the
proof of the Zassenhaus conjecture for symmetric groups given by Peterson [23]. Therefore
it remains only to establish (SYL) and (ZC)Q for simple groups of Lie type in order to prove
these variations for all simple groups.

Theorem 2.5. The conjectures(ZC) and(ZC)p, for all p, hold for a sporadic simple group
if in Table 1 the corresponding column is marked with a+ sign. The third column lists
all primesp for which it is not known whether(ZC)p is valid. Analogously, the variations
(B-ZC)C and (B-ZC)0,p, for all p, hold if there is a+ sign in the table. The last column
lists all primesp for which the principal block conjecture is unknown.

We note that if in the open cases the principal block conjecture (B-ZC)0,p held for each
primep, then our results would show that the conjecture (ZC) was already valid in these
open cases.

3. The method

In this section we describe how a computer-aided proof may be obtained to show that
for a finite group the conjecture (ZC) or one of its variations is valid.

In the spirit of Brauer’s famous questions the meaning ofcharacter tablejust means the
matrix of character values and the information obtained from this matrix. So we speak of a
spectral tableif, in addition to the character table, the power map on the conjugacy classes
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Table 1: Results on the Zassenhaus variations

Group (ZC) (ZC)p (ZC)p (B-ZC)C (B-ZC)0,p (B-ZC)0,p
valid ∀p ? valid∀p ?

M11 + + — + + —
M12 + + — + + —
M22 + + — + + —
M23 + + — + + —
M24 + + — + + —
J2 + + — + + —

Suz + + — + + —
H’S + + — + + —
McL open open p = 11 open open p = 2, 5
Co3 + + — + + —
Co2 + + — + + —
Co1 + + — + + —
He open + — + open p = 2, 5
Fi22 open + — + open p = 2, 3
Fi23 open open p = 23 open open p = 2, 3,5,23
Fi′24 open + — + open p = 2, 3,23
H’N + + — + + —
Th + + — + + —
B + + — + + —
M open + — open open p = 2, 3,13,17
J1 + + — + + —

O’N + + — + + —
J3 + + — + + —
Ly open open p = 67 open open p = 3,5,67
Ru + + — + + —
J4 open open p = 43 open open p = 2, 11,43

(and therefore the order of representatives of the classes) is given. We denote the spectral
table corresponding to the ordinary character table of a groupG by ST(G).

We should like to point out that our results rely on the correctness of the spectral tables.
For our calculations we mainly used theGAP computer algebra system [27], which contains
the tables of [8] and [14]. Some of the operations utilizing the spectral table may be done by
hand, and for some groups — for example, the Baby Monster B — the conjecture (ZC) or
one of its variations may be proved solely by looking at the spectral table. For other groups
one needs substantially more information about their modular representations, and this again
uses more computer algebra results, which essentially depend on computer programs.

If the isomorphism problem forZG has a positive solution, then the Zassenhaus conjec-
ture (ZC) and its variations may be studied purely in terms of automorphisms. Usually, the
following conjectures in terms of automorphisms are introduced. Moreover, many results
hold for a more general coefficient ring thanZ. An integral domainS of characteristic zero
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is calledG-adapted if no prime dividing|G| is invertible inS. In particular, the Zassenhaus
conjectures and their variations may also be stated for aG-adapted ring. A normalized
ring automorphism ofSG is anS-algebra automorphism which preserves the augmentation
map. The group of all normalized ring automorphisms ofSG is denoted by Autn(SG).

3.1. (AUT). Suppose thatS isG-adapted. Eachσ ∈ Autn(SG) of SG admits a Zassenhaus
decomposition; that is

σ = α · τ,
whereα is induced by a group automorphism ofG andτ is a central automorphism, which
means thatτ(c) = c for all c ∈ Z(SG).

It is a consequence of the Noether–Skolem theorem that a central automorphism ofSG

is given as conjugation with a unit ofKG, whereK denotes the quotient field ofS.

3.2. (AUT)p. Suppose thatS isG-adapted. Eachσ ∈ Autn(SG) of SG can be written as

σ = α · τ,
such thatα is induced by a group automorphism ofG, and the restriction ofτ to a Sylow
p-subgroupP of G is given as conjugation with a unit ofKG.

3.3. (AUT)Q. Each normalized ring automorphismσ of ZG can be written as

σ = α · τ,
such thatα is induced by a group automorphism ofG, and theQ-linear extension ofτ fixes
each component of the Wedderburn decomposition ofQG.

In order to examine the Zassenhaus conjecture, one starts with an arbitrary normalized
ring automorphismσ of SG. Thenσ preserves the class sum correspondence; that is,σ

maps class sums to class sums. Moreover,σ preserves the power map. Sinceσ permutes
the ordinary simple modules, we get the following result.

Lemma 3.1. [7, (3.4)] Let S be aG-adapted ring. Then eachσ ∈ Autn(SG) induces an
automorphism ofST(G).

For convenience we again denote the induced automorphism byσ . We also use the same
convention for all other induced actions ofσ .
AS denotes the subgroup of Aut(ST(G))induced by Autn(SG), andAG that induced by
Aut(G). Further, we introduce the following notations. A spectral table automorphism
may be written as a pair(π1, π2), whereπ1 andπ2 are permutations of Irr(G) and Cl(G)
respectively, such that

π1(χ)(π2(C)) = χ(C), ∀χ ∈ Irr(G), ∀C ∈ Cl(G).

Thus Aut(ST (G)) induces on Irr(G) a permutation group which is denoted by Ach, and
on Cl(G)a permutation group denoted by Acl. By [13, Satz V.13.5] Ach and Acl are both
isomorphic to Aut(ST (G)). The subgroups induced by Aut(G) are denoted by AchG and
AclG; those induced by Autn(SG), whereS is assumed to beG-adapted, are denoted by
AchS and AclS .

Since central automorphisms induce the identity on the spectral table, the following
criteria follow now from Lemma3.1.
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Lemma 3.2. LetS be aG-adapted ring.

(i) [7, 3.5] (AUT) holds forSG if, and only if,

AS = AG.

(ii) (AUT)p holds forSG if, and only if, for eachσ ∈ AS there exists anα ∈ AG such
thatα · σ fixes the conjugacy class of eachp-element ofG.

(iii) [15, 5.8a] If C is a conjugacy class ofG with representativex andm ∈ N, thenCm

denotes the conjugacy class ofxm.
(AUT)Q holds forZG if, and only if, for eachσ ∈ AclZ there exists anα ∈ AclG
such that for each conjugacy classC ofG there existsnC ∈ N with (α ·σ)(C) = CnC .

The next lemma concerns the block variations.
LetK be a field which is sufficiently large forG, and which containsS. If Bp is ap-block
then Irr(Bp) denotes the set of ordinary characters belonging toBp. The principalp-block
is denoted byB0,p.

Lemma 3.3. (i) LetB be a block ofKG. Letχ be its corresponding irreducible charac-
ter. Denote by�S the orbit ofχ under the action ofAchS and by�G the orbit under
the action ofAchG. Then the projections of group bases ofSG isomorphic toG are
conjugate inB if, and only if,�S = �G.

(ii) The following are equivalent.

(a) The block variation(B-ZC)K holds forSG.
(b) The number of orbits ofAchS andAchG on Irr(G) coincide.
(c) The number of orbits ofAclS andAchG onCl(G) coincide.

(iii) The principal block variation(B-ZC)0,p holds if, and only if,AchS andAchG coincide
on Irr(B0,p).

Proof. (i) Assume that the orbits�S and�G coincide. LetX be a group basis ofSG
isomorphic toG. Let σ : G −→ X be an isomorphism. SinceX andG are isomorphic,
there existsτ ∈ Autn(SG)with τ restricted toG coinciding withσ. Letψ be the irreducible
character corresponding toτ(B). Thenψ(τ(g)) = χ(g) for eachg ∈ G. The assumption
on the orbits shows that there isα ∈ Aut(G) with α(B) = τ(B). It follows for eachg ∈ G
thatψ(α(g)) = χ(g) and therefore thatχ(τ−1 ◦ α(g)) = χ(g). Thus the projections ofG
andX onB are conjugate withinB.

Conversely, letτ ∈ Autn(SG). PutX = τ(G). The projections ofX andG are by
assumption conjugate. Denote this conjugation byγ. Thenτ−1 ◦ γ is an automorphism of
G. Extend this automorphism toKG. Thenγ (B) = τ(B).

Part (iii) follows from part (i), as does the fact that part (ii)(a) implies part (ii)(b). The
equivalence of parts (ii)(b) and (ii)(c) follows from a theorem of Brauer [13, Satz V.13.5].
Since AchG is a subgroup of AchS the orbits of both groups must already coincide, provided
that their number is the same. This shows that part (ii)(b) implies part (ii)(a).

In order to apply the previous criteria, it is of course crucial to know when a spectral
table automorphism comes from an automorphism ofSG. In Section4 we shall collect
several necessary conditions. The following is a character-theoretical interpretation of [11,
Proposition 2.1.1] and [25, IX 1.6] respectively. It gives a sufficient criterion in particular
in the semilocal andG-adapted case; that is, for example whenS = Zπ andπ = π(G).

Note that it may also be applied whenπ is smaller thanπ(G).
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Proposition 3.4. LetG be a finite group. Assume thatS is a Dedekind domain with quotient
fieldK. Assume thatS has only finitely many maximal ideals. Letσ be a spectral table
automorphism ofST(G).For each prime idealP ofS denote its localization bySP . Assume
that there exists for eachP anSP -algebra automorphismαP ofSP ⊗S SGwhich induces on
KG the same permutation of the blocks ofKG asσ. Thenσ is induced by an automorphism
of SG.

Proof. The condition thatαP induces onKG the same permutation of the blocks asσ
means that forP,Q prime the automorphismsαP andαQ differ when extended toKG
only by a central automorphism. By [11, Proposition 2.1.1] we get an automorphismα of
SG which differs when extended toSPG only by an inner automorphism fromαP . Thusα
inducesσ on the spectral table.

4. Proof of the Zassenhaus variations

Throughout,S denotes aG-adapted ring. With respect to blocks with cyclic defect, we
use the following results, proved in [7].

Lemma 4.1. LetG be a group with cyclic Sylowp-subgroups, and letB0,p be the principal
p-block. Then everyσ ∈ Autn(SG) fixes everyχ ∈ Irr(G) which belongs toB0,p and is
not exceptional forp.

Note thatχ ∈ Irr(G) is calledexceptionalfor p if there is another ordinary irreducible
character which restricts in the same way asχ to thep-regular conjugacy classes.

Lemma 4.2. Let Bp be a cyclicp-block ofG which is fixed byσ ∈ Autn(SG). Thenσ
induces a graph automorphism of the Brauer tree corresponding toBp.

For noncyclic blocks, we use the following result, proved in [3].

Lemma 4.3. LetGbe a finite group and letp be a rational prime. Then everyσ ∈ Autn(SG)
induces an automorphism of thep-modular character table ofG.

As a corollary we get the following lemma.

Lemma 4.4. LetG be a finite group and letp be a rational prime. LetD = (dχ,ϕ) be the
p-modular decomposition matrix ofG. Then everyσ ∈ Autn(ZG) operates onD as

dσ(χ),σ (ϕ) = dχ,ϕ.

In some cases we look at socle series of projective indecomposable modules. Here we use
the following result, which follows from the fact that every normalized ring automorphism
of SG induces an autoequivalence of the module category.

Lemma 4.5. LetG be a finite group and letσ ∈ Autn(SG). If k is a field such that there
exists a ring homomorphismS → k, thenσ induces a normalizedk-algebra automorphism
of kG which we again denote byσ . LetM be akG-module. Thenσ operates on the socle
series ofM as

σ(socr (M)/socr−1(M)) ∼= socr (σ (M))/socr+1(σ (M)),

wheresoc1(M) = soc(M)andsocr (M) is the preimage ofsoc(M/socr−1(M)) under the
canonical epimorphismM → M/socr−1(M).
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The groups M11, Co1, B, J2 and J1 can be treated by using only the spectral table ST(G)

and Lemma4.1 (see [2]). The remaining Mathieu groups and Th have already been dealt
with in [7].

To prove the remaining results, we apply the following computational procedure to each
groupG. Compute Aut(ST(G)).This may easily be done with the aid ofGAP. Consider then
the action of a spectral table automorphism on the irreducible characters, and determine the
orbits of Aut(ST(G))on Irr(G). Determine with the aid of Lemmas4.1and4.2irreducible
characters which must be fixed under the action of a spectral automorphism which is induced
by an automorphism ofSG.Consider the subgroupA of Aut(ST(G))which stabilizes these
characters and determine the subgroupAG, which consists of the spectral automorphisms
that come from group automorphisms. Clearly,AG is contained inA. Consider now the
action of elements ofA \ AG on the conjugacy classes ofG.

To apply this procedure we will write down for each groupG a table as follows. In the
first row we state the name ofG, its order and the number of conjugacy classesh. The
second row consists of a set of generators for Acl, followed by the isomorphism type of
Aut(ST(G)). The third row lists the orders of the conjugacy classes given in row 2. In the
case where|Out(G)| = 2, the following row shows the generators of AclG. The next row
contains a set of generators for Ach. In the following rows certainp-blocks are examined.
For each such primep, it is stated to which kind of blocks the ordinary characters in Ach
belong. We give this information for each character which is the first element of a cycle of an
element of Ach. If a character is marked by ane, this means that the character is exceptional
for p. In cases where the Sylowp-subgroups are noncyclic and thep-modular character
table is known, generators for the character table automorphisms of thep-modular character
table are given as permutations of numbers corresponding to the conjugacy classes, called
Aclp.

4.1. The group Suz.The table for Suz is given in Table2. By Lemma4.2, it follows, using
the cyclic 5-blockB3, that the characters 7, 8 and 31, 32 must be moved together. The
characters 31, 32 correspond to the classes 32, 33, whereas the characters 7, 8 correspond
to the classes 14, 15, 22, 23, 38, 39. From Acl2 and Acl we conclude that (ZC) holds.

4.2. The group H’S. (See also [4].) The table for H’S is given in Table3. From Acl3 it
follows that the classes 19, 20 and 23, 24 must be moved together. Using the notation as
in [32, Appendix], it follows that the operation (19,20)(23,24) on the conjugacy classes
corresponds to the operation(49,49∗)(770, 770∗) on the 3-modular Brauer characters,
whereas(15,16) corresponds to(1541, 1542). In [32], the socle series of the projective
covers of the Brauer characters 1541 and 1542 have respectively been determined as:




1541

770

77 1542

770∗

1541




,




1542

770∗

77 1541

770

1542




.

This shows that only a simultaneous operation on(770, 770∗) and(1541, 1542) is possible.
Thus the validity of (ZC) follows.
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Table 2: The group Suz (see paragraph4.1)

Suz 213 · 37 · 52 · 7 · 11 · 13 h = 43

Acl (14,15)(22,23)(38,39), (32,33), (35,36), (41,42) C4
2

orders 614, 922, 1332, 1535, 1838, 2141

AclG (14,15)(22,23)(38,39)(32,33)(35,36)(41,42) C2

Ach (7,8)(18,19)(21,22), (31,32), (13,14), (25,26)

p = 5 13e ∈ B2 defect 1

7,31 ∈ B3 defect 1

18,21,25 defect 0

Acl5 (14,15)(22,23)(38,39), (32,33), (41,42)

p = 2 7,13,18e,21,25 ∈ B0

31 ∈ B1 defect 2

Acl2 (22,23), (32,33)(35,36)(41,42)

Table 3: The group H’S (see paragraph4.2)

H’S 29 · 32 · 53 · 7 · 11 h = 24

Acl (15,16), (19,20), (23,24) C3
2

orders 815, 1119, 2023

AclG (15,16)(19,20)(23,24) C2

Ach (5,6), (14,15), (11,12)

p = 3 5,11,14 ∈ B1 defect 2

Acl3 (15,16), (19,20)(23,24)
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Table 4: The group McL (see paragraph4.3)

McL 27 · 36 · 53 · 7 · 11 h = 24

Acl (10,11)(19,20), (13,14), (16,17), (21,22)(23,24) C4
2

orders 710, 913, 1116, 1419, 1521, 3023

AclG (10,11)(19,20)(13,14)(21,22)(23,24) C2

Ach (16,17)(18,19), (21,22), (7,8), (5,6)(23,24)

p = 11 7e ∈ B0

5,16,18,21,23 defect 0

p = 7 16e ∈ B0

18e ∈ B1 defect 1

5,7,21,23 defect 0

p = 5 5e,7,16,21,23e ∈ B0

18 defect 0

Acl5 (10,11)(19,20)(13,14), (16,17)

p = 3 5e,7,18,21e,23e ∈ B0

16 defect 0

Acl3 (10,11)(19,20), (16,17)

p = 2 5,16,18,23 ∈ B0

7,21 defect 0

Acl2 (10,11)(21,22), (13,14), (16,17)
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4.3. The group McL. The table for McL is given in Table4. Thus we find that either
AclS = AclG or AclS = 〈AclG, (16,17)〉. The only possible classes that may be moved
have order 11, and these classes are linked by the power map. Consequently(AUT)Q is
valid for McL, and (ZC)p is valid for allp 6= 11. SinceAG andAS have the same orbits,
(B-ZC)C is valid. The principal block variation (B-ZC)0,p holds if the characters 7 and 8
are not inB0,p, which is the case forp 6= 2, 5.

4.4. The group Co3. (See also [4].) The table for Co3 is given in Table5. By Lemma4.1,
it follows, usingp = 23, that the characters 6, 7 and 10, 11 are fixed, and thus also the
classes 24, 25, 36, 37, 38, 39. From Acl3 we conclude that (ZC) is valid.

Table 5: The group Co3 (see paragraph4.4)

Co3 210 · 37 · 53 · 7 · 11 · 23 h = 42

Acl (24,25)(36,37), (33,34), (38,39) C3
2

orders 1124, 2033, 2236, 2338

Ach (6,7)(18,19), (10,11), (16,17)

p = 23 6,10,16e ∈ B0

18 defect 0

p = 3 6,10,16,18 ∈ B0

Acl3 (24,25)(36,37)(33,34)(38,39)

Table 6: The group Co2 (see paragraph4.5)

Co2 218 · 36 · 53 · 7 · 11 · 23 h = 60

Acl (46,47)(59,60), (43,44), (53,54) C3
2

orders 1443, 1546, 2353, 3059

Ach (12,13)(31,32), (22,23), (10,11)

p = 23 10e,12,22 ∈ B0

31 defect 0

p = 2 10,12,22e,31 ∈ B0

Acl2 (46,46)(59,60)
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4.5. The group Co2. (See also [4]. ) The table for Co2 is given in Table6. By Lemma4.1,
it follows, usingp = 23, that the characters 12, 13 and 22, 23 are fixed, and thus also the
classes 46, 47, 59, 60, 43, 44. From Acl2 we conclude that (ZC) holds.

4.6. The group He.The table for He is given in Table7. Thus we get that either AclS =
AclG or

AclS = 〈(12, 13)(15,16)(21,22)(23,24)(30, 31)(32, 33), (26,27)〉.
Since all these classes are linked by the power map,(AUT)Q is valid for He. The classes
26 and 27 correspond to the characters 7 and 8 and their representatives have order 17. But
an outer group automorphism interchanges these conjugacy classes. Thus it follows that
(ZC)17 is valid, and hence that (ZC)p holds for allp. BecauseAG andAS have the same
orbits, (B-ZC)C is valid. The principal block variation is valid if the characters 7 and 8 are
not inB0. Thus it holds forp 6= 2, 5.

4.7. The group Fi22. The table for Fi22 is given in Table8. In this case the modular
considerations do not give any further restrictions for AclS. Also, Acl and Acl5 coincide.
Acl3 and Acl2 are not yet available inGAP. Thus AclG 6 AclS 6 Acl. The orbits of Acl
and AclG coincide. Thus (B-ZC)C is valid. (ZC)p is valid for all primesp since for eachp
there is at most one class involved in Acl whose representative is ap-element. The principal
block variations are valid, except possibly forp = 2, 3.

4.8. The group Fi23. The table for Fi23 is given in Table9. The groups Acl2,Acl3 and Acl5
are not yet available inGAP. By Lemma4.1we find that

1 6 AclS 6 〈(80, 81)(78,79)〉.
Since the corresponding characters 17, 18 and 28, 29 are complex conjugate, the classes
are linked by the power map. Thus(AUT)Q holds. Obviously (ZC)p is valid forp 6= 23.
(B-ZC)C is open for the blocks corresponding to 17, 18, 28 and 29. The principal block
variation holds, except possibly forp = 2, 3,5,23.

4.9. The group Fi′24. The table for Fi′24 is given in Table10. The groups Acl2,Acl3,Acl5
and Acl7 are not yet available inGAP. From the table we get

AclG 6 AclS 6 〈AclG, (106,107), (101,102), (71,72)(104)105)〉.
The representatives of the classes have order 45, 39, 21 and 42. Hence (ZC)p is valid.
Moreover, all these classes are linked by the power map. Thus(AUT)Q is valid for Fi′24.
It also follows that (ZC)p is valid for all p. BecauseAG andAS have the same orbits,
(B-ZC)C is valid. The principal block variation is valid forp = 5,7,11,13,17,29s.Note
for p = 29 that the exceptional characters 91, 92 are moved by a group automorphism. It
remains open forp = 2, 3,23. For p = 23 note that the characters 6, 7 are exceptional,
and are not moved by a group automorphism.

4.10. The group H’N. (See also [4].) The table for H’N is given in Table11. By Lemma
4.1, the characters 51, 52 have to be fixed, and thus also the classes 39, 40. Using Lemma
4.2and the cyclic 11-blockB1, (ZC) follows.
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Table 7: The group He (see paragraph4.6)

He 210 · 33 · 52 · 73 · 17 h = 33

Acl (12,13)(15,16)(21,22)(23,24)(30,31)(32,33),

(26,27), (28,29) C3
2

orders 712, 715, 1421, 1423, 1726, 2128, 2130, 2832

AclG (12,13)(15,16)(21,22)(23,24)(30,31)(32,33)(26,27) C2

Ach (2,3)(4,5)(10,11)(17,18)(20,21)(23,24),

(7,8), (30,31)

p = 17 7e,30 ∈ B0

2,4,10,17,20,23 defect 0

p = 7 2e,4e,10e,20e,23e,30e ∈ B0

17e ∈ B4 defect 1

7 defect 0

p = 5 2,4,7,17,30 ∈ B0

10,20,23 defect 0

Acl5 (12,13)(15,16)(21,22)(23,24)(30,31)(32,33), (26,27)

p = 3 30e ∈ B0

2,7,10 ∈ B1 defect 2

4,17,20 ∈ B2 defect 1

5,18,21 ∈ B3 defect 1

23 defect 0

Acl3 (12,13)(15,16)(21,22)(23,24)(32,33), (26,27)

p = 2 2,4,7,10,17,20,23 ∈ B0

30 defect 0

Acl2 (12,13)(15,16)(30,31), (26,27), (28,29)
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Table 8: The group Fi22 (see paragraph4.7)

Fi22 217 · 39 · 52 · 7 · 11 · 13 h = 65

Acl (36,37)(61,62), (42,43), (49,50), (53,54), (55,56) C5
2

orders 1136, 1242, 1349, 1653, 1855, 2261

AclG (36,37)(61,62)(42,43)(49,50)(53,54)(55,56) C2

Ach (40,41)(51,52), (31,32), (22,23), (33,34), (43,44)

p = 13 22e ∈ B0

31,33,40,43,51 defect 0

p = 11 40e ∈ B0

51e ∈ B2 defect 1

22,31,33,43 defect 0

p = 7 22,31,33,40,43,51 defect 0

p = 5 22,31,33,40,43,51 defect 0

p = 3 22,31e,33e,40,43e,51 ∈ B0

p = 2 22,31e,33e,40,43e,51 ∈ B0
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Table 9: The group Fi23 (see paragraph4.8)

Fi23 218 · 313 · 52 · 7 · 11 · 13 · 17 · 23 h = 98

Acl (57,58)(85,86)(95,96), (63,64), (78,79), (80,81) C4
2

orders 1357, 1663, 2278, 2380, 2685, 3995

Ach (62,63)(80,81)(94,95), (15,16), (28,29), (17,18)

p = 23 17e,94 ∈ B0

15,28,62,80 defect 0

p = 17 15,62,94 ∈ B0

17,28,80 defect 0

p = 13 62e ∈ B0

94e ∈ B2 defect 1

80e ∈ B5 defect 1

15,17,18 defect 0

p = 11 28e ∈ B2 defect 1

15 ∈ B3 defect 1

17,62,80,94 defect 0

p = 7 15,17,28,62,80,94 defect 0

p = 5 28 ∈ B0

15,17,62,80,94 defect 0

p = 3 15,17,28,62,80,94 ∈ B0

p = 2 15e,17,28e,62,80 ∈ B0

94 defect 0
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Table 10: The group Fi′
24 (see paragraph4.9)

Fi′24 221 · 316 · 52 · 73 · 11 · 13 · 17 · 23 · 29 h = 108
Acl (46,47)(78,79)(95,96), (65,66), (71,72)(104,105),

(74,75), (81,82), (85,86), (88,89), (92,93),
(99,100), (101,102), (106,107) C11

2
orders 1246, 1865, 2171, 2374, 2478, 2481, 2785,

2988, 3392, 3695, 3999, 39101, 42104, 45106

AclG (46,47)(78,79)(95,96)(65,66)(71,72)(104,105) C2
(74,75)(81,82)(85,86)(88,89)(101,102)(106,107)

Ach (39,40)(46,47)(80,81), (14,15), (60,61)(77,78),
(6,7), (101,102), (64,65), (91,92), (86,87),

(69,70), (97,98), (99,100)

p = 29 6,86,91e,97 ∈ B0
14,39,46,60,64,69,77,80,99,101 defect 0

p = 23 6e,97 ∈ B0
14,39,46,60,64,69,77,80,86,91,99,101 defect 0

p = 17 86,97 ∈ B0
6,14,39,46,60,64,69,77,80,91,99,101 defect 0

p = 13 6 ∈ B0
69 ∈ B4 defect 1

14,46,39,64,91,101 ∈ B8 defect 1
60,77,80,86,97,99 defect 0

p = 11 86e ∈ B3 defect 1
6,14,39,46,60,64,69,77,80,91,97,99,101 defect 0

p = 7 14,39,60,64,77,80,91 ∈ B0
6,46,69,86,97,99,101 defect 0

p = 5 46,64,77,91 ∈ B2 defect 2
99e ∈ B20 defect 1

all other defect 0

p = 3 6,14,39,46,60,64,69,77,80,86,97,99,101 ∈ B0
91 ∈ B2 defect 2

p = 2 6,14,39,46,60,69,77,80,86,91,99,101 ∈ B0
64 ∈ B2 defect 2
97 defect 0
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Table 11: The group H’N (see paragraph4.10)

H’N 214 · 36 · 56 · 7 · 11 · 19 h = 54

Acl (11,12)(24,25)(27,28)(35,36)(42,43)(46,47)(49,50),

(37,38), (39,40), (51,52), (53,54) C5
2

orders 511, 1024, 1027, 1535, 1937,

2039, 2042, 2546, 3049, 3551, 4053

AclG (11,12)(24,25)(27,28)(35,36)(42,43)(46,47)(49,50)

(37,38)(51,52)(53,54) C2

Ach (2,3)(6,7)(11,12)(13,14)(21,22)(27,28)(30,31),

(25,26), (51,52), (15,16), (35,36)

p = 11 51 ∈ B0

2,15,25,27,35 ∈ B1 defect 1

6,11,13,21,30 defect 0

4.11. The group M. The tables for M are given in Tables12 and13. The groups Aclp
for p = 2, 3,5,7,11 or 13 are not yet available inGAP. By Lemma4.1 we see that
1 6 AclS 6 〈(187,188)〉. These classes have representatives of order 95 and are linked by
the power map. It follows that(AUT)Q and (ZC)p are valid for allp. (B-ZC)C holds for all
blocks except the two blocks belonging to the characters 89 and 90. Finally, the principal
block variation is valid for all primes except 2, 3,13,17.

4.12. The group O’N.The table for O’N is given in Table14. By Lemma4.1, the characters
21, 22, 23, 24, 26, 27, 28 and 29, 30 are fixed, and thus also the conjugacy classes 16, 17, 22,
23, 24 and 27, 28. Further, the operation (18,19)(20,21) on the classes is not possible, since
the characters 21, 22 are fixed. By Lemma4.2, it follows using the cyclic 5-blockB1 that
the characters 3, 4 and 13, 14 must be moved together. The characters 3, 4 correspond to
the classes 29, 30, whereas the characters 13, 14 correspond to the operation on the classes
(10,11)(18,20)(19,21). From Acl7 it follows that the classes 25, 26 and 29, 30 have to be
moved together. So (ZC) follows.
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Table 12: The group M — First part (see paragraph4.11and Table13)

M 246 · 320 · 59 · 76 · 112 · 133 · 17 · 19 · 23
·29 · 31 · 41 · 47 · 59 · 71 h = 194

Acl (76,77)(135,136)(137,138)(165,166)(181,182),
(105,106)(160,161)(183,184), (121,122)(172,173),
(125,126), (132,133)(179,180), (139,140)(185,186),

(149,150), (152,153), (177,178), (187,188),
(189,190), (193,194) C13

2
orders 2376, 31105, 39121, 40125, 44132, 46135, 46137, 47139,

56149, 59152, 62160, 69165, 71169, 78172, 87177,

88179, 92181, 93183, 94185, 95187, 104189, 119193

Ach (16,17)(55,56)(83,84)(85,86)(128,129), (102,103),
(26,27)(105,106)(107,108), (44,45)(99,100),

(41,42)(135,136), (53,54)(74,75), (81,82), (59,60),
(39,40), (71,72), (89,90), (124,125), (47,48)

p = 71 16,26,39e,41,44,53,81,102,105,124,128,135 ∈ B0
47,55,59,71,74,83,85,89,99,107 defect 0

p = 59 16,26,41,74,81,83,99,102e,105,135 ∈ B0
39,44,47,53,55,59,71,85,89,107,124,128 defect 0

p = 47 41,44,53e,59,85,124 ∈ B0
16,26,71,74e,105 ∈ B3 defect 1

39,47,55,81,83,89,99,102,107,128,135 defect 0

p = 41 16,26,44,47,55,59,71,83,99,102,107,128 ∈ B0
39,41,53,74,81,85,89,105,124,135 defect 0

p = 31 16,105e ∈ B0
55,107 ∈ B2 defect 1

26,41,124 ∈ B6 defect 1
39,44,47,53,59,71,74,81,83,85,89,99,102,128,135 defect 0

p = 29 16,39,59,85,102 ∈ B0
55,71 ∈ B2 defect 1

26,41,44,47,53,74,81,83,89,99,105,107,124,128,135 defect 0

p = 23 41,59,83 ∈ B0
85 ∈ B2 defect 1
55 ∈ B3 defect 1

81,128 ∈ B4 defect 1
16 ∈ B7 defect 1

26,39,44,47,53,71,74,89,99,102,105,107,124,135 defect 0
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Table 13: The group M — Second part (see paragraph4.11and Table12)

M 246 · 320 · 59 · 76 · 112 · 133 · 17 · 19 · 23
·29 · 31 · 41 · 47 · 59 · 71 h = 194

p = 19 26,39 ∈ B0
107 ∈ B2 defect 1

102,105 ∈ B3 defect 1
89e ∈ B4 defect 1

16,41,44,47,53,55,59,71,74,81,83,85,99,124,128,135 defect 0

p = 17 53,71 ∈ B0
124 ∈ B2 defect 1
102 ∈ B4 defect 1
47 ∈ B5 defect 1

16,26,39,41,44,55,59,74,81,83,85, defect 0
89,99,105,107,128,135 defect 0

p = 13 16,44,55,71,81,83,85,89,99 ∈ B0
128 ∈ B2 defect 1

26,39,41,47,53,59,74,102,105,107,124,135 defect 0

p = 11 44,71,89 ∈ B0
99 ∈ B2 defect 1
135 ∈ B6 defect 1
41 ∈ B9 defect 1

16,26,39,47,53,55,59,74,81, defect 0
83,85,102,105,107,124,128 defect 0

p = 7 26,53,59,71,74,81,102,107,124 ∈ B0
47 ∈ B8 defect 1

16,39,41,44,55,83,85,89,99,105,128,135 defect 0

p = 5 26,39,41,44,47,59,81,99,102,105,107,124,135 ∈ B0
89e ∈ B7 defect 1

16,53,55,71,74,83,85,128 defect 0

p = 3 16,39,41,44,47,53,55,59,74, ∈ B0
81,83,85,89,99,102,124,128,135 ∈ B0

26,105,107 ∈ B2 defect 1
71 ∈ B4 defect 3

p = 2 16,26,39,41,44,47,53,55,59,71,74,81, ∈ B0
83,85,89,99,105,107,128,135 ∈ B0

124 ∈ B4 defect 4
102 defect 0
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Table 14: The group O’N (see paragraph4.12)

O’N 29 · 34 · 5 · 73 · 11 · 19 · 31 h = 30
Acl (10,11)(18,20(19,21), (18,19)(20,21), (16,17),

(22,23,24), (25,26), (27,28), (29,30) C6
2 × C3

orders 810, 1516, 1618, 1922, 2025, 2827, 3129

AclG (10,11)(18,20)(19,21)(25,26)(29,30) C2

Ach (8,9)(13,14), (16,17)(21,22), (23,24), (26,27,28),
(5,6), (29,30), (3,4)

p = 31 3e,21,23,26,29 ∈ B0
5,8,13,16 defect 0

p = 5 3,13 ∈ B1 defect 1
5e ∈ B2 defect 1
23e ∈ B3 defect 1

p = 7 3,5,8,13,16,21,26,29e ∈ B0
23 defect 0

Acl7 (10,11)(18,20)(19,21), (16,17), (25,26)(29,30)

4.13. The group J3. The table for J3 is given in Table15. By Lemma4.1, usingp =
19, it follows that the characters 11, 12 and 14, 15, 16 have to be fixed, and thus the
classes 18, 19 and 10, 11, 12 have to be fixed as well. Using the notation as in [14], it
follows that the operation (6,7)(13,14) on the conjugacy classes corresponds to the operation
(18a,18b)(153a,153b)on the 3-modular Brauer characters, whereas(20, 21)corresponds
to (84a, 84b). In [22], the socle series of the projective covers of the Brauer characters 18a

and 18bhave been determined. We only write down the part needed for the argument:



18a
...

84b
153b
18a



,




18b
...

84a
153a
18b



.

This shows that only a simultaneous action on(18a,18b)(153a,153b)and(84a, 84b) is
possible. Thus (ZC) follows.

4.14. The group Ly.The table for Ly is given in Table16. The groups Aclp for p = 2, 3,5
are not yet available inGAP. Looking at the primes 67 and 37 we see by Lemma4.1 that
a normalized automorphism ofSLy must fix each character except possibly 26, 27 and 28.
The corresponding conjugacy classes 51, 52 and 53 are linked by the power map. Hence
(AUT)Q holds, and AclS = 1 or AclS = 〈(51,52, 53)〉. Moreover (ZC)p holds for all
primesp 6= 67.The block variation (B-ZC)C is valid for all characters different from 26,
27 and 28. The principal block variation follows for the primes 2, 7,11,31,37.
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Table 15: The group J3 (see paragraph4.13)

J3 27 · 35 · 5 · 17 · 19 h = 21

Acl (6,7)(13,14)(16,17), (10,11,12), (18,19), (20,21)C3
2 × C3

orders 56, 910, 1013, 1516, 1718, 1920

AclG (6,7)(13,14)(16,17)(20,21) C2

Ach (4,5)(7,8)(17,18), (14,15,16), (11,12), (2,3)

p = 19 2e,11,14 ∈ B0

4,7,17 defect 0

p = 3 2,4,7,17,14 ∈ B0

11 defect 0

Acl3 (6,7)(13,14), (18,19), (20,21)

4.15. The group Ru.(See also [4].) The table for Ru is given in Table17. By Lemma4.1,
usingp = 29 andp = 7, it follows that the characters 2, 3, 11, 12, 13, 15, 16, 30, 31 and
34, 35 have to be fixed, and thus also the classes 25, 26, 21, 22, 23, 30, 31, 28, 29 and 35,
36. From Acl5 it follows that the remaining classes 32, 33, 34 also have to be fixed. So (ZC)
follows.

4.16. The group J4. The table for J4 is shown in Table18. The groups Aclp with p =
2, 3,11 are not yet available inGAP. By Lemma4.1 all irreducible characters are fixed
under an automorphism coming fromSG, except possibly the characters 17, 18 and 46,
47, 48. The permutations generating Ach, however, show that the characters 17, 18 must
be moved together with the characters 2, 3, 4, 5, 6, 7, 9, 10, 12, 13, 15, 16. Thus AchS is
generated by (46,47,48) or AchS = 1.Since the corresponding conjugacy classes 57, 58 and
59 have order 43 and are powers of each other, the variation (ZC)Q is valid. (ZC)p holds for all
primes except possiblyp = 43 and (B-ZC)C is valid for all blocks not corresponding to the
characters 46, 47 and 48. The principal block variation holds forp = 3,5,7,23,29,31,37.

Next we consider the automorphism groups of the sporadic groups which are different
from the simple sporadic groups.

4.17. In the casesM12.2, M22.2, Suz.2,H’S.2, He.2, Fi22.2, Fi′24.2, H’N.2, and J3.2,
conjecture (ZC) follows by Lemma4.1. In the caseJ2.2 the group Acl5 shows that (ZC)
holds. The tables are Table19 for M12.2, Table20 for M22.2, Table21 for Suz.2, Table22
for H’S.2, Table23 for He.2, Table24 for Fi22.2, Table25 for Fi′24.2, Table26 for H’N.2,
Table27 for J3.2, and Table28 for J2.2.
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Table 16: The group Ly (see paragraph4.14)

Ly 28 · 37 · 56 · 7 · 11 · 31 · 37 · 67 h = 53

Acl (17,18)(29,30)(43,44), (27,28)(49,50), (32,33),
(38,42,41,40,39), (45,46), (47,48), (51,52,53)C4

2 × C3 × C5

orders 1117, 2127, 2229,

2432, 3138, 3343, 3745, 4047, 4249, 6751

Ach (2,3)(5,6)(7,8), (21,22)(29,30), (31,32),
(39,40,41,42,43), (24,25), (47,48), (26,27,28)

p = 67 2,5,21,24,26e,29,31,39 ∈ B0

7,47 defect 0

p = 37 2,7,24e,39,47 ∈ B0

5,21,26,29,31 defect 0

p = 31 7,39e ∈ B0

2,5,21,24,26,29,31,47 defect 0

p = 11 5e ∈ B0

2 ∈ B2 defect 1
7 ∈ B4 defect 1

21,24,26,29,31,39,47 defect 0

p = 7 24 ∈ B0

47, 31, 2 ∈ B2 defect 1
21 ∈ B3 defect 1
29 ∈ B10 defect 1

5,7,26,39, defect 0

p = 5 2,5,7,21,26,29,31,39,47 ∈ B0

24 defect 0

p = 3 2,5,7,24,26,29,31,47 ∈ B0

21 ∈ B3 defect 1
39 defect 0

p = 2 31,47 ∈ B0

2 ,5, 21, 24, 29 ∈ B2 defect 7
7, 26, 39 defect 0
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Table 17: The group Ru (see paragraph4.15)

Ru 214 · 33 · 53 · 7 · 13 · 29 h = 36

Acl (21,22,23), (25,26), (28,29),

(30,31), (32,33,34), (35,36) C4
2 × C2

3

orders 1421, 1625, 2028, 2430, 2632, 2935

Ach (11,12,13), (2,3), (30,31),

(15,16), (17,18,19), (34,35)

p = 29 2,11,15,30,34e ∈ B0

17 defect 0

p = 7 34 ∈ B0

11e ∈ B1 defect 1

2,15,17,20 defect 0

p = 5 2,15,17,30e,34 ∈ B0

11 defect 0

Acl5 (21,22,23), (25,26)

4.18. The group McL.2. The table for McL.2 is shown in Table29. By Lemma4.1, using
p = 7, the characters 18, 19 must be fixed. Note there are only two 7-blocks which are not
of defect zero. Letσ ∈ AS. Because the principal block is always fixed by a normalized
automorphism the cyclic blockB1 is invariant underσ.Five of the vertices of the Brauer tree
of B1 belong to characters fixed by each element ofAS. Thus there is no non-trivial graph
automorphism ofB1 induced byσ. By Lemma4.2 we see that the characters 22 and 23
must be fixed byσ . Thus the classes 28, 29 and 32, 33 are fixpoints for each automorphism
of AS . From Acl5, (ZC) follows.

4.19. The group O’N.2. The table for O’N.2 is given in Table30. By Lemma4.1, the
characters 30, 32 and 31, 33 are fixed, and thus also the classes 15, 16, 31, 32, 37, 38. From
Acl7, conjecture (ZC) follows.

Proof of Theorem2.2. The only groups for which (ZC)p is not proved by the previous
arguments are McL withp = 11, Fi23 with p = 23, Ly withp = 67 and J4 with p = 43.
In all these cases the Sylowp-subgroups are cyclic and contain their own centralizers. By
[30] Sylowp-subgroups of group bases are conjugate within the principalp-block. Hence
they are conjugate inCG, and the variation (SYL) follows.
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Table 18: The group J4 (see paragraph4.16)

J4 221 · 33 · 5 · 7 · 113 · 23 · 29 · 31 · 37 · 43 h = 62
Acl (12,13)(24,25)(26,27)(32,33)(39,40)(48,49)(55,56),

(30,31)(53,54), (37,38), (43,45,44), (46,47)(61,62),
(50,51,52), (57,58,59) C3

3 × C4
2

orders 712, 1424, 1426, 2030, 2132, 2437, 2839, 3143,
3346, 3548, 3750, 4053, 4255, 4357, 6661

Ach (2,3)(4,5)(6,7)(9,10)(12,13)(15,16)(17,18),
(36,37)(38,39), (23,24), (56,57,58), (19,20)(33,34),

(53,54,55), (46,47,48)

p = 43 4,9,15,46e,53 ∈ B0
2,6,12,17,19,23,33,36,38,56 defect 0

p = 37 2,15,19,23,53e ∈ B0
4,6,9,12,17,33,36,38,46,56 defect 0

p = 31 36,53,56e ∈ B0
2,4,6,9,12,15,17,19,23,33,38,46 defect 0

p = 29 2,6,9,12,19,33,36,38,53,56 ∈ B0
4,15,17,23,46 defect 0

p = 23 2,4,6,15,23,53,56 ∈ B0
9,12,17,19,33,36,38,46 defect 0

p = 11 2,4,6,9,12,17,19,23,33,36,38,46,53 ∈ B0
15,56 defect 0

p = 7 6e ∈ B0
2 ∈ B2 defect 1
4 ∈ B3 defect 1
9 ∈ B4 defect 1
12 ∈ B5 defect 1
17 ∈ B6 defect 1
15 ∈ B7 defect 1

19,23,33,36,38,46,53,56 defect 0

p = 5 2,4,6,15,17 ∈ B2 defect 1
12,33 ∈ B8 defect 1

38 ∈ B12 defect 1
36 ∈ B17 defect 1

9,19,23,46,53,56 defect 0

p = 3 19 ∈ B0
2,12,17,23,383 ∈ B2 defect 3

4,6,9 ∈ B3 defect 1
33 ∈ B9 defect 1

15,36,46,53,56 defect 0

p = 2 2,4,6,9,12,15,17,19,23,33,36,38,46,56 ∈ B0
53 defect 0
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Table 19: The group M12.2 (see paragraph4.17)

M12.2 27 · 33 · 5 · 11 h = 21
Acl (17,18), (20,21) C2

2
orders 1017, 1220

Ach (7,8), (16,17)

p = 11 7,16 ∈ B0

Table 20: The group M22.2 (see paragraph4.17)

M22.2 28 · 32 · 5 · 7 · 11 h = 21
Acl (8,9)(20,21) C2

orders 78, 1420

Ach (5,7)(6,8)

p = 11 5,6 ∈ B0

Table 21: The group Suz.2 (see paragraph4.17)

Suz.2 213 · 37 · 5 · 7 · 11 · 13 h = 68
Acl (67,68) C2

orders 4067

Ach (61,62)

p = 13 61 ∈ B0

Table 22: The group H’S.2 (see paragraph4.17)

H’S.2 210 · 32 · 53 · 7 · 11 h = 39
Acl (37,38) C2

orders 2037

Ach (34,35)

p = 11 34 ∈ B0
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Table 23: The group He.2 (see paragraph4.17)

He.2 211 · 33 · 52 · 73 · 17 h = 45
Acl (23,24)(44,45), (32,33)(38,39)(41,42) C2

2
orders 832, 1638, 2123, 2441, 4244

Ach (38,40)(39,41), (22,23)(32,33)(42,43

p = 17 32,38,39,42 ∈ B0

22 defect 0

Table 24: The group Fi22.2 (see paragraph4.17)

Fi22.2 218 · 39 · 52 · 7 · 11 · 13 h = 112
Acl (106,107) C2

orders 24106

Ach (89,90)
degrees 136080089

p = 13 89 ∈ B0

Table 25: The group Fi′
24.2 (see paragraph4.17)

Fi′24.2 222 · 316 · 52 · 73 · 11 · 13 · 17 · 23 · 29 h = 183
Acl (71,72)(174,175), (85,86)(178,179),

(91,92)(156,157)(181,182), (159,160) C4
2

orders 2371, 26156, 28159, 3385, 3991, 46174, 66178, 78181

Ach (11,13)(12,14), (147,149)(148,150),
(70,71)(166,168)(167,169),(155,156)

p = 29 11,12,70,147,148,155,166,167 ∈ B0

Table 26: The group H’N.2 (see paragraph4.17)

H’N.2 215 · 36 · 54 · 7 · 11 · 19 h = 78
Acl (34,35)(73,74), (68,69), (76,77) C3

2
orders 2034, 2468, 4073, 4476

Ach (71,72)(73,74), (53,54), (57,58)

p = 19 53,57,73,71 ∈ B0
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Table 27: The group J3.2 (see paragraph4.17)

J3.2 28 · 35 · 5 · 17 · 19 h = 30
Acl (9,10,11)(24,25,26), (15,16)(29,30), (27,28)C2

2 × C3

orders 99, 1715, 1824, 2427, 3429

Ach (18,20,22)(19,21,23), (12,13)(14,15), (8,9)

p = 19 8,12,14,18,29 ∈ B0

Table 28: The group J2.2 (see paragraph4.17)

J2.2 28 · 33 · 52 · 7 h = 27
Acl (26,27) C2

orders 2426

Ach (26,27)
degrees 33626

p = 5 26 ∈ B0

Acl5 id

Table 29: The group McL.2 (see paragraph4.18)

McL.2 28 · 36 · 53 · 7 · 11 h = 33
Acl (14,15)(30,31), (28,29), (32,33) C3

2
orders 1114, 2028, 2230, 2432

Ach (10,12)(11,13), (18,19), (22,23)

p = 7 18 ∈ B0

22 ∈ B1 defect 1
10,11 defect 0

p = 5 10,11,18,22 ∈ B0

Acl5 (14,15)(30,31)(32,33)
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Table 30: The group O’N.2 (see paragraph4.19)

O’N.2 210 · 34 · 5 · 73 · 11 · 19 · 31 h = 45

Acl (15,16)(31,32)(37,38),

(17,18)(28,29)(35,36)(42,43)(44,45),

(23,24)(42,44)(43,45), (19,20,21)(39,40,41) C3
2

orders 1515, 1617, 1919, 2823, 828, 1031,

2435, 3037, 3839, 5642

Ach (24,25)(30,32)(31,33),

(7,8)(26,28)(27,29)(42,43)(44,45),

(12,13)(42,44)(43,45), (36,38,40)(37,39,41)

p = 19 30,37e ∈ B0

31,36e ∈ B1 defect 1

7,12,24,26,27,42 defect 0

p = 7 7,12e,26,27,36,37,42e ∈ B0

24,30,31 defect 0

Acl7 (15,16)(31,32)(37,38)

5. Connection to the defect group problem

Denote byZp thep-adic integers and letB be a block ofZpG. Assume thatGB andHB
are the images of group basesG andH of ZG under the projection ontoB. LetDG and
DH be the defect groups ofG andH respectively, with respect to the blockB. Then the
defect group problemposes the question as to whetherDG andDH are conjugate inB, cf.
[30].
With purely character-theoretical methods it does not seem to be possible to give a positive
answer to this question. However thep-version of the Zassenhaus conjecture is closely
related, as the following discussion shows.

Proposition 5.1. Assume that(ZC)p is valid for ZG. Let B0 be the principal block of
ZpG. LetH,DG andDH be as above. ThenDG andDH are conjugate withinQpB0 :=
Qp ⊗Zp B0.

Proof. LetK be a field of characteristic zero which is sufficently large forG, and which
containsZp. LetP ∈ Sylp(G) and letC be a block ofKGwith projectionπ : KG −→ C.

Because (ZC)p is valid there exists a group isomorphismσ : G −→ H such that for each
x ∈ P the characters of(π ◦ σ)(x) andπ(x) coincide. Thus the projections ofP andσ(P )
are conjugate withinC. Let KB0 := K ⊗Zp B0 = ⊕l

i=1Ci whereCi are blocks ofKG.
Then, conjugating simultaneously in eachCi , the projections ofP andσ(P ) are conjugate
within KB. By the Noether–Deuring theorem it finally follows that the projections are
already conjugate withinQpB.
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Proposition 5.2. Assume that the defect group problem has a positive answer for the prin-
cipal blockB0 of ZpG. LetN be the normalizer of a Sylowp-subgroup ofG and denote by
Autn(B0) the normalized automorphisms ofB0. SetOutn(B0) := Autn(B0)/Inn(B0). Then
there is an injective group homomorphism

γ : Outn(B0) −→ Out(N/Op′(N)).

Proof. Letα ∈ Autn(B0). LetP ∈ Sylp(G). Because the defect groups ofα(G) andG are
conjugate we can assume thatα fixesP. RegardB0 as bimodule where the action ofZpG

on the right is just multiplication inZpG and the action on the left is multiplication inZpG
twisted byα. Denote this bimodule as usual byα(B0)1.

By [24, Lemma 24] the(ZpG,ZpG)-bimoduleα(B0)1 has a Green correspondent onN×
N of the formβ(b0)1, whereb0 denotes the principal block ofN andβ is an automorphism
of b0 which restricted toP coincides withα, where we identifyP with its image inb0.

N is ap-constrained group. ThusZpN/Op′(N) = b0.

By [29,24,12] the automorphismβ is the composition of a group automorphism followed
by an inner automorphism. Bimodules of the formδ(b0)1 whereδ is an inner automorphism
are isomorphic to1(b0)1. The usual bimodule calculus, see for example [25, VII,Lemma
1.3], shows that we may assume thatβ is a group automorphism ofN/Op′(N).Moreover,
β−1◦α restricted toP is given by conjugation with a unitv in ZpN/Op′(N).By Coleman’s
lemma we can choosev ∈ N. Thusβ is unique up to conjugation and its restriction toP
coincides with the restriction ofα toP modulo an inner automorphism ofN.Consequently
the associationα 7→ β defines a mapγ from Outn(B0) to Out(N/Op′(N)). Suppose that
γ (α1) = γ (α2) thenα−1

2 ◦ α1 restricted toP is given by a conjugation ofN/Op′(N).
BecauseOp′(N/Op′(N)) = 1 and becauseN/Op′(N) is p -constrained it follows from
[10] that γ (α−1

2 ◦ α1) = 1. The bimodule1(b0)1 is the Green correspondent of1(B0)1.

Henceα−1
2 ◦ α1 ∈ Inn(B0).

Corollary 5.3. Assume that the finite groupG has a cyclic Sylowp-subgroupP such that
CG(x) ⊂ P for each nontrivial elementx ∈ P. LetB0 be the principal block ofZpG.

Then there is an injective group homomorphismγ : Outn(B0) −→ Out(N), whereN
denotes the normalizer ofP in G.

Proof. Let α ∈ Autn(B0). The condition on the centralizers shows thatP is a T.I. set.
In particularOp′(N) = 1 and the corollary follows from Proposition5.2 because by [30,
Theorem] Sylowp-subgroups ofG andα(G) are conjugate inB0.

Remark 5.4. (a) Corollary5.3might hold much more generally. The assumption on the
Sylow subgroups being cyclic may be superfluous.

(b) Assume thatG has trivial center. So we may regardG as subgroup of Aut(G). If the
image ofγ consists of automorphisms ofN given by conjugation with elements of
NAut(G)(N), then the principal block conjecture (B-ZC)0,p holds.
However, in the situation of the sporadic simple groups Corollary5.3gives no addi-
tional information to the methods used in Section4. For example, considerG = Ly
and the primep = 67. In this caseN is the semidirect product ofP with a cyclic
group of order 22. The assumptions of Corollary5.3 are satisfied. Out(N)= C3.

Now the table for Ly in Section4 shows that Outn(B0) is trivial or acts on Irr(B0,67)

as〈(26,27,28)〉.But Out(Ly) is trivial.
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6. The isomorphism problem for almost simple groups

Following Aschbacher, a finite groupG is calledalmost simpleif its generalized fitting
subgroupF ∗(G) is quasisimple. Thus almost simple groupsG are precisely those groups
with a normal series

1< Z < K < G

such thatK/Z is simple nonabelian,K is perfect,Z is central inK andG/Z embeds into
Aut(K/Z). G is calledalmost sporadicif K/Z is a sporadic simple group. The goal of
this section is to show that the isomorphism problem has a positive answer for an almost
sporadic simple group, and for the double covers of the symmetric groups.

Our results indicate that the isomorphism problem might be true for all almost simple
groups. Note also that in [6] it is shown that (IP) holds for finite groups of Lie type arising
from simply connected algebraic groups over an algebraically closed field as fixpoints of
the Frobenius map.

Lemma 6.1. LetG be a finite group. Assume thatG has a normal series of the form

1< Z(N) < N < G

such thatN is perfect. Assume thatN has a cyclic complement inG generated by an element
t of prime power orderpm. Moreover, assume that the isomorphism type ofN is determined
by its chief series and that(ZC)p holds forZ(G/Z(N)). Then the isomorphism problem
for G has a positive solution.

Proof. LetH be a group basis ofZG. The class sum correspondence shows that there is
an elements ∈ H of the same order ast , the class sum of which coincides with that oft.
PutG = G/Z(N) and letκ : ZG −→ ZG be the corresponding projection. Denoteκ(H)
byH. By assumption there is an automorphismσ of ZG with σ(H) = G andσ fixes the
class sum ofκ(s). Hence we may find an elementr ∈ H which lies in the same conjugacy
class ass and which has the property thatσ(κ(r)) = κ(t).

Denote byM the normal subgroup correspondent toN in H . BecauseZG = ZH we
know by [19] thatG andH have the same chief series. SinceM andN are characteristic
in H andG respectively, the chief series ofN andM coincide. By assumption there is
an isomorphismω betweenN andM. Consider now the following commutative diagram,
whereN = κ(N), ω is induced fromω andλ is the composition ofκ andσ .

1 −→ Z(N) −→ N
κ−→ N −→ 1

↓ ↓ ω ↓ ω
1 −→ Z(M) −→ M

λ−→ N −→ 1

BecauseN is perfect, each automorphism ofN lifts to an automorphism ofN. Thus we
may assume thatω is the identity.

Claim. ω−1(r−1 · ω(n) · r) = t−1 · n · t for eachn ∈ N.
Proof of the claim.An easy calculation shows that

κ(t−1 · n · t) = κ(ω−1(r−1 · ω(n) · r)
for eachn ∈ N. Define a mapδ : N −→ Z(N) by

t−1 · n · t · δ(n) = ω−1(r−1 · ω(n) · r).
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If n ∈ Z(N) then obviously the equation holds. Moreoverδ depends only onκ(n) and thus
δ induces a map fromN to Z(N) which is a group homomorphism. BecauseN is perfect
we get thatδ(n) = 1 for eachn ∈ N and the claim follows.

Define now an isomorphismα : G −→ H by n 7→ ω(n) for n ∈ N andt 7→ r. The
isomorphism is well defined becauset generates by assumption a complement toN .

(We thank M. Hertweck for pointing out an error in a previous version of Lemma 6.1.)

Corollary 6.2. The isomorphism problem has a positive answer for almost sporadic simple
groups.

Proof. As a general reference for the facts used about the 26 sporadic simple groups we
refer to [8]. IfX is a sporadic simple group then|Out(X)|6 2.

Thus an almost sporadic simple groupG is of typeX,X.2, m.X orm.X.2. In the cases
whenG is of typeX,X.2 orm.X it is up to isomorphism determined by its chief series. Note
for this thatm = 2, 3,6 orm = 12 and that the Schur multipliers of the sporadic simple
groups are always cyclic. Thus by [19] the isomorphism problem has a positive solution for
G.

Let nowG be of typem.X.2. We use the normal series

1< Z(m.X) < N = m.X < m.X.2.

Moreover, the character tables show thatX.2 is generated byX and an involution. This
gives in all cases an outer automorphism ofm.X of order 2, and therefore a groupG of
typem.X.2 such thatm.X has a complement of order 2. By Theorem2.1 (ZC) holds for
X.2 = G/Z(N). Consequently, we may apply Lemma6.1 and show that (IP) is valid for
G. By [28, Satz I., p. 95] there are at most two isomorphism types of groups of typem.X.2.
This completes the proof.

Corollary 6.3. The isomorphism problem has a positive answer for the double covers of
the symmetric groupsSymn, n > 5.

Proof. Let Altn be the alternating group of degreen > 5. By [28] the Schur multipliers of
Altn and Symn are cyclic of order 2 except forn = 6,7. The Schur multipliers of Alt6 and
Alt7 are cyclic of order 6. In all casesm.Altn is determined up to isomorphism by its chief
series. By [23] it follows that (ZC) is valid for Symn. If n 6= 6 then the automorphisms of
Symn are inner. In the case Sym6 an outer automorphism interchanges the two isoclinism
classes of the double covers. Thus there is, up to isomorphism, only one double cover in
this case [31, 2.21]. Ifn 6= 6 then we may apply Lemma6.1 analogously as in Corollary
6.2. This completes the proof.
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