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ABSTRACT. O[ several problems associated with theoretical explana tions of the jokul­
hlaups which emerge from the outlet glacier Skeioara rj okull of the ice cap Vatnajokull in 
southeas t Ice la nd , the mechanism of flo od initiation is one th a t has hitherto defi ed 
explanation. We provide such an expla nation based on a careful analysis of the class ical 
Nye-Rothlisberger model; nea r the subglacial lake Grimsvotn, the hydraulic potential 
gradient is towards the lake, and there is therefore a catchment boundary under the ice, 
whose location depends on the subglacialmeltwater dra inage cha racteristics. As the con­
ditions for a fl ood approach, we show that the water divide migrates towards the lake, while 
at the same time the lake pressure increases. W'hen the hydraulic po tentia l gradient to­
wards the lake is low and the refilling rate is slow, the seal will "break" when the catchment 
boundary reaches the lake, while the lake level is still below fl otation pressure, whereas if 
refilling is rapid, flota tion can be achieved before a flood is initiated . This theory can thus 
explain why the seal is normally broken when the lake level at Grimsvotn is still some 60 m 
below flotation level. In addition, we a re able to explain why the j okulhl aup following the 
1996 eruption did not occur until flota tion level was achieved, and we show how the cyeli­
city and magnitude ofj okulhlaups can be explained within this theory. 

1. INTRODUCTION 

J okulhl aups are subglacial floods which occur, typically 
from ice-dammed lakes, at regula r intervals. Possibly the 
best-known example is that of the jokulhlaups which emerge 
a t intervals of 5- 10 yea rs from the outl et glacier Skeioa ra r­
j okull, which drains the ice cap Vatn~jokull in southeast Ice­
land. This ice cap was recentl y made famous by the 
subglacia l eruption in 1996, which caused extensive co llapse 
of the ice cover, and eventually a m assive jokulhl aup over 
the proglacial outwash plain, Skeioa rarsandur. These jokul­
hlaups a re due to the existence of a subglacia l lake, 
Grimsvotn, which lies above the caldera of a volcano under­
neath Vatnaj okull (Fig. 1). The lake exists due to the high 
geothermal heat flu x which mainta ins a layer of wa ter un­
derneath the ice. As can be seen from the vertical sectional 
view in Figure 2, the lake level is well above the level of the 
caldera rim. H owever, it is confined by a "seal" which under 
normal circumstances is maintained by the overburden 
pressure of the ice surrounding the caldera. As expla ined 
by Bj ornsson (1976) and Nye (1976), and as indicated in Fig­
ure 3, the excess ice pressure causes the hydraulic potenti a l 
driving the water fl ow to have a m aximum slightly down­
glac ier of the lake margin. Note that the seal is indicated by 
a maximum of the difference between the curves labelled Zi 

and Zh in Figure 3. W'e will refer to thi s point (actually a line 
on the bed ) as the seal (Fig. 2 or 3). It is important to remem­
ber that even while the lake is filling, there are conduits lead­
ing from the seal region both up-glacier to the lake and down­
glacier to the outl et. These conduits a re formed and m ain­
tained by water generated by local geothermal and fric­
tiona l heat sources. As time passes, the lake fills until 
eventua lly it becomes deep enough to break through the 
seal. The resulting fl oods (the Icelandic word j okulhlaup 
means "ice-leap" ) emerge 50 km downstream after p assing 

under the ice, and typically last 2- 3 weeks, with peak dis­
cha rges on the order of lO'l m3 s 1 Extensive descriptions of 
these j okulhlaups are provided by Rist (1973), Bjornsson (1974, 
1988, 1992) and Tomasson and others (1981), and a variety o[ 
theoretical analyses have been undertaken (Nye, 1976; Spring 
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Fig. 1. M ap oj VatnaJokull showing GdmsvOln and its 
drainage pathway . From BjO"Tllsson (1974) . 
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Fig. 2. The geome/ly aJ the lake and glacier, Grt'msvo"lll 
and Ske!kararsandur. Redrawn by F. S. L. Ng ji-om 
figure 14 oJ Bjomsso71 ( 197-1- ) . 
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Fig. 3. ,1 close-up if the seal region, redrawnji·omfigure 14 if 
Bjiimsson (1974). TheJigure shows the ice sll1Jace Zs, the bed­
-rock Zb, and a hydraulic potential line z"Jor two dif.feren / 
values of lake level hw. Inspection if the originaljigure indi­
cates that this CZlrve is difined ~Y Zi = h\\" 
+ (piO - Pi) / Pwg, where Pia is the ice-overburden jJTessure 
at the lake mmgin. If we sujJjJose ( Nye, 1976) that P ;::::; Pi, 
then the hydraulic potential is cf; = Pi - Pi a 

+P\\"g(Zb - z"O) , where Zb = ZhO a/ /h e lake mmgil1, and 
then Zi - Zb = h\\" - Zb ° - cf;/ p\\"g, so that //ie ma).imum 
if Zb - Zi rejJresen/s a I~ydraulic baniCl: Alternatively and 
confusingly, the seal can be concejJtuaLised as a region where 
the effective pressure N = Pi - pis positive, where the water 
pressure pis calwlated on the basis if a constant Irydraulic 
jJotential ( Bjiirnsson, 1974, Jig. 13). In reality, neither 
assumption is precisely valid, although both are useful inter­
jJretable approximations. 

a nd Hutter, 1981, 1982; Clarke 1982; Fowler and Ng, 1996), fol­
lowing the basic drainage theo ry due to Rothlisberger (1972). 

These theo ri es ha\·e been more or less successful in ex­
pla ining the basic features of the Grims\·otn jokulhlaups. 
Specifically, the shap e of the nood hydrograph is rela ti vely 
well (if not perfectly) explained. However, ce rtain features 
remain puzzl ing, a nd the purpose of the present paper is to 
try to expla in some of these. 

Most obviously, numerical model s have focused on the 
nood hydrograph, but have not been concerned with the cy­
elicity ofthejokulhla ups. This is associated with a more press-

Fowler: Breaking tlte seal at Grt711sviitn 

ing problem, namely, why the noods a rc typically initi ated 
when the lake is at a level some 60 m below the notation level 
(Bjornsson 1988, p.79), or the level at which it could break the 
seal by pushing underneath the overlying ice. This is the 
problem with which we a re principally concerned. In fact, 
one of the more interesting features of the 1996 jokulhlaup 
was tha t the nood did not begin until the flotation level was 
achieved, much to everyone's surprise. (An acco unt of the 
eruption and subsequent j okulhlaup is given by Einarsson 
and others (1997; see a lso Gudmundsson a nd others, 1997); 
much useful information is given on a variety of websites, two 
useful entry points to which are http: //www.hi.is/-mmh/gos/ 
and http: //www.spri.cam.ac. uk/jok/jok.htm.) We will seek to 

ex plain the onset at flota ti on also. In addition, the 1996 nood 
las ted just I day, compa red to the more normal nood duration 
of2- 3 weeks. We will provide a possible explanation for thi s. 

vVe wi ll begin by reviewing the classical Nye model for 
jokulhlaups, with some si ight modifications. We then show 
that thi s model can be reduced, as can Clarke's (1982), to a 
pair of ord inary diffe renti a l equations, whose solution 
reveals oscill at ions. The amplitude of these oscillations 
grows unboundedly. We then analyze m ore closely the 
mechani sms of seal formation and breaking, which leads to 
an enha nced approxima tion of the Nye m odel. This model is 
abl e to pred ict periodic o utbursts, and sea l-breaking before 
or at fl otation, depending on the lake-refilling rate. In this 
way, wc can provide a putati'T ex pl a na ti on for both the 
norm a l mechanics of sea l-breaking a nd the anomalous 
cha racte ri stics of the 1996 j okulhl aup. 

2. THE NYE MODEL 

The Nye (1976) model consists of five equ ations for the five 
,·ariables Q, S, P, m and Bw, where these a re, respecti\·ely, 
the volumetric water flux in the channel, its cross-sectiona l 
area, the channel water pressure, the interfacia l melt rate, 
with u ni ts of mass per unit length of the channel per unit ti me, 
and the water temperature. The primary limiti ng assumpti on 
is that the channel has a sem icircular cross-section, cu t up­
wa rds into the ice. In realit y, it seems more likely that cha n­
nelled now will occur through a broad, low-ce ilinged conduit 
(Hooke and others, 1990), a nd that sediment erosion (Boulton 
and Hindmarsh, 1987) wi ll pl ay an importa nt part in control­
ling the channel shape. These points have been im·estigated to 
some ex tent by Fowler and Ng (1996), panicularly as they 
affect the shape of the predi cted nood hydrograph, but wc do 
not pursue them here, as our primary purpose is to under­
stand the mechanism whereby nood initi a ti on occurs, and 
this can bc done satisfactoril y in the context of the fami li ar 
Nye model. 

The equati on for S is 

8S m "S( )" Ft = Pi - J\ Pi - P ) (2 .1 ) 

and represents the rate of change (t is ti me) of cross-sec­
ti onal a rea due to meltback of the cha nnel walls (the first 
term) a nd vi scous closure of the ice (the econd term ). In 
terms of its provenance, thi s equation is actu a ll y a kinema ti c 
bounda ry condition fo r the externa l viscous ice-fl ow 
problem , since the ice/water interface is a free boundary. Pi 
is the ice-overburden pressure,Pi is the ice de nsity, J{ is pro­
portiona l to the now consta nt in Glen's law, and n is th e 
now-law exponent, often ta ken as n = 3. A fu rther equation 
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for 5 foll ows from mass conse rvation of water in the cha n­
nel, which ta kes the form 

as + oQ = m + 1II 
at 08 p" ' 

(2. 2) 

where 8 is downstream di sta nce along the cha nnel from the 
lake ma rg i n, Pw is the wa ter density, and, apart from the 
melt rate m (which is actua ll y insignificant in this equati on, 
although of primary importa nce in Equation (2.1)), wc in­
elude a suppl y term AI which desc ribes the base fl ow, de­
ri ved from surface melt, ra infa ll or other subglacial melt. 
This term, a lthough irrelevant during flood s, turns out to 
be of g reat significance in controlling the seal dynamics 
betwee n fl oods. 

The m omentum equation fo r the channel flow takes the 
form of an empirical correla tion between fl ow a nd turbu lent 
fri ction, a nd it is usual to ass ume a Manning law: 

. op Q2 
p",gsm a - 08 = jp"g 58/ 3 ' (2.3 ) 

where g is g ra\'it y, et is the downslope angle a nd j is a fri c­
tion fac to r which is related to the Manning roughness. The 
energy equ ation can be writlen in the form 

(2.4) 

where Bi is the interfacia l ice temperature, assumed to be 
equal to the freezing point, c'" is the specific heat of water 
and L is the latenL heal. The ad\'ection of heat on the left of 
Equation (2.4) is balanced on the right by the vi scous diss i­
pative heating term, and the losses due to la tent- and sensi­
ble-heat suppl y to the interface. B". is the m ean bulk water 
tempera ture, which may (a nd indeed must ) be larger tha n 
the interfacia l ice tempera ture Bi . There is then heat transfer 
across a turbulent bound a r y layer at the wall , and thi s is 
given by the rel ation (Dittus a nd Boelter, 1930) 

al ( P\5v~/2 ) 0.8 k(B\\' - Bi ) = m[L + c,,(Bw - Bi)l, (2.5) 
17", 

where CLI (~ 0 .2) is a consta nt, 1]\,- is the viscosity of water 
and k is its thermal conductivity. 

These five equations must be supplem ented with an 
initia l condition for 5, a nd suitable bounda r y conditions, 
consisting of a fl ow or pressure condition a t the channel in let 
and outlel. In practice, the water pressure, a nd hence the 
effective pressure, defined as N = Pi - p, is prescribed a t 
each cnd. (Note that in Nye's (1976) notation, N denoted a 
fri ction constant. In this paper, its use is restricted to the 
effecti ve pressure.) We take the origin of 8 (i.e. 8 = 0) to be 
at the inl et to the channel, a nd we suppose the channel 
outl et a t the snout of the g lacier is at 8 = 80 . "Ve thus choose 

N = 0 at 8 = 80, (2. 6) 

while a t the inlet, conserva tio n of mass requi res that 

dV dt = mL - Q (O, t) at 8 = 0, (2.7) 

where V is the lake volume a nd mL represents the geother­
mal melt ra te, or more genera lly the lake-refilling ratc (as in 
1996, when the lake refill ed rapidly due to inflow of melted 
water from the site of the fi ssure eruption (Einarsson and 
othcrs, 1997)). Suppose the la ke level is z = z"" where z is 
height above sea leye!. "Vc ass ume V = V (zw), and in fact 
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V'(z",) = AL is the effective lake surface area (which may 
depend on zw). Now the wate r pressure at the inlet is 
p",g(z", - Zb), where Zb is the height above sea level of the 
bedrock at the lake margin 8 = 0, and this is equa l to 
Pi - N , Therefore (if Zb and Pi d o not vary) 

dz", __ dN (0 t 
p" g dt - dt ,), (2,8) 

a nd thus the bo undary condition at the lake inlet is 

A L aN - --= mL - Q at 8 = 0, (2 ,9) 
Pwg at 

2.1. Non-dirnen s ionalisation 

The geometry of the lake and outlet glacier as described and 
draw n by Bj ornsson (1974,) is shown in Figure 2, and a elose­
up of the seal region is shown in Figure 3, which a lso indi­
cates how the seal is mainta ined . The geometry defin es nat­
ural distance scales 80 rv 50 km a nd ho rv 1500 m for the 
variabl es 8 and z. In addi tion, we choose scales for the other 
variables by writing 

Pi - P = NoN*, () \V = ()i + BoB* , 

8 = 808*, t = tot*, 5 = 505*, 

m = mom*. Q = QoQ*, (2. 10) 

Thus, the as terisked vari ables a re dimensionless, 
'Ne choose the scales No, Bo, t o, 50, mo and Qo as follows. 

We ba lance a ll three terms in Equ a tion (2. 1) by writing 

So = mo = K 50 No" , (2. 11) 
to Pi 

Next, we defin e the basic /~ydmulic Emrlienl W as 

. °Pi 
W = pwg sm a - & ' (2.12) 

This quantity is the hydraulic g radient that exists if the 
basa l water pressure is equal to the overburden ice pressure, 
As such, it corresponds to tha t di sc ussed by Nye (1976), and 
we associate the existence of the seal with the fact that W is 
negative near the lake. In terms of thi s, the actual hydraulic 
g radient is defined by 

. op aN 
Pwg SllW - 08 = W + as' (2.13 ) 

A natural sca le fo r W is 

Wo = p",gho , 
80 

since sin Cl! "-' hO/80, and so we scale W by writing 

W = WoW*' 

(2.14) 

(2.15) 

A balance of terms in Equati on (2.3) is now effected by having 
W '" f PwgQ2 / 58

/
3

; thus 

W - jPwgQ6 
0- 5

0
8/ 3 

(2,16) 

In Equati on (2,4), we balance the two terms on the right; 
thus 

QoWo = mo L . (2. 17) 

Wc choose Ba by ba lancing the la tent-heat term in Equation 
(2.5) with the term on the lefth and side: 

( )

0,8 
p\\'Qo 

CLl ~ kBo = moL. 
1]\\,50 

(2,18) 

Finall y, it wo uld seem natura l to choose the scale for Qo to 
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ba la nce th e fi rs t and third term s in Equ ati o n (2.9); if we do 
thi s by presc ribing 

(2.19) 

then we find , using \'a lues prescribed below, that Qo ~ 
1.2 X 105 m~ s I, which is a bo ut IS times the no rm a l peak dis­
cha rge. Thi s can partl y be ascribed to the fact t ha t these are 
only scales, but it may a lso p a rtl y refl ect the fac t that the 
Nye- Rothli sberger model with semicircul a r channels is 
known to p redict peak di scharges la rge r than those 
observed (Ng, 1998). Since wc do not want to unduly di stort 
the rcle\"am \ 'a lues of th e para meters defin ed below, we in­
stead choose Qo to be a typical observed peak di scharge. 

The fi ve rela ti ons in Equations (2.11) a nd (2.16- 2.18) 
defin e the five scales So , mo, to, No, 80 in te rms of Qo, a nd 
we fi nd 

(2.20) 

The dimen sio nless model equa ti on can the n be written in 
the form (dropping the as teri sks on the \'ari a bl es a nd ta king 

11 = 3) 

together w ith bounda ry conditions 

N = 0 at 8 = 1 

aN 
- = AQ - v at 8 = 0, at 

(2. 21) 

(2.22) 

where the pa ra meters in Equations (2.21) a nd (2.22) a re 
g i\Tn by 

(2.23) 

We assume typical \'alues Pi rv 0.9 X 103 kg m 3, Pw rv 103 kg m 3, 

'f/lVrv2x l0 3 kg m I S I, k rv O.6 Wm IK I, cw rv 4.2 kJkg I 
I '2 I - ? I 3 I 2 K , L rv 3.3x lO kJkg , It = 10 - Pa s , g rv lOm s . 

Fowler: B reaking lite seal al Gr/nw'oln 

The definiti on of the fri c tio n [actor f in M a nning's 
roughness law as written here is 

_ '2 (~) 2/3 f -n R ? ' rr 
(2.24) 

where n' is the roughness coeffi cient and R" is the hydraulic 
radius (= 5/1, where l is the perimeter). For a circul a r chan-

? / 3 ') / 3 . . 1/'; 
ne! (5/ RI\ 2t = (4'nf ~ 5.4, so that If n' = O.lm . s, 
then f rv 0.05 m '2/3 S2. 

W C also ta ke 80 = 50 km, ha = 1.5 km, whence we fi nd 
I "7 

\[1 0 rv 300 Pa m , a nd we suppose A L = 32 km - = 3.2 x 10 
m 2

, based on fi gure 4 of Gudmundsson and others (1995), 
which indicates a typica l range of 17- 33 km 2

. An estimate of 
the refillin g ra te can be obta ined from fi gure 5 of the sa me 
paper, which indicates that the la ke level rises between hl aups 
a t about 20 m a I . Together with the la ke-level area, thi s indi­
cates a typica l refillin g rate of 6.4 x lOl l kg a \ whieh is consis­
tent with the independentl y inferred \'a lues over the pas t 
century based on fl ood-discha rge magnitude (Bj ornsson, 
1988, p. lOO). If we a nticipate tha t a typica l \'a lue o f Qo = 
10-lc m3 s I (from obsen 'ations), then we find successively that 

So rv 1200n12, morv Dkg m - 1s- l , 8o rv 7K. 

to rv l.2 x 10" s (l. 4 days). No rv 2 X lOG P a (20 bar ). 

(2.25) 

a nd the dimensio nless parameters a re of typical sizes 

"( rv 2 , c rv 0.05 , r rv 0 .9 , 0 rv 0.14. 

0 rv O.01 , A rv5 . v rv 2 x lO- :3, (2 .26) 

where for 0 we ass ume a base fl ow ra te of A180 = 102 m 3 s I, 

which represents typica l di scha rges betwee n j okulhl a ups. 
Base flow is no t o ften reported , but Bjornsson (1 998, p. 11 4·) 
g i\'es \'a lues in the region of 100 m 3 s I for the ri\ 'C rs Ska ful. 
a nd Tungnaa d ra i ni ng wes tern Va tnaj okull , whil e Rist (1977, 
1984) and Sig urosson a nd others (1992) repeatedly es ti mate 
base fl ow of' th e Skeioa raljokull stream system to be o f the 
same size. \ Vc then see that these p a rameters a rc ;S 0 (1) , 
which indica tes tha t the sca les wc ha\'e chosen a rc sensibl e. 
The choice o f' Equation (2.19) fo r Qo woul d corresp o nd to 
choosing A = 1. 

2.2. Model sirrtpl ification 

The parame te rs c, {j a nd 0 a re all relati \'Cly sm a ll. If we 
neglect them, it follm\ 's (hat 

Q ~ Q(O, t) . i .c . Q ~ Q(t ) 

s ~ \[I - 3/8 Q 3/ 1. (2.2 7) 

a nd hence tha t 

(2.28 ) 

a nd thus 

(2.29) 

We see from thi s tha t 8 approaches a limiting \'a lue such th at 
m = WQ over a di m ensionless di stance of o\'e r I Q] /2. Now 
since Q was scaled with a typical peak di scha rge, it is clea r 
(ha t in gencra l thi s di stance will be ve ryshorl. To acco mlllo­
date this obse rva tion, we simplify the model by ass uming 
that m = WQ holds a t a ll times, e \ 'en though thi s will be in­
acc urate for a sho rt time during m ax imum discha rge. \Ve do 
not consider this a disadvantage since our prim a ry conce rn 
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Fig. 4. ( N , Q ) phase portrait cif the solution cif Equation 
(2.30). Parameter values A = 5 and v = 0.1. Logscale 
( up/m) and normal scale ( lower). 

below is not with the shape of the hydrograph, but with the 
sea l dynamics between noods. 

For simplicity, let us suppose that I}i is constant, equal to 
I. It then follows that N ~ N(O , t) = N(t), and Nand Q 
satisfy 

Q = ~Q5/4 _ ~QN3 , 

N= AQ - v , (2.30) 

where N = dN / dt. The model thus reduces in this case to 
the solution of two ordinary differential equations! 

It is trivial to analyze these equations. There is a fixed 
point at Q = V/ A, N = Ql/ 12, co rresponding to steady 
Rothlisberger drainage, but the lake-refilling equation ren­
ders thi s always unstable; the fixed point is an unstable spiral 
if v > 3.8 X 10- 4 A - 1/ 2, otherwise it is an unstable node. 

Figure 4 shows a numerical solution of Equation (2.30)_ 
Clearly the spiral structure continues for (N , Q ) away from 
the unstable fixed point. The ti me seri es corresponding to 

thi s di agram (Fig_ 5) shows a sequence of jokulhlaups of 
growing di scharge, with long in tervals (of 0(1 / v) ) between 
the noods. If we focus on a single nood, there is clearly no 
criterion for picking which hydrograp h will occur, and this 
is a drawback of the model. In fact, this is another reason 
why the choice of Equation (2.19) for Qo wo uld be prema­
ture. Control of the peak discharge must depend on the ini­
tia l conditions, which in turn must depend on the seal­
breaking mechanism; therefore the choice of Equation 
(2.19), while appealing, must in fact be irrelevant. 
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3. BREAKING THE SEAL 

"Ve now return to the full Nye model, in the form 

(3. 1) 

We have seen that this model can describe the flood hydro­
grap h reasonably well, in its approximate form . The ques­
tion now arises whether the complete model is also able to 
describe the dynamics of the system between floods, or 
whether some further physical process must be included. 
Clearly the approximations introduced in section 2 will 
not a llow for a proper study. In fact, the reason there is a seal 
at a ll is that the ice at the caldera rim causes a negative hy­
draulic gradient there. In other words, I}i is not only not 
consta nt, it is in fact negative near the rim. Pretty clearly, 
the m odel needs some adjustment there. In order to exam­
ine thi s region more closely, we defin e a rescaled distance 
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va riable X measured downstream from the point where the 
channel (or cha nnels) from the di vide enter the la ke as 

s= oX , (3.2) 

where D is as g iven in Equation (2.23). We neglect 'Y as before, 
because the advection will certa inly be negligible between 
floods. Ignoring terms in c, the equations arc then a pprox i­
mated by 

(3.3) 

It is essenti a l to retain w = DD rv 1.4 x 10 ~l even tho ugh it is 
sma ll , and it is also appropriate to do so when Q « 1. Simi­
larl y, it is va lid to neglect the advecti on term for e if 
Q « D 11, as is likely to be the case. Equati ons (3.3) a re sup­
plemented by the Lake-rifilling equation 

oN at = AQ - 1/ on X = 0, (3.4) 

and wc a lso requi re that N match to the outer solution as 
X ---t 00: thi is effected by requiring that 

aN 
- ---t 0 as X ---> O. (3.5) 
oX 

This technical condition ensurcs tha t the so lution in the seal 
region blends to the approx imate soluti on away from the 
sea l, which as before is obta ined by taking W = 1. Equation 
(3.3) I appli es a lso if N < 0 (though, in realit y, hyd rofrac tur­
ing would then causc much more rapid opening of the chan­
nel ), but if a different power law is used, say closure ex: N°, 
then the co rrec t closure term in Equ ation (3.3) I replaces N3 

by INlo- lN. 

3.1. An approxiIllate analysis 

Before we so lve thi s model nume rica ll y, wc a im to under­
sta nd its likely behaviour. Firstl y, when Q « 1, Equati on 
(3.4) indicates that N vari es slowly, so that Equ ation (3.3) I 
implies that 5 rapidly (on a ti me-scale of O( 1)) approaches 
(quasi- )equilibrium, i. e. 

5N
J ~ m ~ Q ( III + ~~). (3.6) 

Using Equ ation (3.3h , thi s leads to 

aN N 24 / 11 

w + oX = IQ 12/ l1 sgn Q (3.7) 

(note that thi s a llows for both positive and negati ve Q, sup­
posing N > 0; if N < 0, then the comment after Equation 
(3.5) would a pply, but in fact a fl ood is then initi a ted , and 
Equati on (3.6) is inappropriate). The solution for Q is 

Q = w[X - X * (t )], (3.8) 

where X * gives the dimensionless distance of the seal down­
stream from the la ke. (Note, however, that the as teri sk here 
no longer connotes a dimension less rather than a dimen­
siona l quantity; a ll vari abl es a re dimensionless, and the as ter-
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isk denotes a partic ula r value of X.) This equati on (indeed 
the whole model Equation (3.3)) also appli es during the 
flood , when X * < 0 (of course there is then no water divide, 
and -wX * simply gives the dimensio n less water flux a t the 
inl et). By assumption, W(X ) satisfi es 1lI (0) < 0, w(oo) > 0, 
and Equation (3.7) is to be solved subj ect to Equations (3.4) 
and (3.5), the ex tra condition serving to determine the un­
known X *. 

3.2. A particular exaIllple 

To gain some ana ly tic insight, wc ch oose 

w = l -ae- bX
. a> l , b > O, (3.9) 

to represent the negative value of III near X = 0, and a lso so 
tha t III ---t 1 as X --> 00. (As wc will sce below in Fig ure 6, 
this is in fact a reali stic representa tion of the data.) 'Ve a lso 
choose to replace the ex ponent 24/11 in Equati on (3.7) by I, 
a nd ig nore the deno minator IQ I2/11, fo r the purpose (o nly ) 
o f illustrati on. (Thi s can be rea li sed by choosing closure 
proporti onal to INI"'- l N in Equation (3.3) h and the friction 
term on the right of Equation (3.3h to be QIQI/5B, with 
a = 1.5, f3 = 2.) We then have to solve 

aN 
III + oX = N sgn Q, (3 .10) 

where 

Q = w(X - X * ), 

a nd wc require th a t 

N ---> 1 as X --> 00, 

N = NL on X = 0 , 

ih = -(1/ + AWX *) . 

(3.11) 

(3.12) 

Equation (3. 10) desc ribes the va ri ation with distance near the 
seal o f the dimensionless effective pressure. Since N is con­
strained both by the la ke-refilling bounda ry condition a nd 
by the necessity that it match to the fa r field value, it is neces­
sa ry to choose the water flu x into the lake from the seal 
region, and hence a lso the location X * of the di\'ide, in order 
to find a solution. In pa rticul ar, the di v ide is determined in 
principle by the lake effective pressure, and it is consistent 
with the slow vari ati on of N that X · can va ry (slowly) with t . 

Onc finds genera ll y that it is necessary that X * > 0 
( there is a seal ) in o rder that N does no t g row exponenti ally 
a t +00, which would IJre\'ent satisfac tio n of the first condi­
ti on in Equation (3.12). The so lution is the n 

N=-1 -~e-bX +(NL + 1 +~) e-X, O< X < X *, 
b- l b- 1 

N = 1 - _a_e- bX 
b + l ' 

X > X ' , (3. 13) 

where N L denotes the dimensionless la ke efTective pre sure, 
as ye t unknown. Since N must be continuous at the di\·ide 
position X *, wc find th at its value there, N *, is given by 

N ' = 1 _ _ a_c- bX' 
b + 1 

= - 1 - _ U_e- bX ' + (NL + 1 + _a_)e-X ' . (3. 14) 
b - 1 b - 1 

It foll ows from thi s th a t the lake effective press ure is rela ted 
to the divide position X * by 

N = 2 [eX' +_a_e-(b- J)X ' ] _ (1 +_a_). (3. 15) 
L b2 - 1 b - 1 

Fo r this simplificatio n of the non-linear model Equa tion 
(3.7), wc sce that the lake effec tive pressure NL a nd the 
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divide effective pressure iV* can bo th be written as function 
of the divide location X* (a ll qu a nLities being dimension­
less ). Equivalently, X * is given in terms of NL . In particul ar, 
since dNL/dX* = 2ex' N *, it follows that while N * > 0, X * 
is a monotonica ll y increas ing function of NL . Thus Equation 
(3.12), implies that NL dec reases slowl y in time as the lake 
fills towards the fl otati on level. 

\ Vc considcr that a nood is initia ted when N reaches zero 
anywhere; wh en this happens, channel enla rgem ent begins 
to occur, and in practice thi s would happen more rapidly 
than in the model due to lift-off of the basal ice. The most 
obvious way in which notation can occur is by hav ing NL 
reach zero, as happened in 1996. 

However, it is a lso conceivable that N reach zero some 
way downstream of the inl et. The profil e of N vs X given 
by Equation (3.13) is either hump-shaped or monotonically 
decreas ing in X < X *, and increasing in X > X *. As a con­
sequence, if Oota tion is to occ ur (N reaches zero) down­
stream of the inlet, then it must be because N * reaches zero 
while NL is still positive. 

Finally, there is a possible third mechanism for flood in­
itiati on, and this is if th e di vide location X* (which migrates 
backwards as the lake fill s) rea ches zero while NL a nd N * 
a re positi\·e. If this happens, thcn the di scha rge a t the inlet 
becomes positive, and the quasi-static ass umption used 
above becomes inadmissibl e. When the inl et di scharge 
becomes positive, the positive feedback of the fl ow rate 
becomes opera tive, and a fl ood is initiated. 

The violencc of the res ulting flood is associa ted with the 
minimum effcctive pressure which is reaehcd. This is 
because if fl ota ti on occurs, then the glacier will lift off its 
bed, enabling much more rapid enlargement or channel 
a rea than is catered for in the Nye model. Equiva lently, 
when the Oood is initiated below flot ation, the onse t will be 
more gradua l. 

Thus, as the lake refill s, a flood will be initiated when 
either the lake effective pressure N L , the water-divide effec­
tive pressure N * or the seal location X* reaches zero. Since 
NL and N * a rc monotonically increasing fun ctions of X*, 
the various possibilities can be distinguished simply by find­
ing where the g raphs of these functi ons intercept the X * axis. 

Note from Equation (3.14) that N * increases m onotoni­
cally with X *, a nd thus as NL decreases according to Equa­
tion (3.12), so a lso do iV* and X *. Now if X* = 0 in Equation 
(3.15), N L = 1 - [a/ (b + 1)], a nd this is positive if a < b + l. 
That is to say, as X * and NL decrease, then the divide 
location X * reaches zero while the lake effective pressure 
NL is still positive, if a < b + l. Furthermore, Equation 
(3. 14) indicates that also N * rem ains positive in this case. 
' Ne call a seal of this type a "weak" seal, and it corresponds 

It is tempting to enquire whether other, more realistic, sim­
plifications can be made to compute the critical value of NL 
when X * = O. At this critical va lue, the probl em to solve is 
Equation (3.7) and Equation (3.8) with X * = 0, and this 
can be written in the [orl11 W + Nx = p,N2(N / xt , where 
(J = 2/ 11 is small, and f.J, = w- a ~ 3.3, together with 
Nx --. 0 as X --. 00. The critical value of N L a t seal failure 
is then given by N(O). If wc put (J = 0, then the resulting 
Riccati equation admits an exact solution, and one finds 
that the critical value of NL is 1/ Vii ~ 0.55 . 
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to the normal Grimsvotn nood initia ti on. The Oood is in­
iti a ted because the rising lake level causes the position of 
the water di\'ide to migrate back towards the lake, reaching 
it whil e the lake level is still below flo ta tion level. 

Conversely, wc define (for this simplified linea r model) a 
"strong" sea l to be one for which a > b + 1. In this case, the 
functions NL(X *) and N *(X*) are both negative when X * = 
0, a nd since both increase monotonically with X *, the graph 
of each intercepts the X * axis at a positive \'alue. Tha t is to 
say, either NL or N * must reach ze ro, and hence notation will 
occur, while X* is still positi\'e, so that the di\·ide is still down­
stream from the la ke. In fact, it is a Jvvays the case tha t NL 
reaches zero while N * > 0 if b > 1 . This follows because N L 
is a 1110notonicall y increas ing function of N * (since both in­
crease monotonieally with X*), and it is straightforward to 

show that when N * = 0, i. e. X * = b~ l In [a/ (b + 1)], then 

NL < O. 
To summarise: we cha racterise a strong seal (in the con­

tex t of Equation (3.9)) as onc with a value of a > b + I , a nd 
a weak seal as one with a < b + 1. \Nhen the di scha rge at 
the lake inlet is sm all (and negati ve, or back imo the la ke) 
then there is a wa ter divide a dimension less di sta nce X * 
downstream from the lake inlet. The pos ition of this divide 
vari es monotonically with the dimensionl ess lake effective 
pressure iVL ; thi s relationship ari ses through the determin­
ation of the di scha rge to the lake (which is proportiona l to 
the downstream divide di stance) in terms of the effecti ve 
pressure at the la ke and the hydraulically cO!1l roll ed va lue 
further downstream. For a strong seal, the lake level rises to 

flo ta tion while the divide is still downstream of the la ke, 
while for a weak seal , the drainage di vide slowly migrates 
backwards as the la ke refill s, and reaches the lake when it 
is still below flota tion. In either case, the seal is then broken 
a nd the next flood is initiated. 

Thus we see tha t sea l-breaking when NL > 0 is consis­
tent with the model, providing the reve rsed hydraulic g radi­
ent is not too large at the inlet. vVith the scale No = 20 ba r 
a nd failure normally observed to occur at 6 bar, thi s suggests 
tha t the dimensionless effective pressure NL = 0.3 when 
X * = 0, which corresponds in this li neari sed model to a 
value a ~ 0.7(b + 1). Figure 6 shows that in fact Equation 
(3.9) is a good fit to the measured hydraulic gradient, with 
a = b = 4. This g radient was computed from data provided 
by F. S. L. Ng, which in turn were derived from mea sure­
m ents reported by Bjornsson (1974, 1988). Measurements of 
ice surface and bedrock elevation along a n assumed fl owline 
were taken from m aps 3 and 4 of Bjornsson (1988), while in­
dependent values of the same qua ntities (at different 
locations) were ta ken from fi gure 14 of Bjornsson (1974). 
These two datase ts were concatenated, and the computed 
value 01'\)1 was calculated, using linear interpolation for the 
ice surface or bedrock elevation where necessary (since sur­
face and bed elevations were not a ll measured at the same 
locations). The hydraulic gradient, computed as a simple fi­
nite difference between two adjacent points along the fl ow­
line, is then allocated to the point midway between them. 
\ lVith a = 4, the value corresponding to failure at 6 ba r is 
b = 4.7, which a lso fits the data reasonably. There is little 
point being too precious about this, in view of both the 
roughness of the da ta and the g ross simplificati on of Equa­
tion (3.7). Essenti a lly, the theory thus fa r is entirely consistent 
with observation. t 
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Fig. 6. The fu nction IjJ (X ) computed via interpolation Jrom 
observations of bed and ice swJace, and the approximating 
Junction 1 - 4 exp( -4X ). 

3.3. Numerical method 

We wish to valida te the qua li tati ve results by so lving Equa­
ti ons (3.3) numericall y, in the fo ll owing form: 

~~ = Q ( IjJ + ~~) - 5N
3 

Q = w[X - X *(t )], 

\]J oN _ QIQI 
+ oX - 58/ 3 

(3.16) 

together with Equations (3.4) a nd (3.5). Onc might ~ urmise 

that since in fac t the glac ier snout is a t X = 1/ 8 ;::,j 7, it 
might be easier to put N = 0 there. It will become clear that 
thi s is not so. 

Our time-stepping procedure is this. If wc have the 
so lution at time-step j - 1, we use Equation (3.16) I to es timate 
5 at time-step j. Nex t, wc step N at X = 0 forwa rd via Equa­
tion (3.4); then we choose X * at step j so that IjJ = QIQI/58/ 3 

a t X = AI , which is our cnd integra tion point: thi s forces 
oN /aX = 0 there. Finall y, we compute N at step j vi a quad­
ra ture, satisfying the bounda ry condition at X = O. This first­
order stepping procedure is then iterated using a n improved 
Euler step for 5 . In principle, itera ti on can be carri ed on until 
conve rgence. In practi ce, a fi xed number of correc tive itera­
ti ons (fi ve for the results shown ) is used. 

It is inadvisable to try to shoot for N = 0 at X = 1/8 be­
cause Equati o n (3.7) has soluti ons which blow up at finite X. 
Direct numerical so lution of Equa ti on (3.16) with thi s bound­
a ry condition would require a slightl y different approach. 

While thi s a pproach is des ig ned to understa nd th e dy­
namics between fl oods, it is evide nt that the sam e model 
should also describe fl oods. 

3.4. Results 

Some res ult of solving Equations (3.16) a re shown in Fig ures 
7- 14. It is well known that the Nye m odel has diffic ulty simu­
lating the 1972 Grimsvi:itn nood hydrograph (Spring a nd 
Hutter, 1981); Bj i:i rn sson (1992) showed that Cla rke's (1982) 
modifi ed model can provide reasona ble fits in some but not 
a ll cases. So we should not be surpri sed that reali stic values 
of the pa rameters fa il to yield quantita tive res ults consistent 
with observations. Onc reason for this may be the unreali stic 
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Fig. 7. Solution oJQ o(t ) of Equation (3.16) usingw = 0.1, 
1/ = 0.1 , A = I, a = 4, b = 4. 
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Fig. 8. SolutionJor Ndt) of Equation (3.16) lIsingw = 0.1, 
1/ = 0.1, A = I , Cl = 4, b = 4. 

assumption of a semici rc ul a r channel (Bj i:i rn sson, 1992), a nd 
we imagine that (but have not ye t exa mined whether) a 
wide-cha nnel theo ry w ill do much be tter in this respec t. 
The important fea tures here are the qualitative features o f 
the results, which wc consider to be robust. 

The solutions of Equ ations (3.4) a nd (3.16) depend on the 
two pa rameters wand 1/ . These parameters arc dimensio nless 
measures of the base fl ow due to subglacial melting, and the 
lake-refillin g rate, each o f them measured relative to a typical 
peak flood di scha rge. Figures 7 and 8 show that at rela ti vely 
high va lues of wand 1/ , the steady dra inage state is in fact 
stable, in contradicti on to the results in Fig ures 4 and 5, which 
are not controlled by the lake-inlet boundary conditio n. 
vVhen both parameters a re reduced, the steady state becom es 
unstabl e via a Hopf bifurcati on, and Fig ures 9 and la show 
the resulting oscill a ti on. Notice that the minimum \'alue of 
NL i negati ve; there is no thing inconsiste nt with this in the01Y 
the m odel appli es perfectl y well if N < 0 , since the ice would 
ce rta inly be pushed back viscously in this case. In practice, 
howeve r, the model is inappropriate, since in rea lity we 
wo uld expect latera l a nd forwa rd-prop agating hydraulic 
fracture, which would result in much more sudden fl oods. 

In our analysis a bove of the simplified system (Equ a­
tion (3. 10- 3.12)), we surmised that the condition for a weak 
seal was that (in terms o f Equation (3.9)) a was sufficie ntl y 
sm a ll. Although the (crudel y) fitted values a = b = 4 de te r­
mine a weak sea l fo r the lineari sed problem (Equ a ti o n 
(3.10)), thi s is not so fo r the non-linea r m odel (Equa tio n 
(3. 16)). However, Figures 11 a nd 12 show that if a = 2 instead , 
then p eriodic fl oods a re initi ated whe n the lake effec ti ve 
pressure is positive, a s no rma ll y observed. 
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Fig. 9. Ndt ) with w = 0.03, V = 0.03, A = 1, a = 4, 
b = 4. 
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Fig. 10. Qo(t) with w = 0 .03, V = 0.03, A = 1, a = 4, 
b = 4. 
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Fig. 11. NL (t ) with w = 0.0014, lJ = 0.002, A = 5, 
a = 2, b = 4. 
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Fig. 12. Qo(t ) with w = 0.0014, lJ = 0.002, A = 5, 
a = 2, b = 4. 
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Fig. 13. Lake ifJective pressure. Parameters as for Figure 11, 
but lJ = 0.02.for 200 < t < 220. 
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Fig. 14. Flood hy drograjJ/z. Parameters as for Figure 12, but 
V = 0.02 for 200 < t < 220. 

Finall y, we observe in Figures 13 and 14 the effect of a 
sudden change in lake-filling rate, such as that following a 
volcanic eruption . Consulting Fig ures 11 and 12, we see that 
at t = 200, the la ke level is about halfway between 
j bkulhlaups, a nd we mimic the effect of the eruption by 
changing v from its "normal" value of 0.002 in Fig ures 11 
a nd 12, to a value of 0.02 for 200 < t < 220. The effect of this 
change is dram atic. Despi te the "normal" flood onset at 
N L ~ 0.17, the sudden filling causes a n abrupt drop of NL 
towards and below zero, and the fl ood is initiated as the lake 
pressure reaches flotation level. 

4. CONCLUSIONS 

The Nye- Rbthlisberger theory of j bkulhlaups gives a n ex­
tremely successful account of the physics of sub glacia l floods, 
but in previous renditions it falls short of providing a full ac­
count of them. It is unable to provide a satisfactory fi t to 
observed da ta, a shortcoming which has been associated 
with the likely non-circul ar shape of the channel (Bj brnsson, 
1992), but one which we do not address in thi s paper. More 
importantl y in the present context, it has not been used to 
predict (except in a colloquial way) the cycl ie occurrence of 
j bku lhlaups, nor their normal onse t at sub-flota tion lake 
pres ures; nor can it distinguish a reason why the 1996 fl ood 
should have been delayed until flo ta tion was reached. 

We offer the fo llowing answers to these puzzles through 
a n examination of the Nye model. First, as extensively dis­
cussed by Bj brnsson (1976) and Nye (1976), the reason there 
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is a seal at a ll is that the hydraulic gradient III is negative at 
the caldera rim. In consequence of this, the simplification 
a fford ed by the "outer " approximation, wherein the basic 
hydraulic gradient is taken as constant, as a consequence of 
which the water llux Q is independent of downstream di s­
tance, cannot apply near the rim. Indeed , this outer approx­
im ation, while it admits regul a r fl oods, allows their 
amplitude to grow without bound. Our first resu lt is to show 
that the m odel, with the seal region near the rim described 
consistentl y by detail ed considerati on of the region near th e 
lake whe re the hydra ulic gradient is negati ve, admits a 
steady solution which is stable if the la ke-refilling and melt­
water inputs arc large, but as these pa rame ters a re reduced, 
there is a H opf bifurcation to a periodic limit cycle, i. e. the 
steady state becomes unstabl e, leading to sta ble periodic so­
lutions. There is no restriction in the model to positive values 
of effective pressures, a nd the minimum effec tive pressure is 
positive on ly if the seal is "weak", in the sense that the hy­
draulic gradient at the rim is sufTiciently sm all. For a weak 
sea l, flood onset occ urs when the lake level is below flot a­
tion, a nd is caused by the migration of the seal point (which 
dema rcates where llow is towards or away from the lake ) 
back towards the lake. 

Conversely, for a "strong" seal, the lake level reaches fl o ­
tation while the seal point is still downstream of the marg in, 
and in the Nyc model the channel begins to force its way 
open by viscously pushing back the ice. In fac t, this is unrea­
li stic because ifllotation is reached, then in realit y the cha n­
nel wi ll e nl arge rapidly through lateral hydra ulic frac ture a t 
the bed. Similarly, we exp ect the resulting llood to hydro­
frac ture rapidly downstrcam much like a turbidity current 
(with d iffereIll physics ), and we thus exp ec t that the result­
ing lloods will be \·iolent, as seen in 1996, but we do not in­
clude this in our model. Nevertheless, we do see that in a 
simul a tion of a jokulhl aup fo ll owing a n erupti\ 'C filling of 
the lake, the resulting flood is significantl y more rapid and 
the di schargc is la rger, even with the rela ti ve ly weak \'iscous 
opening of the channel. J n addition, rapid la ke refilling can 
easily a lter the onse t from occurring below flotat ion to oc­
curring at ll otati on. 

L et us try to ex pla in in physical terms how the so lutions 
of Nye's hydraulic model can beha\'e in these two different 
ways, as illust rated in Fig ures 11 - 14. Equations (3. 16) are es­
senti a lly eq uivalent to Nye's origina l model. They describe, 
respectively, channel opening and closure, the dischargc in 
terms of subglaria l melt ra te and the di scharge in terms of 
hyd ra ulic gradient. The la ke-refilling equ a tion, which can 
be written as (3.12h, provides an evolution equation for the 
effective pressure at the la ke, wh ich decreases as the lake 
levcl rises. The ex istence of a seal, as show n in Figure 3, is 
due to the fac t that the (dimensionle s) basic /1)idraulic gradient 
III (Equation (2. 12)) is negati\ 'e near the lake. Thi gradient 
was computed assuming th at the water pressure is equa l to 
the overburden press ure (Bj ornsson, 1976; Nye, 1976), whereas 
in fact the effective pressure (equal to the diflc rence between 
them ) will be non-zero. H owever, if the effective pressure 
gradient is sufTicently sm a ll, then the basic hydraulic grad i­
ent is a good indicator of the llow direction, so that a seal 
point will ex ist, upstream of which subglacia ll y deri ved melt­
water ll ows backwards towards the lake. Fa r downstrram, the 
basic hydraulic gradient is essentiall y consta nt (sce Fig. 6), 
and the effective pressure essenti a ll y foll ows Rothlisberge r 's 
steady dra inage characteri stic, which has N ex Q 1/12 Thus 
even when Q is sma ll between lloods, N will not be too 
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small, and in the aftermath of a llood the lake level is low, so 
that the effective pressure is a lso high at the la ke (as in Fig. 
11). Thus, followin g a llood, the effective pressure is relativel y 
uniform, and a seal will ex ist as described above. 

Now the lake leve l sta rts to ri se slowly, and as it does so, 
the effective pres ure there drops, causing the gradient 
aN lax in Equation (3.16) to increase, and thus a lso the hy­
draulic g radient. Remembering that this g radi ent is nega­
tive up-glacier of the sea l a nd p ositive down-g lacier, wc see 
that the incr eas ing lake level causes the point of zero hy­
draulic g radient (the seal) to m igrate up-glac ier towards 
the lake. Because of the slow change in la ke level, the cha n­
nel remains essentially in a ba la nce between o pening and 
closure, which simply determines the channel cross-section. 
There is now a competition between the dropping lake ef­
fective pressure and the backwards-migrating sea l, asso­
ciated with the increas ing hydraulic gradient. If the basic 
hydraulic g radient is sufTiciently negative (a strong seal), 
then the lake effective pressure can reach zero before the 
sea l reaches the lake; ll otation occurs, and a fl ood is in­
iti ated. Fo r a weak sea l, the seal reaches the la ke whi le the 
effective pressure there is still positive, and a Oood is in­
iti ated because the channel discharge is no longer controll ed 
by the sea l, but is related prim arily to the cross-section, 
which now begins to grow thro ugh the positive feedback op­
erati\'e in the channel-opening term. 

Wh at is the effect on this discussion of a rapidly refilling 
lake? If the la ke effective pressure changes on a time-scale 
simila r to that O\'er which the cross-sec tion adj usts itself 
(days or weeks ), then the effective pressure down-glacier 
from the la ke wi ll also decrease rapidly, and thi s causes the 
channel-closure rate to decrease more rapidl y. Conse­
quentl y, the chan nel increases more rapidly in size. As long 
as the sea l exists, so that the water llux is controll ed by (un­
changing) subglac ialmelt, thi s will have the effect of redu­
cing channel rric ti on, and thus the increase of the hyd raulic 
gradient will be slowed down. In turn, thi s implies that the 
seal will mig ra te more slowly up-gl acier tha n usual, and it 
provides a mecha nism whereby the seal can ac t st rongly if 
llotation is reached befo re the seal reaches the lake. 

Wc consider that the N ye model prov ides a robust 
ex plana tion of the \'ar ious puzzles associated wi th Oood in­
iti ation. But we acknowledge tha t the model is impaired in 
it · abilit y to capture acc urate quantitative data. Therefore, 
the numerica l values of such qua ntities as llood-cycle period 
and peak discha rge are se riously inacc urate using rea li stic 
values of the pa rameters. It is no doubt possible to find bet­
ter simul a tion. by judiciously tweaking pa ra me ters, but 
there is littl e p oint to this exercise. We expec t tha t a satisfac­
tory qua ntitati ve fit will be obta ined through th e u e of a 
wide-ch an nel model, whose corresponding invest igation 
awa its future work. 
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