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ON THE STRUCTURE OF INTEGRAL GROUP RINGS
OF SPORADIC GROUPS

FRAUKE M. BLEHER aAND WOLFGANG KIMMERLE

Abstract

The object of this article is to examine a conjecture of Zassenhaus
and certain variations of it for integral group rings of sporadic groups.
We prove theQ-variation and the Sylow variation for all sporadic
groups and their automorphism groups. The Zassenhaus conjecture
is established for eighteen of the sporadic simple groups, and for
all automorphism groups of sporadic simple grodpsvhich are
different from G. The proofs are given with the aid of th@AP
computer algebra program by applying a computational procedure
to the ordinary and modular character tables of the groups. It is also
shown that the isomorphism problem of integral group rings has a
positive answer for certain almost simple groups, in particular for
the double covers of the symmetric groups.

1. Introduction and variations on a theme of Zassenhaus

With respect to the structure of torsion subgroups of integral group rings of finite groug
the following conjecture due to Zassenhaus has been central to the research conducted
the last twenty years. The conjecture may be stated as follows; beta finite group.

1.1. The Zassenhaus conjecture, (ZC).et ZG be the integral group ring af. Denote
the group of units of augmentation 1 B(ZG) and letH be a subgroup oV (ZG) of the
same order a6 ; thatis,H is a group basis dG. Then there exists a central automorphism
o of ZG with 6 (G) = H. In other wordsG and H are conjugate withi@G.

The conjecture is also of interest for more general coefficient ringsZh&lve say that
(ZC) holds for a group rin@ G, if the content of the conjecture holdsRG. Roggenkamp
and Scott constructed a counterexample to (ZC) of order 288®F]. In the meantime
more counterexamples have become known, and possibly the smallest counterexample
order 144 [1]11, Satz 2.2.1]. However there is no counterexample known to the following
block variations.

1.2. The block variation, (B-ZC)c. Let H be a group basis dG. Let B be a block of
the Wedderburn decomposition©f5. Let = be the projection o€G onto B. Thenn (G)
andx (H) are conjugate withirB.

1.3. The principal block variation, (B-ZC)g,,. Let H be a group basis dLG. Let p
be a rational prime dividingG| and letBy, ..., B; be the blocks of the Wedderburn
decomposition ofCG associated to the irreduciblé-characters of5 that belong to the
principal p-block. Letz be the projection of£G onto By := @{;13,-. Thenx(G) and

7 (H) are conjugate withirBg.
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Integral group rings of sporadic groups

The isomorphism problem, (IP), is the question as to wheéfl@r= ZH implies that
G = H. Note that the conjecture (ZC) provides a strong answer to the isomorphism prol
lem. However, the block variations do not in general provide a positive solution to th
isomorphism problem. They do when one of the blocks involved is faithful. M. Hertweck
has shown that in general the isomorphism problem has a negative solLtijoi\§ was
pointed out by Hertweck, the counterexamples to the isomorphism problem do not supy
a counterexample to (B-Zg)or to (B-ZC)y, . It is known that the principal block varia-
tion (B-ZC)o,, is valid whenG is p-constrained, cf. [1224, 29]. Recall thaiG is called
p-constrainedf Cg(0, ,(G)/0,(G)) < Oy ,(G). In particular p-soluble groups are
p-constrained. There are many classes of finite groups for which even (ZC) holds. For
survey see [1718, 11]. The results of4], [3] and [5] indicate that it might hold for many
classes of simple groups. Note that the isomorphism problem has a positive solution |
simple groups [19]. Thus the Zassenhaus conjecture for such groups is a question on
automorphism group of the group ring, cf. Sectin

We remark that the block variations stated as above also make sense modularly. It mi
be possible that projections of group baseZ6fare conjugate within the principal block
of KG, whereK denotes an algebraically closed field of characterjstic

Other variations of the Zassenhaus conjecture (ZC) that have been considered in rec
years deal with Sylow-like theorems and class sums-efements. LeX andY be group
bases ofZG.

1.4. The Sylow variation, (SYL).Let S € Sylp(X) andT e Sylp(Y). ThenS andT are
conjugate withinQG.

1.5. The p-variation, (ZC) ,. There exists a group isomorphiskh— ¥ whoseZ-linear
extension preserves all class sum&df corresponding to elements pfpower order.

Note that if (ZC), is satisfied, then Sylow-subgroups o andY are conjugate within
QG. Thus the difference between (SYL) and (4@ that (ZC), implies a positive solution
to (IP), while (SYL) does not. No counterexample to (SYL) is knowrG lis soluble then
(ZC), holds for each prime (see [20]). For other results on these variations we refer to
[9] and [16].

The counterexamples to (ZC) give the impression that automorphisms coming fro
Galois automorphisms of the character field of a block of the Wedderburn decompositic
of CG provide an obstruction to the validity of (ZC). This makes it reasonable to study th
following rational variation.

1.6. TheQ-variation, (ZC) . Let X andY be group bases &G. Then there is an auto-
morphismo of QG such that (X) = Y ando fixes each component of the Wedderburn
decomposition of)G.

Note that (ZC9 and (ZC) coincide whe®@ is a splitting field forG. Clearly, (ZC)
contains a positive answer to (IP), and thus cannot hold in this form for every finite grouj

If one tries to extend the above-mentioned results on the variations of the Zassenh:
conjecture fromp-constrained groups or from soluble groups to general finite groups
then simple groups are certainly the first candidates that have to be considered. By |
classification of the finite simple groups, the simple groups may be roughly divided int
three types: the alternating groups, the simple groups of Lie type, and the twenty-six sporal
groups. Most of the known properties of the sporadic groups are encoded in their charac
tables, anditis therefore natural to deal with them via their character tables. The object of tl
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paper is to give a purely character-theoretical approach to the variations of the Zassenh
conjecture, and to apply this computer-aided method to the sporadic groups.

The paper is organized as follows. In Sectmve state our results on the sporadic
simple groups and their automorphism groups. In Se@iae explain the reduction of
the problems to the study of special automorphisms of spectral tables. In Sédtien
proofs of the results of Sectidhare given. Sectioh discusses the relationship of the defect
group problem and the Green correspondence of automorphisms to our approach. Finally
Section6 we consider the isomorphism problem (IP) for almost simple groups. It is show
that (IP) has a positive solution for the double covers of the symmetric groups, and for ¢
almost sporadic simple groups.

Finally, we would like to mention that we were both partially supported by the DFG
Schwerpunktsprogramm ‘Algorithmische Zahlentheorie und Algebra’.

2. Results on the Zassenhaus variations

Theorem 2.1. Let X be a finite sporadic simple group with nontrivial outer automorphism
group. ThenZC)is valid for Aut(X) = X.2.

Theorem 2.2. The variation(SYL) is valid for all sporadic simple groups and their auto-
morphism groups.

Theorem 2.3. The variation(ZC)q is valid for all sporadic simple groups and their auto-
morphism groups.

Remark 2.4. Let G be an alternating group. Then (ZCholds for G, cf. [18, Corollary
2.8.2]. Itis also known that (Zg)holds forG, cf. [15, Satz 5.9]. The proof is similar to the
proof of the Zassenhaus conjecture for symmetric groups given by Pet@Bjomlerefore
itremains only to establish (SYL) and (ZgJor simple groups of Lie type in order to prove
these variations for all simple groups.

Theorem 2.5. The conjecture¢ZC) and (ZC),, for all p, hold for a sporadic simple group
if in Table 1 the corresponding column is marked withtasign. The third column lists
all primes p for which it is not known whethgzC),, is valid. Analogously, the variations
(B-ZC)¢ and (B-ZC)o,, for all p, hold if there is a+ sign in the table. The last column
lists all primesp for which the principal block conjecture is unknown.

We note that if in the open cases the principal block conjecture (B;Z@kld for each
prime p, then our results would show that the conjecture (ZC) was already valid in thes
open cases.

3. The method

In this section we describe how a computer-aided proof may be obtained to show tf
for a finite group the conjecture (ZC) or one of its variations is valid.

In the spirit of Brauer’'s famous questions the meaninghafracter tablgust means the
matrix of character values and the information obtained from this matrix. So we speak of
spectral tablaf, in addition to the character table, the power map on the conjugacy classe
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Table 1: Results on the Zassenhaus variations

Group | (ZC) (ZC), (zC), (B-ZC)c (B-ZC),p (B-ZC)o,»
valid Vp ? validvp ?
M11 + + — + + —
M12 + + — + + —
Moo + + — + + —
Moz + + — + + —
Moy + + — + + —
N} + + — + + —
Suz + + — + + —
H'S + + — + + —
McL | open open p=11 open open p=25
Cos + + — + + —
Cop + + — + + —
Cop + + — + + —
He open + — + open p=2>5
Fioo | open + — + open p=273
Fio3 | open open p=23 open open p=273,523
Fi,, | open + — + open p=273,23
H'N + + —_ + + —_
Th + + — + + —
B + + — + + —
M open + — open open p=23,13,17
N + + — + + —
O'N + + —_ + + —_
J + + — + + —
Ly open open p =67 open open p=3,567
Ru + + —_— + + —_—
Js open open p =43 open open p=2,11,43

(and therefore the order of representatives of the classes) is given. We denote the spe
table corresponding to the ordinary character table of a gédby ST(G).

We should like to point out that our results rely on the correctness of the spectral table
For our calculations we mainly used tB&P computer algebra system [27], which contains
the tables of [8] and [14]. Some of the operations utilizing the spectral table may be done!
hand, and for some groups — for example, the Baby Monster B — the conjecture (ZC)
one of its variations may be proved solely by looking at the spectral table. For other grou
one needs substantially more information about their modular representations, and this ag
uses more computer algebra results, which essentially depend on computer programs.

If the isomorphism problem f&£G has a positive solution, then the Zassenhaus conjec:
ture (ZC) and its variations may be studied purely in terms of automorphisms. Usually, tf
following conjectures in terms of automorphisms are introduced. Moreover, many resul
hold for a more general coefficient ring thanAn integral domairs of characteristic zero
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is calledG-adapted if no prime dividingG| is invertible inS. In particular, the Zassenhaus
conjectures and their variations may also be stated f6radapted ring. A normalized
ring automorphism of G is anS-algebra automorphism which preserves the augmentatior
map. The group of all normalized ring automorphisms 6fis denoted by Ayt(SG).

3.1. (AUT). Supposethalis G-adapted. Each € Aut, (SG) of SG admits a Zassenhaus
decomposition; that is

oc=a-T,

wherew is induced by a group automorphism@fandr is a central automorphism, which
means that(c) = c forall c € Z(SG).

Itis a consequence of the Noether—Skolem theorem that a central automorplsiém of
is given as conjugation with a unit & G, whereK denotes the quotient field ¢f

3.2. (AUT),. Suppose thaf is G-adapted. Each € Aut,(SG) of SG can be written as
o=uo-T,

such thatx is induced by a group automorphism@f and the restriction of to a Sylow
p-subgroupP of G is given as conjugation with a unit & G.

3.3. (AUT)q. Each normalized ring automorphismof ZG can be written as
o=u-T,

such thatr is induced by a group automorphism@f and theQ-linear extension of fixes
each component of the Wedderburn decompositicp Gf

In order to examine the Zassenhaus conjecture, one starts with an arbitrary normaliz
ring automorphisnmo of SG. Theno preserves the class sum correspondence; that is,
maps class sums to class sums. Moreavegreserves the power map. Sinegermutes
the ordinary simple modules, we get the following result.

Lemma 3.1. [7, (3.4)] Let S be aG-adapted ring. Then each € Aut,(SG) induces an
automorphism o8T(G).

For convenience we again denote the induced automorphism\b also use the same
convention for all other induced actions®f
Ag denotes the subgroup of Aut(ST(Gnduced by Aut(SG), andAg that induced by
Aut(G). Further, we introduce the following notations. A spectral table automorphisr
may be written as a paitry, 72), wherer; andwp are permutations of I¢G) and CI(G)
respectively, such that

m1(x)(m2(C)) = x(C), VYx €lrr(G), VC e CI(G).

Thus Aut(ST(G))induces on Ir¢G) a permutation group which is denoted by Ach, and
on CI(G) a permutation group denoted by Acl. B{d, Satz V.13.5] Ach and Acl are both
isomorphic to AutST (G)). The subgroups induced by Adt) are denoted by Agh and
Aclg; those induced by AytSG), whereS is assumed to b&-adapted, are denoted by
Achg and Acls.

Since central automorphisms induce the identity on the spectral table, the followin
criteria follow now from Lemma3.1.
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Lemma 3.2. Let S be aG-adapted ring.
() [7,3.5] (AUT) holds forSG if, and only if,

As = Ag.

(i) (AUT), holds forSG if, and only if, for eachr € Ag there exists am € Ag such
thata - o fixes the conjugacy class of eagkelement ofG.

(iii) [15, 5.8a]lf C is a conjugacy class af with representative andm € N, thenC”
denotes the conjugacy classdf.
(AUT)q holds forZG if, and only if, for eachr e Acly, there exists am: € Aclg
such that for each conjugacy clasf G there existac € Nwith (a-0)(C) = C"c.

The next lemma concerns the block variations.
Let K be a field which is sufficiently large fa¥, and which contain$. If B, is a p-block
then Irr(B,) denotes the set of ordinary characters belonginB),tor he principalp-block
is denoted byBg .

Lemma3.3. (i) LetB beablocko G. Lety be its corresponding irreducible charac-
ter. Denote by2s the orbit of y under the action oAchg and byQ2s the orbit under
the action ofAchg. Then the projections of group basesSa¥ isomorphic toG are
conjugate inB if, and only if, Qs = Q¢.

(ii) The following are equivalent.

(a) The block variation(B-ZC)k holds forSG.
(b) The number of orbits adhchg and Achg onlrr(G) coincide.
(c) The number of orbits okclg and Achg on CI(G) coincide.
(iii) The principal block variatiorfB-ZC)o, , holds if, and only ifAchs andAchg coincide
onlrr(Bo,p).

Proof. (i) Assume that the orbit®g and Q¢ coincide. LetX be a group basis o G
isomorphic toG. Leto : G —> X be an isomorphism. SincE and G are isomorphic,
there exists € Aut,(SG) with t restricted taG coinciding witho. Let ¢ be the irreducible
character corresponding t@B). Thenvy (t(g)) = x(g) for eachg € G. The assumption
on the orbits shows that theredse Aut(G) with «(B) = t(B). It follows for eachg € G
thaty (a(g)) = x(g) and therefore that (1 o «(g)) = x(g). Thus the projections af
andX on B are conjugate withirB.

Conversely, lett € Aut,(SG). PutX = t(G). The projections ofX and G are by
assumption conjugate. Denote this conjugationrb¥hent 1 o y is an automorphism of
G. Extend this automorphism t§ G. Theny (B) = t(B).

Part (iii) follows from part (i), as does the fact that part (ii)(a) implies part (ii)(b). The
equivalence of parts (ii)(b) and (ii)(c) follows from a theorem of Brau&, [Satz V.13.5].
Since Acly; is a subgroup of Acfithe orbits of both groups must already coincide, provided
that their number is the same. This shows that part (ii)(b) implies part (ii)(a). O

In order to apply the previous criteria, it is of course crucial to know when a spectre
table automorphism comes from an automorphisn§Gf In Section4 we shall collect
several necessary conditions. The following is a character-theoretical interpretatidn of |
Proposition 2.1.1] and2pb, 1X 1.6] respectively. It gives a sufficient criterion in particular
in the semilocal ands-adapted case; that is, for example whee- Z, andr = 7(G).
Note that it may also be applied whenis smaller thamr (G).
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Proposition 3.4. LetG be afinite group. Assume th&its a Dedekind domain with quotient
field K. Assume thaf has only finitely many maximal ideals. Letbe a spectral table
automorphism o8T(G). For each prime ideaP of S denote its localization b§p. Assume
that there exists for each an Sp-algebra automorphismp of Sp ® s SG which induces on
K G the same permutation of the blocksf;s aso. Theno is induced by an automorphism
of SG.

Proof. The condition thatrp induces onK G the same permutation of the blocks @as
means that forP, Q prime the automorphismsp anda differ when extended t& G
only by a central automorphism. By [11, Proposition 2.1.1] we get an automorphm
SG which differs when extended t§» G only by an inner automorphism froap . Thusa
induceso on the spectral table. O

4. Proof of the Zassenhaus variations

Throughout,S denotes a-adapted ring. With respect to blocks with cyclic defect, we
use the following results, proved in [7].

Lemma 4.1. LetG be a group with cyclic Sylow-subgroups, and el ;, be the principal
p-block. Then every e Aut,(SG) fixes everyy e Irr(G) which belongs tdBg , and is
not exceptional fop.

Note thaty € Irr(G) is calledexceptionafor p if there is another ordinary irreducible
character which restricts in the same wayya® the p-regular conjugacy classes.

Lemma 4.2. Let B, be a cyclicp-block of G which is fixed by € Aut,(SG). Theno
induces a graph automorphism of the Brauer tree correspondirR),to

For noncyclic blocks, we use the following result, proved in [3].

Lemma 4.3. LetG be afinite group and lgt be arational prime. Then evesy e Aut, (SG)
induces an automorphism of tipemodular character table of;.

As a corollary we get the following lemma.

Lemma 4.4. Let G be a finite group and lep be a rational prime. LeD = (d,,) be the
p-modular decomposition matrix of. Then every € Aut, (ZG) operates orD as

dd(x),o(w) =dy,p

In some cases we look at socle series of projective indecomposable modules. Here we
the following result, which follows from the fact that every normalized ring automorphism
of SG induces an autoequivalence of the module category.

Lemma 4.5. Let G be a finite group and let € Aut,(SG). If k is a field such that there
exists a ring homomorphisth— k, theno induces a normalizekl-algebra automorphism
of kG which we again denote ky. Let M be akG-module. Thew operates on the socle
series ofM as

0 (S0G (M) /506G _1(M)) = 506G (0 (M))/S0G-41(0 (M),
wheresog (M) = soc(M)andsog (M) is the preimage ofoc(M/sog_1(M)) under the
canonical epimorphissM — M /soG_1(M).
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The groups M1, Coy, B, b and J can be treated by using only the spectral tablé@T
and Lemmad.1 (see [2]). The remaining Mathieu groups and Th have already been dea
with in [7].

To prove the remaining results, we apply the following computational procedure to eac
groupG. Compute AutST(G)). This may easily be done with the aid®@AP. Consider then
the action of a spectral table automorphism on the irreducible characters, and determine
orbits of Aut(ST(G))on Irr(G). Determine with the aid of Lemmadsland4.2irreducible
characters which must be fixed under the action of a spectral automorphism which is induc
by an automorphism &fG. Consider the subgroup of Aut(ST(G))which stabilizes these
characters and determine the subgrdup which consists of the spectral automorphisms
that come from group automorphisms. Clearly; is contained inA. Consider now the
action of elements oft \ Ag on the conjugacy classes 6f

To apply this procedure we will write down for each groGa table as follows. In the
first row we state the name df, its order and the number of conjugacy clasee3he
second row consists of a set of generators for, Aalowed by the isomorphism type of
Aut(ST(G)). The third row lists the orders of the conjugacy classes given in row 2. In th
case wheréOut(G)| = 2, the following row shows the generators of AclThe next row
contains a set of generators for Ach. In the following rows cerpablocks are examined.
For each such primg, it is stated to which kind of blocks the ordinary characters in Ach
belong. We give this information for each character which is the first element of a cycle of e
element of Ach. If a character is marked byeathis means that the character is exceptional
for p. In cases where the Syloprsubgroups are noncyclic and tipemodular character
table is known, generators for the character table automorphismspfitieelular character
table are given as permutations of numbers corresponding to the conjugacy classes, ca
Acl,.

4.1. The group SuzThe table for Suz is given in Tabk By Lemma4.2, it follows, using

the cyclic 5-blockBs, that the characters 7, 8 and 31, 32 must be moved together. Th
characters 31, 32 correspond to the classes 32, 33, whereas the characters 7, 8 corres
to the classes 14, 15, 22, 23, 38, 39. FrompAeid Acl we conclude that (ZC) holds.

4.2. The group H’'S.(See also4].) The table for H'S is given in Tabl8. From Ack it
follows that the classes 19, 20 and 23, 24 must be moved together. Using the notation
in [32, Appendix], it follows that the operation (19,20)(23,24) on the conjugacy classe
corresponds to the operatigd9,49%)(770, 770°) on the 3-modular Brauer characters,
whereas(15, 16) corresponds t@154, 154%). In [32], the socle series of the projective
covers of the Brauer characters 1%hd 154 have respectively been determined as:

154, 154
770 770¢
77 154 |, 77 154
770° 770
154 154

This shows that only a simultaneous operatiorfor0, 770°) and(154, 15%) is possible.
Thus the validity of (ZC) follows.
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Table 2: The group Suz (see paragrdph)

Suz 213.37.52.7.11.13 h=43
Acl | (14,15)(22,23)(38,39), (32,33), (35,36), (41,42)  C3
orders 614, 922, 1332, 1535, 183g, 2141

Aclg | (14,15)(22,23)(38,39)(32,33)(35,36)(41,42) Cs

Ach | (7,8)(18,19)(21,22), (31,32), (13,14), (25,26)

p=>5 13e € By defect 1
7,31 € Bz defect 1
18,21,25 defect O
Acls (14,15)(22,23)(38,39), (32,33), (41,42)
p=2 7,13,18e,21,25 € Bo
31 € B defect 2
Acl, (22,23), (32,33)(35,36)(41,42)

Table 3: The group H'S (see paragrapil)

H'S 29.32.53.7.11 h=24
Acl | (15,16), (19,20), (23,24) c3
orders 815, 1119, 203
Aclg | (15,16)(19,20)(23,24) Cs

Ach | (5,6),(14,15), (11,12)

p=3 5,11,14 € B defect 2
Acls | (15,16), (19,20)(23,24)
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Table 4: The group McL (see paragrapi3)

McL

27.36.5%.7.11

h=24

Acl

orders

AC|G

Ach

(10,11)(19,20), (13,14), (16,17), (21,22)(23,24)  C5

710, 913, 1136, 1419, 1523, 3023

(10,11)(19,20)(13,14)(21,22)(23,24)

(16,17)(18,19), (21,22), (7,8), (5,6)(23,24)

7e
5,16,18,21,23

16e
18e
5,7,21,23

5e,7,16,21,23¢
18
(10,11)(19,20)(13,14), (16,17)

5e,7,18,21e,23e
16
(10,11)(19,20), (16,17)

5,16,18,23
7,21
(10,11)(21,22), (13,14), (16,17)

C

€ Bp
defect O

€ Bg
€ By defect 1
defect 0

€ Bop

defect O

€ Bop
defect O

€ Bg
defect O

https://doi.org/10.1112/51461157000000309 Published online by Cah@Bdge University Press


https://doi.org/10.1112/S1461157000000309

Integral group rings of sporadic groups

4.3. The group McL. The table for McL is given in Tablé. Thus we find that either
Aclg = Aclg or Aclg = (Aclg, (16,17)). The only possible classes that may be moved
have order 11, and these classes are linked by the power map. Consegaet)y, is
valid for McL, and (ZC), is valid for all p # 11. SinceAg andAg have the same orbits,
(B-ZC)c is valid. The principal block variation (B-Z@), holds if the characters 7 and 8
are not inBg,,, which is the case fop # 2, 5.

4.4. The group Ca. (See also [4].) The table for Gds given in Tables. By Lemmad. 1,
it follows, using p = 23, that the characters 6, 7 and 10, 11 are fixed, and thus also th
classes 24, 25, 36, 37, 38, 39. From Aale conclude that (ZC) is valid.

Table 5: The group CGo(see paragraph.4)

Coz 210.37.53.7.11.23 h=42
Acl (24,25)(36,37), (33,34), (38,39) cg
orders 1154, 2033, 2236, 2333
Ach (6,7)(18,19), (10,11), (16,17)
p =23 6,10,16e € By
18 defect O
p=3 6,10,16,18 € Bo
Aclz (24,25)(36,37)(33,34)(38,39)

Table 6: The group Co(see paragrap#.5)

Co 218.36.53.7.11.23 h=60
Acl (46,47)(59,60), (43,44), (53,54) C3
orders 1443, 156, 2353, 3059
Ach | (12,13)(31,32), (22,23), (10,11)
p =23 10e,12,22 € Bo
31 defect O
p=2 10,12,22e,31 € Bo
Acl (46,46)(59,60)
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4.5. The group Ca. (See also4].) The table for Cgis given in Tables. By Lemmad.1,
it follows, usingp = 23, that the characters 12, 13 and 22, 23 are fixed, and thus also tf
classes 46, 47, 59, 60, 43, 44. From Aale conclude that (ZC) holds.

4.6. The group He.The table for He is given in Tablé. Thus we get that either Acl=
Aclg or

Acls = ((12, 13)(15,16)(21,22)(23,24)(30, 31)(32 33), (26,27)).

Since all these classes are linked by the power r@gT) is valid for He. The classes
26 and 27 correspond to the characters 7 and 8 and their representatives have order 17.
an outer group automorphism interchanges these conjugacy classes. Thus it follows t
(ZC)q7 is valid, and hence that (ZGholds for all p. BecauseAg and A have the same
orbits, (B-ZC)- is valid. The principal block variation is valid if the characters 7 and 8 are
not in Bg. Thus it holds forp # 2, 5.

4.7. The group Fpy. The table for Fiy is given in Table8. In this case the modular
considerations do not give any further restrictions forgAdélso, Acl and Ack coincide.
Aclz and Acb are not yet available iGAP. Thus Acl; < Aclg < Acl. The orbits of Acl
and Acl; coincide. Thus (B-Z@Q) is valid. (ZC), is valid for all primesp since for eachp
there is at most one class involved in Acl whose representative-islament. The principal
block variations are valid, except possibly for= 2, 3.

4.8. The group Fbs. The table for Fizis given in Tabled. The groups Agl, Aclz and Ack
are not yet available icAP. By Lemma4.1we find that

1 < Aclg < ((80, 81)(78,79)).

Since the corresponding characters 17, 18 and 28, 29 are complex conjugate, the cla:
are linked by the power map. ThudUT)q holds. Obviously (ZG) is valid for p # 23.
(B-ZC) is open for the blocks corresponding to 17, 18, 28 and 29. The principal blocl
variation holds, except possibly fer= 2, 3,5, 23.

4.9. The group Fi,,. The table for Fj, is given in Tablel0. The groups Ael Acls, Acls
and Ack are not yet available iG@AP. From the table we get

Aclg < Acls < (Aclg, (106,107), (101,102, (71,72)(104)105)).

The representatives of the classes have order 45, 39, 21 and 42. HengeigZ@ld.
Moreover, all these classes are linked by the power map. TAUF )q is valid for Fi,.

It also follows that (ZC) is valid for all p. BecauseAg and Ag have the same orbits,
(B-ZC)¢ is valid. The principal block variation is valid fgr = 5,7,11,13,17,29s. Note

for p = 29 that the exceptional characters 91, 92 are moved by a group automorphism.
remains open fop = 2, 3,23. For p = 23 note that the characters 6, 7 are exceptional,
and are not moved by a group automorphism.

4.10. The group H'N. (See also [4].) The table for H'N is given in Takld. By Lemma
4.1, the characters 51, 52 have to be fixed, and thus also the classes 39, 40. Using Len
4.2 and the cyclic 11-blociB1, (ZC) follows.
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Table 7: The group He (see paragrapB)

He 210.33.52.78.17 h=233
Acl (12,13)(15,16)(21,22)(23,24)(30,31)(32,33),
(26,27), (28,29) c3
orders 712, T15, 1401, 1453, 1726, 2158, 2130, 2832
Aclg (12,13)(15,16)(21,22)(23,24)(30,31)(32,33)(26,27) Cy
Ach (2,3)(4,5)(10,11)(17,18)(20,21)(23,24),
(7,8), (30,31)
p=17 7e,30 € Bo
2,4,10,17,20,23 defect O
p=7 2e,4e,10e,20e,23e,30e € Bo
17e € By defect 1
7 defect O
p=5 2,4,7,17,30 € By
10,20,23 defect O
Acls (12,13)(15,16)(21,22)(23,24)(30,31)(32,33), (26,27)
p=3 30e € Bo
2,7,10 € By defect 2
4,17,20 € By defect 1
5,18,21 € Bz defect 1
23 defect O
Aclz (12,13)(15,16)(21,22)(23,24)(32,33), (26,27)
p=2 2,4,7,10,17,20,23 € By
30 defect O
Acl, (12,13)(15,16)(30,31), (26,27), (28,29)
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Table 8: The group kb (see paragraph.7)

Fiso 217.3%.52.7.11.13 h=65

Acl | (36,37)(61,62), (42,43), (49,50), (53,54), (55,56)  C3
orders 1136, 1242, 1349, 1653, 1855, 2251

Aclg (36,37)(61,62)(42,43)(49,50)(53,54)(55,56) Co

Ach | (40,41)(51,52), (31,32), (22,23), (33,34), (43,44)

p=13 22e € By

31,33,40,43,51 defect O

5le € By defect 1

22,31,33,43 defect O

p=17 22,31,33,40,43,51 defect 0

p=>5 22,31,33,40,43,51 defect 0
p=3 22,31e,33e,40,43e,51 € By
p=2 22,31e,33e,40,43e,51 € Bg
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Table 9: The group ki (see paragraph.8)

Fiog 218.313.52.7.11.13-17- 23 h=098
Acl (57,58)(85,86)(95,96), (63,64), (78,79), (80,81) Cg‘
orders 1357, 1663, 2278, 2380, 2685, 3%s5
Ach (62,63)(80,81)(94,95), (15,16), (28,29), (17,18)
p=23 17e,94 € By
15,28,62,80 defect O
p=17 15,62,94 € By
17,28,80 defect 0
p=13 62e € By
94e € By defect 1
80e € Bs defect 1
15,17,18 defect O
p=11 28e € By defect 1
15 € Bz defect 1
17,62,80,94 defect 0
p=7 15,17,28,62,80,94 defect O
15,17,62,80,94 defect 0
p=3 15,17,28,62,80,94 € Bo
p=2 15e,17,28€,62,80 € By
94 defect O

https://doi.org/10.1112/51461157000000309 Published online by Cah@Bdge University Press


https://doi.org/10.1112/S1461157000000309

Integral group rings of sporadic groups

Table 10: The group &j (see paragraph.9)

Fiby, 221.316.52.7%.11.13.17-23- 29 h =108
Acl | (46,47)(78,79)(95,96), (65,66), (71,72)(104,105),
(74,75), (81,82), (85,86), (88,89), (92,93),
(99,100), (101,102), (106,107) cit
orders 1246, 1855, 2171, 2374, 2478, 2451, 27gs,
2%g, 3392, 3695, 3%09, 39101, 42104, 45106
Aclg (46,47)(78,79)(95,96)(65,66)(71,72)(104,105) C>
(74,75)(81,82)(85,86)(88,89)(101,102)(106,107)
Ach (39,40)(46,47)(80,81), (14,15), (60,61)(77,78),
(6,7), (101,102), (64,65), (91,92), (86,87),
(69,70), (97,98), (99,100)
p =29 6,86,91e,97 € Bo
14,39,46,60,64,69,77,80,99,101 defect O
p =23 6e,97 € By
14,39,46,60,64,69,77,80,86,91,99,101 defect O
p=17 86,97 € Bo
6,14,39,46,60,64,69,77,80,91,99,101 defect 0
69 € By defect1
14,46,39,64,91,101 € Bgdefect1
60,77,80,86,97,99 defect O
p=11 86e € Bz defect 1
6,14,39,46,60,64,69,77,80,91,97,99,101 defect O
p=7 14,39,60,64,77,80,91 € By
6,46,69,86,97,99,101 defect O
p=5 46,64,77,91 € By defect 2
99e € Bypdefect 1
all other defect O
p=3 6,14,39,46,60,64,69,77,80,86,97,99,101 € Bo
91 € By defect 2
p=2 6,14,39,46,60,69,77,80,86,91,99,101 € By
64 € By defect 2
97 defect O
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Table 11: The group H'N (see paragrafh0)

H'N

214.36.56.7.11.19

Acl

orders

AC|G

Ach

(11,12)(24,25)(27,28)(35,36)(42,43)(46,47)(49,50),
(37,38), (39,40), (51,52), (53,54)
511, 1024, 10,7, 1535, 1937,

2039, 2042, 2546, 3049, 3551, 4053

(11,12)(24,25)(27,28)(35,36)(42,43)(46,47)(49,50)

(37,38)(51,52)(53,54)

(2,3)(6,7)(11,12)(13,14)(21,22)(27,28)(30,31),

(25,26), (51,52), (15,16), (35,36)

51

2,15,25,27,35 € By defect 1

6,11,13,21,30

C2

€ B

defect O

4.11. The group M. The tables for M are given in Tabld® and13. The groups Agl

for p = 2,3,5,7,11 or 13 are not yet available iIBAP. By Lemma4.1 we see that

1 < Aclg < ((187,188)). These classes have representatives of order 95 and are linked
the power map. It follows thaAUT)g and (ZC), are valid for allp. (B-ZC)c¢ holds for all
blocks except the two blocks belonging to the characters 89 and 90. Finally, the princip

block variation is valid for all primes except 2, 13,17.

4.12. The group O'N.The table for O’'N is given in Tablg4. By Lemmat.1, the characters
21,22,23,24,26,27,28and 29, 30 are fixed, and thus also the conjugacy classes 16, 17
23,24 and 27, 28. Further, the operation (18,19)(20,21) on the classes is not possible, si
the characters 21, 22 are fixed. By Lem#3, it follows using the cyclic 5-blociB; that

the characters 3, 4 and 13, 14 must be moved together. The characters 3, 4 correspor
the classes 29, 30, whereas the characters 13, 14 correspond to the operation on the cle
(10,11)(18,20)(19,21). From Aglt follows that the classes 25, 26 and 29, 30 have to be

moved together. So (ZC) follows.
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Table 12: The group M — First part (see paragrdptiiand Tablel3)

M 2%6.320.59.76.112.13%.17.19. 23
.29.31.41.47-59.71 h=194
Acl (76,77)(135,136)(137,138)(165,166)(181,182),

(105,106)(160,161)(183,184), (121,122)(172,173),
(125,126), (132,133)(179,180), (139,140)(185,186),
(149,150), (152,153), (177,178), (187,188),
(189,190), (193,194) cB
orders | 2376, 31105, 3%121, 40125, 44132, 46135, 46137, 47139,
56149, 5952, 62160, 69165, 71169, 78172, 87177,
88179, 92181, 93183, 94185, 95187, 104159, 119103

Ach | (16,17)(55,56)(83,84)(85,86)(128,129), (102,103),
(26,27)(105,106)(107,108), (44,45)(99,100),
(41,42)(135,136), (53,54)(74,75), (81,82), (59,60),
(39,40), (71,72), (89,90), (124,125), (47,48)

p=T71 16,26,39¢,41,44,53,81,102,105,124,128,135 € By
47,55,59,71,74,83,85,89,99,107 defect 0
p =59 16,26,41,74,81,83,99,102¢,105,135 € Bg
39,44,47,53,55,59,71,85,89,107,124,128 defect 0
p =47 41,44,53e,59,85,124 € Bo
16,26,71,74e,105 € Bz defect1
39,47,55,81,83,89,99,102,107,128,135 defect 0
p=41 16,26,44,47,55,59,71,83,99,102,107,128 € By
39,41,53,74,81,85,89,105,124,135 defect 0
p=231 16,105e € By
55,107 € By defect 1
26,41,124 € Bg defect 1
39,44,47,53,59,71,74,81,83,85,89,99,102,128,135 defect 0
p =29 16,39,59,85,102 € Bo
55,71 € By defect 1

26,41,44,47,53,74,81,83,89,99,105,107,124,128,135 defect O

p =23 41,59,83 € Bo
85 € By defect 1
55 € Bz defectl
81,128 € By defectl
16 € By defectl
26,39,44,47,53,71,74,89,99,102,105,107,124,135 defect 0
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Table 13: The group M — Second part (see paragrapthand Tablel2)

M 2%6.320.59.76.112.133.17-19. 23
.29.31-41-47-59.-71 h=194
p =19 26,39 € Bo
107 € By defect 1
102,105 € Bz defect 1
89%e € Bsdefect 1

p=17 53,71
124
102
47
16,26,39,41,44,55,59,74,81,83,85,
89,99,105,107,128,135

p=13 16,44,55,71,81,83,85,89,99
128
26,39,41,47,53,59,74,102,105,107,124,135

p=11 44,71,89

99

135

41
16,26,39,47,53,55,59,74,81,
83,85,102,105,107,124,128

p=7 26,53,59,71,74,81,102,107,124
47
16,39,41,44,55,83,85,89,99,105,128,135

26,39,41,44,47,59,81,99,102,105,107,124,135
89%e
16,53,55,71,74,83,85,128

=
Il
o

16,39,41,44,47,53,55,59,74,
81,83,85,89,99,102,124,128,135
26,105,107
71

=
Il
w

p=2 16,26,39,41,44,47,53,55,59,71,74,81,
83,85,89,99,105,107,128,135

124

102

16,41,44,47,53,55,59,71,74,81,83,85,99,124,128,135 defect O

€ Bg
€ By defect 1
€ Bsdefect 1
€ Bs defect 1
defect 0
defect 0

€ Bg
€ By defect 1
defect 0

€ Bg
€ By defect 1
€ Bg defect 1
€ Bg defect 1
defect 0
defect 0

€ Bo
€ Bg defect 1
defect O

€ Bg
€ By defect 1
defect O

€ Bg

€ Bg
€ By defect 1
€ B4 defect 3

€ Bg
€ Bg
€ B4 defect 4
defect O
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Table 14: The group O'N (see paragraphi2)

O'N 29.3*.5.73.11.19.31 h=30
Acl (10,11)(18,20(19,21), (18,19)(20,21), (16,17),
(22,23,24), (25,26), (27,28), (29,30) CS x C3
orders 810, 1516, 1618, 192, 2025, 287, 3129
Aclg (10,11)(18,20)(19,21)(25,26)(29,30) Co

Ach | (8,9)(13,14), (16,17)(21,22), (23,24), (26,27,28),
(5,6), (29,30), (3,4)

p=31 3e,21,23,26,29 € Bg
5,8,13,16 defect O
p=5 3,13 € By defect 1
5e € B defect 1
23e € Bz defect 1
p=7 3,5,8,13,16,21,26,29¢ € Bg
23 defect 0

Acl; | (10,11)(18,20)(19,21), (16,17), (25,26)(29,30)

4.13. The group &. The table for g is given in Tablel5. By Lemma4.1, usingp =

19, it follows that the characters 11, 12 and 14, 15, 16 have to be fixed, and thus tl
classes 18, 19 and 10, 11, 12 have to be fixed as well. Using the notation 184, iiit |
follows that the operation (6,7)(13,14) on the conjugacy classes corresponds to the operat
(18a,18b)(153a,153b)on the 3-modular Brauer characters, whet@8s21) corresponds

to (84a, 84b). In [22], the socle series of the projective covers of the Brauer characters 18
and 18bhave been determined. We only write down the part needed for the argument:

18a 18b
84b |- 84a
153bh 153a
18a 18b

This shows that only a simultaneous action(@8a,18b)(153a,153b) and (84a, 84b) is
possible. Thus (ZC) follows.

4.14. The group Ly.The table for Ly is given in Tabl&6. The groups Aglfor p = 2,3,5

are not yet available iGAP. Looking at the primes 67 and 37 we see by Lemhiathat

a normalized automorphism 6ty must fix each character except possibly 26, 27 and 28.
The corresponding conjugacy classes 51, 52 and 53 are linked by the power map. Hel
(AUT)g holds, and Agt = 1 or Acls = ((51,52, 53)). Moreover (ZC) holds for all
primesp # 67. The block variation (B-ZQ) is valid for all characters different from 26,
27 and 28. The principal block variation follows for the prime§ 211,31, 37.
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Table 15: The groupsXsee paragrapf.13)

N 27.3°.5.17-19 h=21
Acl (6,7)(13,14)(16,17), (10,11,12), (18,19), (20,21612 x C3
orders 567 910, 1013, 1515, 1718» 1920
Aclg (6,7)(13,14)(16,17)(20,21) Co
Ach (4,5)(7,8)(17,18), (14,15,16), (11,12), (2,3)
p=19 2e,11,14 € Bo
47,17 defect O
p=3 2,4,7,17,14 € By
11 defect O
Acls (6,7)(13,14), (18,19), (20,21)

4.15. The group Ru.(See also4].) The table for Ru is given in Table7. By Lemmad.1,
usingp = 29 andp = 7, it follows that the characters 2, 3, 11, 12, 13, 15, 16, 30, 31 anc
34, 35 have to be fixed, and thus also the classes 25, 26, 21, 22, 23, 30, 31, 28, 29 and
36. From Ack it follows that the remaining classes 32, 33, 34 also have to be fixed. So (ZC
follows.

4.16. The group J. The table for 4 is shown in Tablel8. The groups Agl with p =

2, 3,11 are not yet available iGAP. By Lemma4.1 all irreducible characters are fixed
under an automorphism coming fro§iG, except possibly the characters 17, 18 and 46,
47, 48. The permutations generating Ach, however, show that the characters 17, 18 m
be moved together with the characters 2, 3, 4, 5, 6, 7, 9, 10, 12, 13, 15, 16. ThussAch
generated by (46,47,48) or Agh= 1. Since the corresponding conjugacy classes 57, 58 anc
59 have order 43 and are powers of each other, the variatiog(z@alid. (ZC), holds for all
primes except possibly = 43 and (B-ZC) is valid for all blocks not corresponding to the
characters 46, 47 and 48. The principal block variation holdg fer3, 5, 7, 23,29, 31, 37.

Next we consider the automorphism groups of the sporadic groups which are differe
from the simple sporadic groups.

4.17. In the caseM12.2, M2,.2, Suz.2,H'S.2, He.2, Fiy».2, Fi5,.2, H'N.2, and J3.2,
conjecture (ZC) follows by Lemmad.1. In the casd,.2 the group Ad} shows that (ZC)
holds. The tables are Tahl® for M12.2, Table20 for M25.2, Table21 for Suz.2, Table€2
for H'S.2, Table23 for He.2, Table24 for Fiy,.2, Table25 for Fi),,.2, Table26 for H'N.2,
Table27for 3.2, and Table8 for J.2.
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Table 16: The group Ly (see paragrapli4)

Ly

28.37.56.7.11.31.37.67

h=53

Acl

orders

Ach

1137, 2157, 229,
2437, 3138, 3343, 3745, 4047, 4249, 6751

(2,3)(5,6)(7,8), (21,22)(29,30), (31,32),
(39,40,41,42,43), (24,25), (47,48), (26,27,28)

2,5,21,24,26€,29,31,39
7,47

2,7,24e,39,47
5,21,26,29,31

7,39
2,5,21,24,26,29,31,47

5e

2

7
21,24,26,29,31,39,47

24
47,31, 2
21
29
5,7,26,39,

2,5,7,21,26,29,31,39,47
24

2,5,7,24,26,29,31,47
21
39

31,47
2.,5,21, 24,29
7,26, 39

(17,18)(29,30)(43,44), (27,28)(49,50), (32,33),
(38,42,41,40,39), (45,46), (47,48), (51,52,53)C4 x C3 x Cs

€ By
defect O

€ By
defect O

€ Bo
defect O

€ Bg
€ By defect 1
€ By defect1
defect 0

€ Bg
€ By defect 1
€ Bz defectl
€ Bipdefect1
defect 0

€ Bo
defect O

€ Bo
€ Bz defect 1
defect O

€ Bo
€ By defect 7
defect O
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Table 17: The group Ru (see paragraphs)

Ru 214.33.5%.7.13.29 h=36
Acl (21,22,23), (25,26), (28,29),
(30,31), (32,33,34), (35,36) C3 x C?
orders 1421, 1625, 20281 2430, 2632, 2%5

Ach (11,12,13), (2,3), (30,31),
(15,16), (17,18,19), (34,35)

p=29 2,11,15,30,34e € Bo
17 defect O
p=7 34 € Bo
1lle € By defect 1
2,15,17,20 defect 0
p=>5 2,15,17,30e,34 € Bo
11 defect 0
Acls (21,22,23), (25,26)

4.18. The group McL.2. The table for McL2 is shown in Tabl@9. By Lemma&4.1, using

p = 7, the characters 18, 19 must be fixed. Note there are only two 7-blocks which are r
of defect zero. Letr € Ag. Because the principal block is always fixed by a normalized
automorphism the cyclic block; is invariant undes. Five of the vertices of the Brauer tree
of B1 belong to characters fixed by each element ¢f Thus there is no non-trivial graph
automorphism ofB; induced byo. By Lemma4.2 we see that the characters 22 and 23
must be fixed by . Thus the classes 28, 29 and 32, 33 are fixpoints for each automorphis
of As. From Ack, (ZC) follows.

4.19. The group O'N.2 The table for O’'N.2 is given in Tabl80. By Lemma4.1, the
characters 30, 32 and 31, 33 are fixed, and thus also the classes 15, 16, 31, 32, 37, 38. F
Aclz, conjecture (ZC) follows.

Proof of Theoren2.2. The only groups for which (Z¢)is not proved by the previous
arguments are McL witlp = 11, Fpgz with p = 23, Ly with p = 67 and J with p = 43.

In all these cases the Sylowsubgroups are cyclic and contain their own centralizers. By
[30] Sylow p-subgroups of group bases are conjugate within the pringidbck. Hence
they are conjugate i@ G, and the variation (SYL) follows. O
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Table 18: The groupsXsee paragraph.16)

I 221.33.5.7.11%3.23.29-31-37-43 h=62
Acl (12,13)(24,25)(26,27)(32,33)(39,40)(48,49)(55,56),
(30,31)(53,54), (37,38), (43,45,44), (46,47)(61,62),
(50,51,52), (57,58,59) C3xC3
orders 712, 1404, 1406, 2030, 2132, 2437, 2839, 3143,
3346, 3548, 3750, 4053, 4255, 4357, 6661
Ach (2,3)(4,5)(6,7)(9,10)(12,13)(15,16)(17,18),
(36,37)(38,39), (23,24), (56,57,58), (19,20)(33,34),
(53,54,55), (46,47,48)
p =43 4,9,15,46e,53 € Bo
2,6,12,17,19,23,33,36,38,56 defect 0
p=37 2,15,19,23,53e € Bg
4,6,9,12,17,33,36,38,46,56 defect 0
p=231 36,53,56e € Bo
2,4,6,9,12,15,17,19,23,33,38,46 defect 0
p=29 2,6,9,12,19,33,36,38,53,56 € Bg
4,15,17,23,46 defect 0
p=23 2,4,6,15,23,53,56 € Bo
9,12,17,19,33,36,38,46 defect 0
p=11 2,4,6,9,12,17,19,23,33,36,38,46,53 € Bg
15,56 defect 0
p=7 6e € Bo
2 € By defect 1
4 € Bz defectl
9 € By defectl
12 € Bs defect 1
17 € Bg defect 1
15 € By defect 1
19,23,33,36,38,46,53,56 defect 0
p=5 2,4,6,15,17 € By defect 1
12,33 € Bgdefect 1
38 € By defect 1
36 € By7defect 1
9,19,23,46,53,56 defect 0
p=3 19 € Bg
2,12,17,23,383 € By defect 3
4,6,9 € Bz defect 1
33 € Bg defect 1
15,36,46,53,56 defect 0
p=2 2,4,6,9,12,15,17,19,23,33,36,38,46,56 € Bg
53 defect 0
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Table 19: The group .2 (see paragraph 17)

M2 | 27.33.5.11 h=21
Acl | (17,18),(20,21) C3
orders 1017, 1220
Ach (7,8), (16,17)
p=11 7,16 € By

Table 20: The group kb.2 (see paragraph 17)

M22.2

Acl

orders

Ach

p=11

28.32.5.7.11 h=21
(8,9)(20,21) Co
78, 140
(5,7)(6,8)
5,6 € Bg

Table 21: The group Suz.2 (see paragrépty)

Suz.2

213.37.5.7.11-13 h=68

Acl
orders

Ach

p=13

(67,68) C2
4057
(61,62)
61 € Bog

Table 22: The group H'S.2 (see paragraph7)

H'S.2

210.32.58%3.7.11 h=39

Acl
orders

Ach

p=11

(37,38) Cs
2037
(34,35)
34 € Bo
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Table 23: The group He.2 (see paragrdphr)

He.2

211.33.52.73.17 h=45

Acl | (23,24)(44,45), (32,33)(38,39)(41,42) (2
orders 832, 1633, 2123, 2441, 4244

Ach | (38,40)(39,41), (22,23)(32,33)(42,43

p =17

32,38,39,42 € Bg
22 defect O

Table 24: The group Ep.2 (see paragraph17)

Fiz2.2

218.39.52.7.11.13 h=112

Acl
orders

Ach
degrees

p=13

(106,107) Cs
2406
(89,90)
136080@g
89 € Bo

Table 25: The group j.2 (see paragraph.17)

Fip,.2 222.316.52.7%.11.13.17.23.29 h=183
Acl (71,72)(174,175), (85,86)(178,179),
(91,92)(156,157)(181,182), (159,160) c3

orders | 2371, 26156, 28159, 335, 3%1, 46174, 66178, 78181

Ach (11,13)(12,14), (147,149)(148,150),

(70,71)(166,168)(167,169),(155,156)

p=29 11,12,70,147,148,155,166,167 € Bo

Table 26: The group H'N.2 (see paragraphii7)

H'N.2

215.36.54.7.11.19 h=78

Acl | (34,35)(73,74), (68,69), (76,77) C3

orders

2034, 2463, 4073, 4476

Ach | (71,72)(73,74), (53,54), (57,58)

p=19

53,57,73,71 € By
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Table 27: The groups2 (see paragraph17)

R.2 28.3°.5.17.19 h=230
Acl (9,10,11)(24,25,26), (15,16)(29,30), (27,28}?5 x C3
orders 99, 1715, 1824, 2427, 3429
Ach (18,20,22)(19,21,23), (12,13)(14,15), (8,9)
p=19 8,12,14,18,29 € By
Table 28: The groupxJ2 (see paragraph.17)
b2 |28.33.52.7 h=27
Acl (26,27) C>
orders 24y¢
Ach (26,27)
degrees 3366
p=>5 26 € By
Acls id
Table 29: The group McL.2 (see paragraph8)
McL.2 28.30.5%.7.11 h=33
Acl (14,15)(30,31), (28,29), (32,33) Cg’
orders 1114, 2023, 2230, 2432
Ach | (10,12)(11,13), (18,19), (22,23)
p= 7 18 € Bo
22 € By defect 1
10,11 defect 0
p=5 10,11,18,22 € Bo
Aclg (14,15)(30,31)(32,33)
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Table 30: The group O’'N.2 (see paragraph9)

O'N.2 210.34.5.73.11.19-31 h=45
Acl (15,16)(31,32)(37,38),
(17,18)(28,29)(35,36)(42,43)(44,45),
(23,24)(42,44)(43,45), (19,20,21)(39,40,41)  C3
orders 1545, 1617, 1919, 2873, 8g, 1031,
2435, 3037, 3839, 5642

Ach (24,25)(30,32)(31,33),
(7,8)(26,28)(27,29)(42,43)(44,45),
(12,13)(42,44)(43,45), (36,38,40)(37,39,41)

p=19 30,37e € Bo
31,36e € By defect 1
7,12,24,26,27,42 defect 0
p=7 7,12e,26,27,36,37,42¢ € Bo
24,30,31 defect O
Acly (15,16)(31,32)(37,38)

5. Connection to the defect group problem

Denote byZ, the p-adic integers and Ik be a block ofZ,G. Assume thaG  andHjp
are the images of group bas@sand H of ZG under the projection ont®. Let Dg and
Dy be the defect groups @ and H respectively, with respect to the bloék Then the
defect group problemoses the question as to whetlizg and Dy are conjugate irB, cf.
[30].
With purely character-theoretical methods it does not seem to be possible to give a posit
answer to this question. However theversion of the Zassenhaus conjecture is closely
related, as the following discussion shows.

Proposition 5.1. Assume tha{ZC),, is valid for ZG. Let By be the principal block of
Z,G. LetH, Dg and Dy be as above. ThePg and Dy are conjugate withiQ, Bg :=

Qp ®2z, Bo.

Proof. Let K be a field of characteristic zero which is sufficently larged@rand which
containsZ,. Let P € Syl,(G) and letC be a block ofk' G with projectionr : KG — C.
Because (ZG)is valid there exists a group isomorphism G — H such that for each

x € P the characters dfr o o) (x) andn (x) coincide. Thus the projections &f ando (P)

are conjugate withirC. Let KBy := K ®z, Bo = ®§=1Ci whereC; are blocks ofKG.
Then, conjugating simultaneously in ea€h the projections oP ando (P) are conjugate
within K B. By the Noether—Deuring theorem it finally follows that the projections are
already conjugate withifQ, B. O
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Proposition 5.2. Assume that the defect group problem has a positive answer for the prin
cipal blockBg of Z,,G. Let N be the normalizer of a Sylop+subgroup oG and denote by
Aut, (Bop) the normalized automorphismsB§. SetOut, (Bg) := Aut,(Bg)/Inn(By). Then
there is an injective group homomorphism

y : Out,(Bo) —> OUt(N/O, (N)).

Proof. Leta € Aut,(Bp). LetP € Sylp(G). Because the defect groupsaofG) andG are
conjugate we can assume thaefixes P. RegardBg as bimodule where the action @f,G
on the right is just multiplication i, G and the action on the left is multiplication #), G
twisted bywx. Denote this bimodule as usual pyBo)1.

By[24, Lemma 24]th¢Z, G, Z,G)-bimodule, (Bg)1 has a Green correspondentidix
N of the formg(bo)1, wherebg denotes the principal block &f andp is an automorphism
of bg which restricted taP coincides withe, where we identifyP with its image inbg.

N is a p-constrained group. Thu&, N /O, (N) = bo.

By [29,24,12]the automorphisra is the composition of a group automorphism followed
by an inner automorphism. Bimodules of the faythg)1 wheres is an inner automorphism
are isomorphic tq (bg)1. The usual bimodule calculus, see for exam@g, [VIl,Lemma
1.3], shows that we may assume tjias a group automorphism @f /O, (N). Moreover,
B~ Lou restricted taP is given by conjugation with a unitin ZpN/O, (N).By Coleman’s
lemma we can choosee N. Thusg is unique up to conjugation and its restrictionRo
coincides with the restriction of to P modulo an inner automorphism &f. Consequently
the associatior — g defines a mag from Out, (Bop) to Out(N/O, (N)). Suppose that
y(a1) = y(a2) thenozgl o a1 restricted toP is given by a conjugation oN /O, (N).
Because0, (N/O,(N)) = 1 and becaus®& /0, (N) is p -constrained it follows from
[10] thaty(ozz_1 o a1) = 1. The bimodule;(bo)1 is the Green correspondent gfBo)1.
Hencew, ! o a1 € Inn(By). O

Corollary 5.3. Assume that the finite group has a cyclic Sylow-subgroupP such that
Cg(x) C P for each nontrivial element € P. Let Bg be the principal block oZ,G.

Then there is an injective group homomorphigm Out,(Bg) —> Out(N), whereN
denotes the normalizer ¢f in G.

Proof. Let « € Aut,(Bg). The condition on the centralizers shows tlfais a T.l. set.
In particularO,,(N) = 1 and the corollary follows from Propositidn2 because bydJ0,
Theorem] Sylowp-subgroups of; anda (G) are conjugate iBo. O

Remark 5.4. (a) Corollary5.3might hold much more generally. The assumption on the
Sylow subgroups being cyclic may be superfluous.

(b) Assume tha@ has trivial center. So we may regatdas subgroup of AYG). If the
image ofy consists of automorphisms &f given by conjugation with elements of
Nautcy(V). then the principal block conjecture (B-Z42) holds.

However, in the situation of the sporadic simple groups CorobliaBygives no addi-
tional information to the methods used in SectibriFor example, conside&r = Ly
and the primep = 67. In this caseN is the semidirect product af with a cyclic
group of order 22. The assumptions of Coroll&n are satisfied. Out(Nyx= Cs.
Now the table for Ly in Sectiod shows that Oyt(Bo) is trivial or acts on Ir¢Bg 67)
as((26,27,28)).But Out(Ly) is trivial.
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6. The isomorphism problem for almost simple groups

Following Aschbacher, a finite group is calledalmost simplef its generalized fitting
subgroupF*(G) is quasisimple. Thus almost simple groupsre precisely those groups
with a normal series

1<Z<K<G

such thatk' /Z is simple nonabeliank is perfect,Z is central inK andG/Z embeds into
Aut(K/Z). G is calledalmost sporadidf K/Z is a sporadic simple group. The goal of
this section is to show that the isomorphism problem has a positive answer for an almc
sporadic simple group, and for the double covers of the symmetric groups.

Our results indicate that the isomorphism problem might be true for all almost simpl
groups. Note also that in [6] it is shown that (IP) holds for finite groups of Lie type arising
from simply connected algebraic groups over an algebraically closed field as fixpoints
the Frobenius map.

Lemma 6.1. Let G be a finite group. Assume th@thas a normal series of the form
1<Z(N)<N<G

suchthatV is perfect. Assume that has a cyclic complement @& generated by an element
t of prime power ordep™ . Moreover, assume that the isomorphism typ¥ o determined
by its chief series and thdZC),, holds forZ(G/Z(N)). Then the isomorphism problem
for G has a positive solution.

Proof. Let H be a group basis dG. The class sum correspondence shows that there is
an element € H of the same order as the class sum of which coincides with thatrof
PutG = G/Z(N) and letx : ZG — ZG be the corresponding projection. Deneted)

by H. By assumption there is an automorphisnof ZG with o (H) = G ando fixes the
class sum ok (s). Hence we may find an element H which lies in the same conjugacy
class ag and which has the property thatk (r)) = « (¢).

Denote byM the normal subgroup correspondentMdn H. Becaus&ZG = ZH we
know by [19] thatG and H have the same chief series. Sindeand N are characteristic
in H and G respectively, the chief series of and M coincide. By assumption there is
an isomorphisnw betweenV and M. Consider now the following commutative diagram,
whereN = «(N), w is induced fromw andx is the composition of ando .

1 — ZWN) — N S5 N — 1
\ o X2

1 — ZM) — M 2 N — 1

BecauseV is perfect, each automorphismaflifts to an automorphism a¥. Thus we
may assume thai is the identity.

Claim. o 1Y - w®m)-r)=1"1-n-tforeachn € N.
Proof of the claim. An easy calculation shows that

Lnon =kt om -

Kk(t™
foreachn € N. Defineamap : N — Z(N) by
tLon.t. 8(n) = a)_l(r_l -w(n)-r).
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If n € Z(N) then obviously the equation holds. Moreovetepends only or (r) and thus
8 induces a map fronw to Z(N) which is a group homomorphism. Becaugds perfect
we get that (n) = 1 for eacln € N and the claim follows. O

Define now an isomorphism : G — H byn — w(n) forn € N andt — r. The
isomorphism is well defined becausgenerates by assumption a complemer¥to O

(We thank M. Hertweck for pointing out an error in a previous version of Lemma 6.1.)

Corollary 6.2. The isomorphism problem has a positive answer for almost sporadic simpl
groups.

Proof. As a general reference for the facts used about the 26 sporadic simple groups:
refer to [8]. If X is a sporadic simple group th¢@ut(X)| < 2.

Thus an almost sporadic simple groGgs of type X, X.2, m.X orm.X.2. In the cases
whengG is of typeX, X.2 orm.X itis up toisomorphism determined by its chief series. Note
for this thatm = 2, 3,6 orm = 12 and that the Schur multipliers of the sporadic simple
groups are always cyclic. Thus by [19] the isomorphism problem has a positive solution f
G.

Let nowG be of typem.X.2. We use the normal series

1<ZmX)<N=mX <m.X.2

Moreover, the character tables show thaP is generated by and an involution. This
gives in all cases an outer automorphisnwof of order 2, and therefore a group of
typem.X.2 such thain.X has a complement of order 2. By Theor@m (ZC) holds for
X.2 = G/Z(N). Consequently, we may apply Lemrial and show that (IP) is valid for
G.By[28, Satz |., p. 95] there are at most two isomorphism types of groups ofitype.
This completes the proof. O

Corollary 6.3. The isomorphism problem has a positive answer for the double covers c
the symmetric groupSym,, n > 5.

Proof. Let Alt,, be the alternating group of degree> 5. By [28] the Schur multipliers of
Alt,, and Sym) are cyclic of order 2 except for = 6, 7. The Schur multipliers of Aftand

Alt7 are cyclic of order 6. In all cases.Alt,, is determined up to isomorphism by its chief
series. By P3] it follows that (ZC) is valid for Sym. If n # 6 then the automorphisms of
Sym, are inner. In the case Syman outer automorphism interchanges the two isoclinism
classes of the double covers. Thus there is, up to isomorphism, only one double cover
this case 31, 2.21]. Ifn # 6 then we may apply Lemm@ 1 analogously as in Corollary
6.2. This completes the proof. O
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