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Breaking the seal at Grimsvotn, Iceland
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ABSTRACT. Ofseveral problems associated with theoretical explanations of the jokul-
hlaups which emerge from the outlet glacier Skeidararjokull of the ice cap Vatnajokull in
southeast Iceland, the mechanism of flood initiation is one that has hitherto deflied
explanation. We provide such an explanation based on a careful analysis of the classical
Nye—Réthlisberger model; near the subglacial lake Grimsvitn, the hydraulic potential
gradient is towards the lake, and there is therefore a catchment boundary under the ice,
whose location depends on the subglacial meltwater drainage characteristics. As the con-
ditions for a flood approach, we show that the water divide migrates towards the lake, while
at the same time the lake pressure increases. When the hydraulic potential gradient to-
wards the lake is low and the refilling rate is slow, the seal will “break” when the catchment
boundary reaches the lake, while the lake level is still below flotation pressure, whereas if
refilling is rapid, flotation can be achieved before a flood is initiated. This theory can thus
explain why the seal is normally broken when the lake level at Grimsvétn is still some 60 m
below flotation level. In addition, we are able to explain why the jokulhlaup following the
1996 eruption did not occur until flotation level was achieved, and we show how the cycli-
city and magnitude of jokulhlaups can be explained within this theory.

1. INTRODUCTION under the ice, and typically last 2-3 weeks, with peak dis-
charges on the order of 10" m”s ™. Extensive descriptions of
these jokulhlaups are provided by Rist (1973), Bjornsson (1974,
1988, 1992) and Tomasson and others (1981), and a variety of
theoretical analyses have been undertaken (Nye, 1976; Spring

Jokulhlaups are subglacial floods which occur, typically
from ice-dammed lakes, at regular intervals. Possibly the
best-known example is that of the jokulhlaups which emerge
at intervals of 5—10 years from the outlet glacier Skeidarar-
Jjokull, which drains the ice cap Vatnajokull in southeast Ice- el
land. This ice cap was recently made famous by the
subglacial eruption in 1996, which caused extensive collapse
of the ice cover, and eventually a massive jokulhlaup over
the proglacial outwash plain, Skeidararsandur. These jokul-
hlaups are due to the existence of a subglacial lake, = st
Grimsvitn, which lies above the caldera of a volcano under- /

neath Vatnajokull (Fig. 1). The lake exists due to the high \ C
geothermal heat flux which maintains a layer of water un-

derneath the ice. As can be seen from the vertical sectional F) e o

view in Figure 2, the lake level is well above the level of the (‘ / ,E\GQ Sl
caldera rim. However, it is confined by a “seal” which under S //’/ \ .
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normal circumstances is maintained by the overburden
pressure of the ice surrounding the caldera. As explained

\
by Bjornsson (1976) and Nye (1976), and as indicated in Fig- ‘ \E’L
ure 3, the excess ice pressure causes the hydraulic potential “‘%;
driving the water flow to have a maximum slightly down- P2 A

glacier of the lake margin. Note that the seal is indicated by
a maximum of the difference between the curves labelled z;

and zy, in Figure 3. We will refer to this point (actually a line N ’\\f\"f\
on the bed) as the seal (Fig. 2 or 3). It is important to remem- é?\“lsc\émuo "\}
ber that even while the lake is filling, there are conduits lead- e 4 O b
ing from the seal region both up-glacier to the lake and down- [J" [@P" i
glacier to the outlet. These conduits are formed and main- 2w r.;s T er
tained by water generated by local geothermal and fric- xer
. K L b e WATER DVIDE OF THE GRMSVOTH WaATER BASIN
tional heat sources. As time passes, the lake fills until R o 7low ]
eventually it becomes deep enough to break through the
scal. The resulting floods (the Icelandic word jékulhlaup Fig. 1. Map of Vatnajikull showing Grimsvitn and its
means “ice-leap”) emerge 50 km downstream after passing drainage pathway. From Bjornsson (1974).
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Fig. 2. The geometry of the lake and glacier, Grimsviin
(o) — &
and Skeikardrsandur. Redrawn by F.S.L. Ng from
Jigure 14 of Bjornsson (1974).
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Fig. 3. A close-up of the seal region, redrawon from figure 14 of
Byirnsson (1974). The figure shows the ice surface z, the bed-
rock zy,, and a hydraulic potential line =, for two different
values of lake level hy,. Inspection of the original figure indi-
cates that this curve is  defined by z = hy
+(p" — pi)/ pwg, where p° is the ice-overburden pressure
al the lake margin. If we suppose ( Nye, 1976) that p = p;,
then  the  hydraulic  potential s ¢ = p; — p;"
+pwd(z, — 2,"), where 2, = 2,0 at the lake margin, and
Hhian g =25 = By — 50— &/ pwg. 50 that the maximum
of 21, — z represents a hydraulic barrier. Alternatively and
confusingly, the seal can be conceptualised as a region where
the effective pressure N = p; — p is positive, where the water
pressure p is calculated on the basis of a constant hydraulic
potential ( Bjarnsson, 1974, fig. 15). In reality, neither
assumption is precisely valid, although both are useful inter-
pretable approximations.

and Hutter, 1981, 1982; Clarke 1982; Fowler and Ng, 1996), fol-
lowing the basic drainage theory due to Réthlisherger (1972).

These theories have been more or less successful in ex-
plaining the basic features of the Grimsvétn jokulhlaups.
Specifically, the shape of the flood hydrograph is relatively
well (il not perfectly) explained. However, certain features
remain puzzling, and the purpose of the present paper is to
try to explain some of these.

Most obviously, numerical models have focused on the
flood hydrograph, but have not been concerned with the cy-
clicity of the jokulhlaups, This is associated with a more press-
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ing problem, namely, why the floods are typically initiated
when the lake is at a level some 60 m below the flotation level
(Bjarnsson 1988, p.79), or the level at which it could break the
scal by pushing underneath the overlying ice. This is the
problem with which we are principally concerned. In fact,
one of the more interesting features of the 1996 jokulhlaup
was that the flood did not begin until the flotation level was
achieved, much to everyone’s surprise. (An account of the
eruption and subsequent jékulhlaup is given by Einarsson
and others (1997; see also Gudmundsson and others, 1997);
much useful information is given on a variety of websites, two
useful entry points to which are http://www.hi.is/-mmh/gos/
and http://www.spri.cam.ac.uk/jok/jok.htm.) We will seek to
explain the onset at flotation also. In addition, the 1996 flood
lasted just 1 day, compared to the more normal flood duration
of 2-3 weeks. We will provide a possible explanation for this.
We will begin by reviewing the classical Nye model for

jokulhlaups, with some slight modifications. We then show

that this model can be reduced, as can Clarke’s (1982), to a
pair of ordinary differential equations, whose solution
reveals oscillations. The amplitude of these oscillations
grows unboundedly. We then analyze more closely the
mechanisms of scal formation and breaking, which leads to
an enhanced approximation of the Nye model. This model is
able to predict periodic outbursts, and scal-breaking before
or at flotation, depending on the lake-refilling rate. In this
way, we can provide a putative explanation for both the
normal mechanics of seal-breaking and the anomalous
characteristics of the 1996 jéokulhlaup.

2. THE NYE MODEL

The Nye (1976) model consists of five equations for the five
variables (), S, p, m and 6., where these are, respectively,
the volumetric water flux in the channel, its cross-sectional
area, the channel water pressure, the interfacial melt rate,
with units of mass per unit length of the channel per unit time,
and the water temperature. The primary limiting assumption
is that the channel has a semicircular cross-section, cut up-
wards into the ice. In reality, it seems more likely that chan-
nelled flow will occur through a broad, low-ceilinged conduit
(Hooke and others, 1990), and that sediment erosion (Boulton
and Hindmarsh, 1987) will play an important part in control-
ling the channel shape. These points have been investigated to
some extent by Fowler and Ng (1996), particularly as they
affect the shape of the predicted flood hydrograph, but we do
not pursue them here, as our primary purpose is to under-
stand the mechanism whereby flood initiation occurs, and
this can he done satisfactorily in the context of the familiar

Nye model.
The equation for S is
d5 m
—=——KS8(p,—p)", |
B (p —p) (2.1)

and represents the rate of change (¢ is time) of cross-sec-
tional area due to meltback of the channel walls (the first
term) and viscous closure of the ice (the second term). In
terms of its provenance, this equation is actually a kinematic
boundary condition for the external viscous ice-flow
problem, since the ice/water interface is a free boundary. py
is the ice-overburden pressure, p; is the ice density, K is pro-
portional to the flow constant in Glen’s law, and n is the
flow-law exponent, often taken asn = 3. A further equation
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for S tollows from mass conservation of water in the chan-
nel, which takes the form
as aQ m

=—+ M, 2.2
ot ds pw+ (28]

where s is downsircam distance along the channel from the
lake margin, py is the water density, and, apart from the
melt rate m (which is actually insignificant in this equation,
although of primary importance in Equation (2.1)), we in-
clude a supply term M which describes the base flow, de-
rived from surface melt, rainfall or other subglacial melt.
This term, although irrelevant during floods, turns out to
be of great significance in controlling the seal dynamics
between floods.

The momentum equation for the channel flow takes the
form of an empirical correlation between flow and turbulent
[riction, and it is usual to assume a Manning law:

. ap Q° :
Pwgsina — Yy _,!'pwgm ! (BL5)

where g is gravity, « is the downslope angle and f is a fric-
tion factor which is related to the Manning roughness. The
energy equation can be written in the form

0 00,
PwCw (S( + Q) _)

5 " 0
( ’ (2.4)

= Q(pwgsinu - %) —m[L + ew(Bw — 6:)].

where @ is the interfacial ice temperature, assumed to be
equal to the freezing point, ¢, is the specific heat of water
and L is the latent heat. The advection of heat on the left of
Equation (2.1) is balanced on the right by the viscous dissi-
pative heating term, and the losses due to latent- and sensi-
ble-heat supply to the interface. 0, is the mean bulk water
temperature, which may (and indeed must) be larger than
the interfacial ice temperature €. There is then heat transfer
across a turbulent boundary layer at the wall, and this is
given by the relation (Dittus and Boelter, 1930)

0.8

a (”p“%) KBy — 8) = m[L + cu(B — 6)],  (2.5)
W

where a1(=0.2) is a constant, 7, is the viscosity of water

and £ is its thermal conductivity.,

These five equations must be supplemented with an
initial condition for S, and suitable boundary conditions,
consisting of a flow or pressure condition at the channelinlet
and outlet. In practice, the water pressure, and hence the
effective pressure, defined as N = p; — p. is prescribed at
each end. (Note that in Nye’s (1976) notation, N denoted a
friction constant. In this paper, its use is restricted to the
effective pressure.) We take the origin of 5 (i.e. s =0) to be
at the inlet to the channel, and we suppose the channel
outlet at the snout of the glacier is at s = 5y . We thus choose

N=0 at s=s (2.6)

while at the inlet, conservation of mass requires that

ﬂ =my — Q(0,t) at s=0, (2:7)
where V' is the lake volume and my, represents the geother-
mal melt rate, or more generally the lake-refilling rate (as in
1996, when the lake refilled rapidly due to inflow of melted
water from the site of the fissure eruption (Einarsson and
others, 1997)). Suppose the lake level is z = zy, where z is
height above sea level. We assume V = V/(zy), and in fact
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V'(zw) = Ar is the effective lake surface area (which may
depend on zy). Now the water pressure at the inlet is
Pwilze — 2,), where z, is the height above sea level of the
bedrock at the lake margin s = 0, and this is equal to
p; — N.Therefore (if 2, and p; do not vary)

dzy dN
Nwg—— = —— (0, 1), 2.8
Pwl df dt ( ) ( )
and thus the boundary condition at the lake inlet 1s
Ay ON
- =m,—& at s=0. (2.9)

 pwg Of
2.1. Non-dimensionalisation

The geometry of the lake and outlet glacier as described and
drawn by Bjérnsson (1974) is shown in Figure 2, and a close-
up of the seal region is shown in Figure 3, which also indi-
cates how the seal is maintained. The geometry defines nat-
ural distance scales sg ~50km and hy ~1500m for the
variables s and z. In addition, we choose scales for the other
variables by writing

pi—p= NN,

5 = S[].‘i* 5

O = 6 + 6t

t =ttt S= 557,
Q = QuQ".

Thus, the asterisked variables are dimensionless.

We choose the scales Ny, @, to, So, mg and Qy as follows.
We halance all three terms in Equation (21) by writing

m = mgm’,

(2.10)

S m :
2= = KS5MN". (2.11)
to i
Next, we define the basic hydraulic gradient ¥ as
ap;
U = pygsina — ey (2.12)
s

This quantity is the hydraulic gradient that exists if the
basal water pressure is equal to the overburden ice pressure.
As such, it corresponds to that discussed by Nye (1976), and
we associate the existence of the seal with the fact that W is
negative near the lake. In terms of this, the actual hydraulic
gradient is defined by

] dp ON
p“.gsmn-—a: ‘IJ+E (2.13)
A natural scale for ¥ is
g, = gl (2.14)
50
since sin v ~ hg/sg, and so we scale W by writing
lIJ == ‘I’U\I’*. (215)

A balance of terms in Equation (2.3) is now effected by having

W ~ fp,gQ*/S%?; thus

fowg Qﬁ
Dy = S8

In Equation (2.4), we halance the two terms on the right;
thus

(2.16)

Qu‘-pg — 'f’N-()L. (217)

We choose g by balancing the latent-heat term in Equation
(2.5) with the term on the lefthand side:

0.8
a Ip\\'Q[l
1| P
41/2

ThwiSg

Ifg[_) = 'n?uL. (218)

Finally, it would seem natural to choose the scale for Qp to
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balance the first and third terms in Equation (2.9); if we do
this by prescribing

1
Jin+1) -1

Q 3 an S & 4(n+1) AL An
"\ foug pil pwgKl/n

then we find, using values prescribed below, that @ =

(2.19)

12%10° m”s ', which is about 15 times the normal peak dis-
charge. This can partly be ascribed to the fact that these are
only scales, but it may also partly reflect the fact that the
Nye-Réthlisberger model with semicircular channels is
known to predict peak discharges larger than those
observed (Ng, 1998). Since we do not want to unduly distort
the relevant values of the parameters defined below, we in-
stead choose (g to be a typical observed peak discharge.

The five relations in Equations (2.11) and (2.16-2.18)
define the five scales Sy, g, to, Ny, 8 in terms of @, and
we find

2y 3/8
By = FrvgQi — Qo
) ¥ ' ! &
TR0
_ W@ 1Sy e PiSy
0= T B == 4
ak Pl g

Ny = (Kty) i

The dimensionless model equation can then be written in
the form (dropping the asterisks on the variables and taking
) =3)

“ =m— SN3,

ot
£ i,)): (3)—? =zerm + £,
: 2
7(55'(;(: + Qj—?) = Q('If + b%) —m(1l + eryf),
8(%) - =m(1l + eryf), (27217
together with boundary conditions
N=0 #t 3=1
% =AD—=pr 8t s=0, (2:22)

where the parameters in Equations (2.21) and (2.22) are
given by

L e = Q|I|/]2(.f}\'Jw.Q)_UH

T oml T (KpL) Begwtt

o P (”w)n,s i m) 3/20
sokay \ py 2 Wy ;

p=Pi g Mmooy AwgteQy g oy
Pw Qo Qo Ay Ny

We assume typical values p; ~ 0.9 x 10° kgm % py~10® kgm
Ty ~2 % 10 £ kg m I ', k~06Wm 'K !, Cyw ~ 42K kg ;
KL L~33x10°k kg, K=10%"Pa?s ! g~10ms?2

(]
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The definition of the friction factor f in Manning’s
roughness law as written here is

8\
f=nz<ﬁ) .

where n' is the roughness coefficient and Ry is the hydraulic
radius (= 5/I, where [ is the perimeter), For a circular chan-
nel (S/RH2)2/3 — (471'}2/3 ~ 5.4, so that if n’ = 0.1m "5,
then f ~ 0.05m 2 ¢”,

We also take sg = 50km, hy = 1.5km, whence we find
Wy~300Pam ', and we suppose Ap = 32km” = 3.2 x 10’
m?, based on figure 4 of Gudmundsson and others (1995),

(2.24)

which indicates a typical range of 17-33 km”. An estimate of
the refilling rate can be obtained from figure 5 of the same
paper, which indicates that the lake level rises hetween hlaups
at about 20 ma . Together with the lake-level area, this indi-
cates a typical refilling rate of 6.4 x10" kga ', which is consis-
tent with the independently inferred values over the past
century based on flood-discharge magnitude (Bjornsson,
1988, p.100). If we anticipate that a typical value of @ =
10*m”s ! (from observations), then we find successively that

Sp ~ 1200m>, my ~9kg m's7!, 6, ~ TK,
to ~1.2 x 10°s (1.4 days), No ~ 2 x 10°Pa (20 bar),

(2.25)
and the dimensionless parameters are of typical sizes
y~2, e~0.05 r~09, 6~0.14,
Q~001, A~5b, v~2x107% (2.26)

. 2 3
where for £2 we assume a base flow rate of Msy = 107 m’s W

which represents typical discharges between jokulhlaups.
Base flow is not often reported, but Bjornsson (1998, p. 114)
gives values in the region of 100 m®s ' for the rivers Skafia
and Tungnaa draining western Vatnajékull, while Rist (1977,
1984) and Sigurdsson and others (1992) repeatedly estimate
base flow of the Skeidararjokull stream system to be of the
same size. We then see that these parameters are = O(1),
which indicates that the scales we have chosen are sensible.
The choice of Equation (2.19) for )y would correspond to
choosing A = L.

2.2. Model simplification

The parameters £, 6 and 2 are all relatively small. If we
neglect them, it follows that

Q@ = 0, 1), ie. Q@=Q@(@1)
8 m WA, (2.27)

and hence that
T 2 \113/")“(;)1/29_

and thus

701/2?_‘9 ~ WOY? — gy, (2.29)
ds
We see from this that # approaches a limiting value such that
m = ¥Q over a dimensionless distance of over yQ1/2, Now
since ) was scaled with a typical peak discharge, it is clear
that in general this distance will be very short. To accommo-
date this observation, we simplity the model by assuming
that m = W@ holds at all times, even though this will be in-
accurate for a short time during maximum discharge. We do
not consider this a disadvantage since our primary concern
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Fig 4. (N, Q) phase portrait of the solution of Equation
(2.30). Parameter values A =15 and v = 0.1. Logscale
(upper) and normal scale ( lower ).

below 1s not with the shape of the hydrograph, but with the
seal dynamics between floods.

For simplicity, let us suppose that ¥ is constant, equal to
l. Tt then follows that N = N(0,¢) = N(t), and N and @
satisfy

5 _ 4 5/4 4 3
=—t = CON?,
Q=3 -3Q

N =XQ - v, (2.30)

where N = dN/dt. The model thus reduces in this case to
the solution of two ordinary differential equations!

It is trivial to analyze these equations. There is a fixed
point at @ =rv/A, N = QY2 corresponding to steady
Rathlisberger drainage, but the lake-refilling equation ren-
ders this always unstable; the fixed point is an unstable spiral
ifr > 3.8 x 107*A 12, otherwise it is an unstable node.

Figure 4 shows a numerical solution of Equation (2.30).
Clearly the spiral structure continues for (N, Q) away from
the unstable fixed point. The time series corresponding to

this diagram (Fig. 5) shows a sequence of jokulhlaups of

growing discharge, with long intervals (of O(1/1)) between
the floods. If we focus on a single flood, there is clearly no
criterion for picking which hydrograph will occur, and this
is a drawback of the model. In fact, this is another reason
why the choice of Equation (2.19) for )y would be prema-
ture. Control of the peak discharge must depend on the ini-
tial conditions, which in turn must depend on the seal-
breaking mechanism; therefore the choice of Equation
(2.19), while appealing, must in fact be irrelevant.
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Fig. 5. Time series of the solution in Figure 4: Q(t) (upper)
and N(t) (lower).

3. BREAKING THE SEAL

We now return to the full Nye model, in the form

as 3

a—m—SN,
as  oQ
Eaﬁ-a—erm%—ﬂ,

IN _ Q|Q
v+ Bz S8/3°

ao af aN
’y(eSa-E-Qa—s) = Q(‘IJ +65) —m(1l +eryb),

0\
9(@) = m(l +eryf). (3:1)

We have seen that this model can describe the flood hydro-
graph reasonably well, in its approximate form. The ques-
tion now arises whether the complete model is also able to
describe the dynamics of the system between floods, or
whether some further physical process must be included.
Clearly the approximations introduced in section 2 will
not allow for a proper study. In fact, the reason there is a seal
at all is that the ice at the caldera rim causes a negative hy-
draulic gradient there. In other words, ¥ is not only not
constant, it is in fact negative near the rim. Pretty clearly,
the model needs some adjustment there. In order to exam-
ine this region more closely, we define a rescaled distance
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variable X measured downstream from the point where the
channel (or channels) from the divide enter the lake as

s—HX. (3.2)

where 8 is as given in Equation (2.23). We neglect +y as before,
because the advection will certainly be negligible between
floods. Ignoring terms in &, the equations are then approxi-
mated by

gﬁ =m — SN,

at
Q_
T
ON  Q|Q|
Yrox = s
JIN
= -t —
m Q( +8X)’

0.8
— 9(%) ; (3.3)
It is essential to retain w = 6§ ~ 1.4 x 10 ? even though it is
small, and it is also appropriate to do so when @ < 1. Simi-
larly, it is valid to neglect the advection term for 0 if
(Q € 6/, as is likely to be the case. Equations (3.3) are sup-
plemented by the lake-refilling equation

ON

5 = AQ—v on X =0, (3.4)

and we also require that N match to the outer solution as
X — 00: this is effected by requiring that
ON
—_—
0X

This technical condition ensures that the solution in the seal

0 as X —0. (3.5)

region blends to the approximate solution away from the
seal, which as before is obtained by taking ¥ = 1. Equation
(3.3) applies also if N < 0 (though, in reality, hydrofractur-
ing would then cause much more rapid opening of the chan-
nel), but if a different power law is used, say closure x N°,
then the correct closure term in Equation (3.3), replaces N*

by |[N|*"'N.
3.1. An approximate analysis

Before we solve this model numerically, we aim to under-
stand its likely behaviour. Firstly, when @ < 1, Equation
(3.4) indicates that N varies slowly, so that Equation (3.3),
implies that S rapidly (on a time-scale of O(1)) approaches
(quasi-) equilibrium, 1.c.

: ON
SN} mm~Q (\p R ;TX) (3.6)
Using Equation (3.3)5, this leads to
ON N2-1/ll
(3.7)

9X " qpm e

(note that this allows for both positive and negative @, sup-
posing N > 0; if N < 0, then the comment after Equation
(3.5) would apply, but in fact a flood is then initiated, and
Equation (3.6) is inappropriate). The solution for @ is
Q=uw[X — X" (t)], (3.8)
where X* gives the dimensionless distance of the seal down-
stream from the lake. (Note, however, that the asterisk here
no longer connotes a dimensionless rather than a dimen-
sional quantity; all variables are dimensionless, and the aster-

https://doi.org/10.3189/50022143000001362 Published online by Cambridge University Press

Iowler: Breaking the seal at Grimsvitn

isk denotes a particular value of X) This equation (indeed
the whole model Equation (3.3)) also applies during the
flood, when X* < 0 (of course there is then no water divide,
and —wX" simply gives the dimensionless water flux at the
inlet). By assumption, ¥(X) satisfies W(0) < 0,¥(c) > 0,
and Equation (37) is to be solved subject to Equations (3.4)
and (3.5), the extra condition serving to determine the un-
known X*.

3.2. A particular example

To gain some analytic insight, we choose
=1 —ae ¥, b>0, (3.9)

to represent the negative value of W near X = 0, and also so
that ¥ — 1 as X — oa. (As we will see below in Figure 6,
this is in fact a realistic representation of the data) We also
choose to replace the exponent 24/11 in Equation (3.7) by 1,
and ignore the denominator |Q|*!, for the purpose (only)
of illustration. (This can be realised by choosing closure
proportional to [N|* ' N in Equation (3.3), and the friction
term on the right of Equation (3.3)3 to be Q|Q|/S”, with
a = L5, # =2) We then have to solve

az .

v+ g—ﬁ = Nsgn@, (3.10)
where
Q=uw(X - X"), (3.11)
and we require that
N—1 as X — oo,
N=N;, on X=0,
Ny = —(v + AwX™). (3.12)

Equation (3.10) describes the variation with distance near the
seal of the dimensionless effective pressure. Since N is con-
strained both by the lake-refilling boundary condition and
by the necessity that it match to the far ficld value, it is neces-
sary to choose the water flux into the lake from the seal
region, and hence also the location X* of the divide, in order
to find a solution. In particular, the divide is determined in
principle by the lake effective pressure, and it is consistent
with the slow variation of N that X* can vary (slowly) with £.

One finds generally that it is necessary that X* > 0
(thereisaseal) in order that N does not grow exponentially
at +og, which would prevent satisfaction of the first condi-
tion in Equation (3.12). The solution is then

_ 1. % _5x a ) 5 "
N=-1-:"-e +(NL+1+b_1 e X 0<X<X,
N = —bile-“-". X=X, (3.13)

where Ny, denotes the dimensionless lake effective pressure,
as yet unknown. Since N must be continuous at the divide
position X, we find that its value there, N*, is given by
N g O

b+1

(23 = [¢3 re
=l e g (N 1 i
e 1)‘

It follows from this that the lake effective pressure is related
to the divide position X* by

N =242 *“’*”-\"] . % ) 15
L=2]c" + 5 (1+b71 (3.15)

For this simplification of the non-linear model Equation
(3.7), we see that the lake effective pressure Ny and the

(3.14)
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divide effective pressure N* can both be written as functions
of the divide location X* (all quantities being dimension-
less). Equivalently, X* is given in terms of Ny.. In particular,
since d N, /dX* = 2e¥ N*, it follows that while N* > 0, X*
is a monotonically increasing function of Ni,. Thus Equation
(3.12)4 implies that Ny decreases slowly in time as the lake
fills towards the flotation level.

We consider that a flood is initiated when N reaches zero
anywhere; when this happens, channel enlargement begins
to occur, and in practice this would happen more rapidly
than in the model due to lifti-off of the basal ice. The most
obvious way in which flotation can occur is by having Ny,
reach zero, as happened in 1996.

However, it 1s also conceivable that N reach zero some
way downstream of the inlet. The profile of N vs X given
by Equation (3.13) is either hump-shaped or monotonically
decreasingin X < X*, and increasingin X > X*. Asa con-
sequence, if flotation is to occur (N reaches zero) down-
stream of the inlet, then it must be because N* reaches zero
while N, is still positive.

Finally, there is a possible third mechanism for flood in-
itiation, and this is if the divide location X* (which migrates
backwards as the lake fills) reaches zero while Ny, and N*
are positive. If this happens, then the discharge at the inlet
becomes positive, and the quasi-static assumption used
above hecomes inadmissible. When the inlet discharge
becomes positive, the positive feedback of the flow rate
becomes operative, and a flood is initiated.

The violence of the resulting flood is associated with the
minimum effective pressure which is reached. This is
hecause if flotation occurs, then the glacier will lift off its
bed, enabling much more rapid enlargement of channel
arca than is catered for in the Nye model. Equivalently,
when the flood is initiated below flotation, the onset will be
more gradual.

Thus, as the lake refills, a flood will be initiated when
either the lake cffective pressure Ni, the water-divide effec-
tive pressure N* or the seal location X” reaches zero. Since
Ny, and N* are monotonically increasing functions of X7,
the various possibilities can be distinguished simply by find-
ing where the graphs of these functions intercept the X* axis.

Note from Equation (3.14) that N increases monotoni-
cally with X™, and thus as N, decreases according to Equa-
tion (3.12), so also do N* and X ™. Now if X* =0 in Equation
(3.15), Np. = 1 — [a/(b+ 1)], and thisis positive if @ < b+ 1.
That is to say, as X* and N decrease, then the divide
location X* reaches zero while the lake effective pressure
Ny, is still positive, if @ < b+ 1. Furthermore, Equation
(3.14) indicates that also N* remains positive in this case.
We call a seal of this type a “weak” seal, and it corresponds

P s tempting to enquire whether other, more realistic, sim-
plifications can be made to compute the critical value of Ny,
when X* = 0. At this critical value, the problem to solve is
Equation (37) and Equation (3.8) with X* = 0, and this
can be written in the form ¥ + Nx = uN*(N/X)“, where
c=2/11 is small, and p =w " =~ 3.3, together with
Nx — 0 as X — 00.The critical value of Ny, at seal failure
is then given by N(0). If we put ¢ = 0, then the resulting
Riccati equation admits an exact solution, and one finds
that the eritical value of Ny, is 1//p = 0.55.
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to the normal Grimsvétn flood initiation. The flood is in-
itiated because the rising lake level causes the position of
the water divide to migrate back towards the lake, reaching
it while the lake level is still below flotation level.

Conversely, we define (for this simplified linear model) a
“strong” seal to be one for which a > b+ 1. In this case, the
functions Ni,(X*) and N*(X*) are both negative when X* =
0, and since both increase monotonically with X*, the graph
of each intercepts the X* axis at a positive value. That is to
say, either N or N* must reach zero, and hence flotation will
oceur, while X* is still positive, so that the divide is still down-
stream from the lake. In fact, it is always the case that Ny,
reaches zero while N* > 0ifb > 1. This follows because Ny,
is a monotonically increasing function of N* (since both in-
crease monotonically with X*), and it is straightforward to
show that when N* =0, ie. X* = b 'In[a/(b+1)], then
Nr,< 0.

To summarise: we characterise a strong seal (in the con-
text of Equation (3.9)) as one with a value of @ > b+ 1, and
a weak seal as one with a < b+ 1. When the discharge at
the lake inlet is small (and negative, or back into the lake)
then there is a water divide a dimensionless distance X*
downstream from the lake inlet. The position of this divide
varies monotonically with the dimensionless lake effective
pressure Ny ; this relationship arises through the determin-
ation of the discharge to the lake (which is proportional to
the downstream divide distance) in terms of the effective
pressure at the lake and the hydraulically controlled value
further downstream. For a strong seal, the lake level rises to
flotation while the divide is still downstream of the lake,
while for a weak seal, the drainage divide slowly migrates
backwards as the lake refills, and reaches the lake when it
is still below flotation. In either case, the seal is then broken
and the next flood is initiated.

Thus we see that seal-breaking when Ny, > 0 is consis-
tent with the model, providing the reversed hydraulic gradi-
ent is not too large at the inlet. With the scale Ny = 20 bar
and failure normally observed to occur at 6 bar, this suggests
that the dimensionless effective pressure Ny = 0.3 when
X* = 0, which corresponds in this lincarised model to a
value @ = 0.7(b + 1). Figure 6 shows that in fact Equation
(3.9) is a good fit to the measured hydraulic gradient, with
a = b = 4. This gradient was computed from data provided
by F.S.L. Ng, which in turn were derived from measure-
ments reported by Bjornsson (1974, 1988). Measurements of
ice surface and bedrock elevation along an assumed flowline
were taken from maps 3 and 4 of Bjornsson (1988), while in-
dependent values of the same quantities (at different
locations) were taken from figure 14 of Bjérnsson (1974).
These two datasets were concatenated, and the computed
value of ¥ was calculated, using linear interpolation for the
ice surface or bedrock elevation where necessary (since sur-
face and bed elevations were not all measured at the same
locations). The hydraulic gradient, computed as a simple fi-
nite difference between two adjacent points along the flow-
line, is then allocated to the point midway between them,
With a = 4, the value corresponding to failure at 6 bar is
b = 4.7, which also fits the data rcasonably. There is little
point being too precious about this, in view of both the
roughness of the data and the gross simplification of Equa-
tion (3.7). Essentially, the theory thus far is entirely consistent
with observation. *
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Fig. 6. The function W(X) computed via interpolation from
observations of bed and ice surface, and the approximating
Sunction 1 — 4 exp(—4X).

3.3. Numerical method

We wish to validate the qualitative results by solving Equa-
tions (3.3) numerically, in the following form:

)S ‘ .
o 8] (\p 4 ‘)—N) — SN®

ot X
Q =wlX - X"(t)),
ON Q@] :
o +0X =" (3.16)

together with Equations (3.4) and (3.5). One might surmise
that since in fact the glacier snout is at X = 1/6 = 7, it
might be easier to put N =0 there. It will become clear that
this is not so,

Our time-stepping procedure is this. If we have the
solution at time-step j — 1, we use Equation (3.16), to estimate
S at time-step j. Next, we step N at X = 0 forward via Equa-
tion (3.4); then we choose X* at step jso that ¥ = Q|Q|/S%/?
at X = M, which is our end integration point: this forces
ON/OX = 0 there. Finally, we compute N at step j via quad-
rature, satisfying the boundary conditionat X = 0. This first-
order stepping procedure is then iterated using an improved
Euler step for S. In principle, iteration can be carried on until
convergence. In practice, a fixed number of corrective itera-
tions (five for the results shown) 1s used,

It is inadvisable to try to shoot for N = 0at X = 1/6 be-
cause Equation (3.7) has solutions which blow up at finite X.
Direct numerical solution of Equation (3.16) with this bound-
ary condition would require a slightly different approach.

While this approach is designed to understand the dy-
namics between floods, it is evident that the same model
should also describe floods.

3.4. Results

Some results of solving Equations (3.16) are shown in Figures
7-14. It is well known that the Nye model has difficulty simu-
lating the 1972 Grimsvétn flood hydrograph (Spring and
Hutter, 1981); Bjornsson (1992) showed that Clarke’s (1982)
modified model can provide reasonable fits in some but not
all cases. So we should not be surprised that realistic values
of the parameters fail to yield quantitative results consistent
with observations. One reason for this may be the unrealistic

https://doi.org/10.3189/50022143000001362 Published online by Cambridge University Press

Fowler: Breaking the seal al Grimsuvdtn

06

omega=01,nu=01 —

05t
04
Qg 03
02}

0.1

0w e ®  »  w

t
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Fig. 8 Solution for Ny,(t) of Equation (3.16) usingw = 0.1,
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assumption of a semicircular channel (Bjérnsson, 1992), and
we imagine that (but have not vet examined whether) a
wide-channel theory will do much better in this respect.
The important features here are the gualilative features of
the results, which we consider to be robust.

The solutions of Equations (34) and (3.16) depend on the
two parameters w and v. These parameters are dimensionless
measures of the base flow due to subglacial melting, and the
lake-refilling rate, cach of them measured relative to a typical
peak flood discharge. Figures 7 and 8 show that at relatively
high values of w and v, the steady drainage state is in fact
stable, in contradiction to the results in Figures 4 and 5, which
are not controlled by the lake-inlet boundary condition.
When both parameters are reduced, the steady state becomes
unstable via a Hopf bifurcation, and Figures 9 and 10 show
the resulting oscillation. Notice that the minimum value of
N1, is negative; there is nothing inconsistent with this in theory:
the model applies perfectly well if N < 0, since the ice would
certainly be pushed back viscously in this case. In practice,
however, the model is inappropriate, since in reality we
would expect lateral and forward-propagating hydraulic
fracture, which would result in much more sudden floods.

In our analysis above of the simplified system (Equa-
tions (3.10-3.12) ), we surmised that the condition for a weak
seal was that (in terms of Equation (3.9)) a was sufficiently
small. Although the (crudely) fitted values a = b = 4 deter-
mine a weak seal for the linearised problem (Equation
(3.10)), this is not so for the non-linear model (Equation
(3.16) ). However, Figures 11 and 12 show that if @ = 2instead,
then periodic floods are initiated when the lake effective
pressure is positive, as normally observed.
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Fig. 13. Lake effective pressure. Paramelers as for Figure 11,
but v = 0.02 for 200 < t < 220.
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Fig. 14. Flood hydrograph. Parameters as for Figure 12, but
v =0.02 for 200 < ¢ < 220.

Finally, we observe in Figures 13 and 4 the effect of a
sudden change in lake-filling rate, such as that following a
volcanic eruption. Consulting Figures 11 and 12, we see that
at t= 200, the lake level is about halfway between
jokulhlaups, and we mimic the effect of the eruption by
changing v from its “normal” value of 0002 in Figures 11
and 12, to a value of 0.02 for 200 < ¢ < 220. The effect of this
change is dramatic. Despite the “normal” flood onset at
Ni, 2 017, the sudden filling causes an abrupt drop of Ni,
towards and below zero, and the flood is initiated as the lake
pressure reaches flotation level.

4. CONCLUSIONS

The Nye—Rothlisberger theory of jokulhlaups gives an ex-
tremely successful account of the physics of subglacial floods,
but in previous renditions it falls short of providing a full ac-
count of them. It is unable to provide a satisfactory fit to
observed data, a shortcoming which has been associated
with the likely non-circular shape of the channel (Bjérnsson,
1992), but one which we do not address in this paper. More
importantly in the present context, it has not been used to
predict (except in a colloquial way) the cyclic occurrence of
jokulhlaups, nor their normal onset at sub-flotation lake
pressures; nor can it distinguish a reason why the 1996 flood
should have been delayed until flotation was reached.

We offer the following answers to these puzzles through
an examination of the Nye model. First, as extensively dis-
cussed by Bjornsson (1976) and Nye (1976), the reason there
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is a seal at all is that the hydraulic gradient W is negative at
the caldera rim. In consequence of this, the simplification
afforded by the “outer” approximation, wherein the basic

hydraulic gradient is taken as constant, as a consequence of

which the water flux @ is independent of downstream dis-
tance, cannot apply near the rim. Indeed, this outer approx-
imation, while it admits regular floods, allows their
amplitude to grow without bound. Our first result is to show
that the model, with the seal region near the rim described
consistently by detailed consideration of the region near the
lake where the hydraulic gradient is negative, admits a
steady solution which is stable if the lake-refilling and melt-
water inputs are large, but as these parameters are reduced,
there is a Hopl bifurcation to a periodic limit cycle, i.e. the
steady state becomes unstable, leading to stable periodic so-
lutions. There is no restriction in the model to positive values
of effective pressures, and the minimum effective pressure is
positive only if the seal is “weak”, in the sense that the hy-
draulic gradient at the rim is sufficiently small. For a weak
seal, flood onset occurs when the lake level is below flota-
tion, and is caused by the migration of the seal point (which
demarcates where flow is towards or away from the lake)
back towards the lake.

Conversely, for a “strong” seal, the lake level reaches flo-
tation while the seal point is still downstream of the margin,
and in the Nye model the channel begins to force its way
open by viscously pushing back the ice. In fact, this is unrea-
listic because if flotation is reached, then in reality the chan-
nel will enlarge rapidly through lateral hydraulic fracture at
the bed. Similarly, we expect the resulting flood to hydro-
fracture rapidly downstream much like a turbidity current
(with different physics), and we thus expect that the result-
ing floods will be violent, as seen in 1996, but we do not in-
clude this in our model. Nevertheless, we do see that in a

simulation of a jokulhlaup following an eruptive filling of

the lake, the resulting flood is significantly more rapid and
the discharge is larger, even with the relatively weak viscous
opening of the channel. In addition, rapid lake refilling can
easily alter the onset from occurring below flotation to oc-
curring at {lotation.

Let us try to explain in physical terms how the solutions
of Nye’s hydraulic model can behave in these two different
ways, as illustrated in Figures 11-14. Equations (3.16) are es-
sentially equivalent to Nye’s original model. They describe,
respectively, channel opening and closure, the discharge in

terms of subglacial melt rate and the discharge in terms of

hydraulic gradient. The lake-refilling equation, which can
be written as (3.12)5, provides an evolution equation for the
effective pressure at the lake, which decreases as the lake
level rises. The existence of a seal, as shown in Figure 3, is
due to the fact that the (dimensionless) basic hydraulic gradient
P (Equation (2.12)) is negative near the lake. This gradient
was computed assuming that the water pressure is equal to
the overburden pressure (Bjirnsson, 1976; Nye, 1976), whereas
in fact the effective pressure (equal to the difference between
them) will be non-zero. However, if the effective pressure
gradient is sufficently small, then the basic hydraulic gradi-
ent is a good indicator of the flow direction, so that a seal
point will exist, upstream of which subglacially derived melt-
walter flows backwards towards the lake. Far downstream, the
hasic hydraulic gradient is essentially constant (see Fig. 6),
and the effective pressure essentially follows Réthlisherger’s
steady drainage characteristic, which has N x Q2. Thus
even when @ is small between floods, N will not be too

https://doi.org/10.3189/50022143000001362 Published online by Cambridge University Press

Fowler: Breaking the seal at Grimsvitn

small, and in the aftermath of a flood the lake level is low, so
that the effective pressure is also high at the lake (as in Fig.
11). Thus, following a flood, the effective pressure is relatively
uniform, and a seal will exist as described above,

Now the lake level starts to rise slowly, and as it does so,
the eflective pressure there drops, causing the gradient
ON/OX in Equation (3.16) to increase, and thus also the hy-
draulic gradient. Remembering that this gradient is nega-
tive up-glacier of the seal and positive down-glacier, we see
that the increasing lake level causes the point of zero hy-
draulic gradient (the seal) to migrate up-glacier towards
the lake. Because of the slow change in lake level, the chan-
nel remains essentially in a balance between opening and
closure, which simply determines the channel cross-section.
There is now a competition between the dropping lake ef-
fective pressure and the backwards-migrating seal, asso-
ciated with the increasing hydraulic gradient. If the basic
hydraulic gradient is sufficiently negative (a strong seal),
then the lake effective pressure can reach zero before the
seal reaches the lake; flotation occurs, and a flood is in-
itiated. For a weak seal, the seal reaches the lake while the
effective pressure there is still positive, and a flood is in-
itiated because the channel discharge is no longer controlled
by the seal, but is related primarily to the cross-section,
which now begins to grow through the positive feedback op-
crative in the channel-opening term.

What is the effect on this discussion of a rapidly refilling
lake? IT the lake effective pressure changes on a time-scale
similar to that over which the cross-section adjusts itself
(days or weeks), then the effective pressure down-glacier
from the lake will also decrease rapidly, and this causes the
channel-closure rate o decrease more rapidly. Conse-
quently, the channel increases more rapidly in size. As long
as the seal exists, so that the water flux is controlled by (un-
changing) subglacial melt, this will have the effect of redu-
cing channel [riction, and thus the increase of the hydraulic
gradient will be slowed down. In turn, this implies that the
seal will migrate more slowly up-glacier than usual, and it
provides a mechanism whereby the seal can act strongly if
flotation is reached before the seal reaches the lake.

We consider that the Nye model provides a robust
explanation of the various puzzles associated with flood in-
itiation. But we acknowledge that the model is impaired in
its ability to capture accurate quantitative data. Therefore,
the numerical values of such quantities as flood-cycle period
and peak discharge are seriously inaccurate using realistic
values of the parameters. It is no doubt possible to find bet-
ter simulations by judiciously tweaking parameters, but
there is little point to this exercise. We expect that a satisfac-
tory quantitative fit will be obtained through the use of a
wide-channel model, whose corresponding investigation
awaits future work.
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