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Applications of Mathematics to Medical Problems.

By Lieut.-Col. A. G. M‘KENDRICK,

(From the Laberatory of the Royal College of Physicians,
Edinburgh).

(Read 15th January 1926. Received 13th August 1926.)

In the majority of the processes with which one is concerned in
the study of the medical sciences, one has to deal with assemblages
of individuals, be they living or be they dead, which become
affected according to some characteristic. They may meet and
exchange ideas, the meeting may result in the transference of some
infectious disease, and so forth. The life of each individual con-
sists of a train of such incidents, one following the other. From
another point of view each member of the human community
consists of an assemblage of cells. These cells react and interact
amongst each other, and each individual lives a life which may be
again considered as a succession of events, one following the other.
If one thinks of these individuals, be they human beings or be they
cells, as moving in all sorts of dimensions, reversibly or irreversibly,
continuously or discontinuously, by unit stages or per saltum, then
the method of their movement becomes a study in kinetics, and
can be approached by the methods ordinarily adopted in the study
of such systems.

It is the object of this communication to approach this field in
a systematic manner, to find solutions for some of the variations
which may arise, and to illustrate certain of these by examples.

1. One dimension, irreversible.

I have been in the habit of employing vector diagrams for
the representation of such problems. They have the advantage
that the hypotheses which are adopted are clearly visualized as
well by the non-mathematical reader as by the mathematical, and
they also aid in helping one to realise the various modifications
which may occur, and so to treat the study of the general problem
systematically, To fix ideas let us consider a simple case; the
relation of an assemblage of individuals to common colds. In the
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following series of compartments are classified at any instant the
numbers of individuals who have experienced, 0, 1, 2, 3 ... attacks
of this complaint. The history of each individual consists of a
series of unit steps, originating in the compartment which describes
his initial condition. The arrows in the diagram indicate the
chance of passage from one compartment to the next—that is to
say the chance of experiencing a further attack during the infini-
tesimal period of time dt.

x= 0 1 2 3 4 5 6

$H -+ PP P
Fig. 1

f +-4~)~-) > 1 — %+
Fig. 2

T3 3T 1Y%~
Fig. 3

In fig. 1 these arrows are of equal size, and by this we under-
stand that the successive chances were of constant value; in fig. 2
the arrows increase in size, denoting an increase of susceptibility
with each attack ; in fig. 3 they decrease, which denotes that the
individual is becoming decreasingly liable, or in medical parlance
he is developing an immunity.

Guided by the diagram, and using the nomenclature v, = the
number of individuals who have experienced = attacks (or shortly
“of grade =) ; f, ,dt = the probability that an individual of grade
x will pass to grade = + 1 in the time d¢, and noting that the
variation of the number in any grade is the difference between
the number of incomers into that grade, and the number who go
out from that grade, we have

@0, = (foss Voot = Soa 0 Bl oo, (1)

In this case and in what follows, for the sake of conciseness, the
solutions will be given for instantaneous point sources; other
initial conditions may be obtained by summation.
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Tn the first place let us assume that 7, , is of the form ¢/,
that is to say, that the time function applies generally to the
probability of exit from all compartments. (The general case will
be considered later in dealing with two dimensional problems.)

3 @

z=0 N
), and X is the total number of individuals.

Let us adopt the nomenclature u, = where p is

L av
h ( T
the mean > ¥

When f, = 6 + cx (a first approximation), we find

LAY
v1=N%<%+1>... (% +w—1><17&l<—%>£ ...... 2)

(The values for the moments are obtained by differentiating the
particular moment and making use of equation (1)).
Thus v, is the (x + 1)* term of the expansion of the binomial

vzt

¢ - Y
also 7 = Iu-;ﬁ 'u, and pap + pop =205 (3)
= A(A, - Ay)
If ite A\, = Sa"v, N = 12 L e 4
we write A, Oxt, T = A+ ) (4)
In the case where % tends to zero, the solution reduces to
W
v, = Ne-» STY e (5)

i.e. Poisson’s limit of the binomial. It is interesting to note that
the time function ¢, has been eliminated, and does not affect the
relative distributions given in (2) and (5). This is of importance in
dealing with many problems, for example (a) the effects of seasonal
variations which apply generally to individuals of #ll grades, and
which probably operate in all epidemics, (b) variations in the
virulence of the organism during the course of the epidemic to
which it gives rise, and (c) any variations depending upon the
values p, or A., which are themselves functions of the time and
consequently may be expressed as ¢, are eliminated and do not
affect the distribution given by the solution.
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Example 1. The following figures denote the number of
houses in two suburbs of the town of Luckau in Hanover, in which
x cases of cancer had occurred during the period 1875-1898.

Observed Calculated

Houses with 0 case 64 65
» w 1 43 40
' y 2 cases 10 12
» R T 2 2.5
»» » 4, 1 0.4

The value of —Z— was negligible (~ 0.009). The calculated figures

were obtained by equation (5). Thus the figures afford no evidence
that the occurrence of a late case was influenced by previous cases.
Behla, however, from whose communication the table was obtained,
writes with regard to those houses which experienced 3 and 4 cases
during the period * das kann kein zufall sein.”

Example 2. The following figures refer to an epidemic of
cholera in a village in India.

Observed Calculated

Houses with O case 168 37
" " 1 b2 32 34
’ s 2 cases 16 16
" 1 3 i1} 6 5
1y 1" 4 3] l ]
223 93
If one assumes that the value of % was zero, then IV = A2/(A, - ),

and the calculated values of v, are as tabulated. This suggests
that the disease was probably water borne, that there were a
number of wells, and that the inhabitants of 93 out of 223 houses
drank from one well which was infected. On further local
investigation it was found that there was one particular infected
well from which a certain section of the community drank.
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Example 3. A modification of this method depends upon the
fact that if conditions be constant over a number of years, the
problem of one community over a series of years may be replaced
by that of a number of communities over a single year. Bowley
in his Elements of Statistics gives the following figures for deaths
from human anthrax in Great Britain.

Observed Calculated

Years with 0-3 deaths 1 0.9
’ s A=T 6 5.6
” 5y 8-11 7 7.3
., 12215, 4 4.2
" , 16-23 3 1.9

The closeness of the fit suggests that conditions had been con-
stant, and the value for % (+ 0.089) suggests that the disease is

slightly epidemic in the sense that the chance of occurrence of
fresh cases in any year increases with the number which have
already occurred in that year.

The method has been extensively employed in various directions
epidemiological and other. For further examples the reader is
referred to nos. 2-8 of the bibliography.

-~ - D 1 - > o
g 4 g ¢ 4 G 4
Fig. 4

2. One dimension, reversible.

The scheme for reversible cases is given in fig. 4. The
variation in this case is the sum of-the variations of the forward
and backward movements, consequently,

dv, = (o1 tary o) B+ (fog1Veqr —Sav)dE e, (6)
Where f = f' = constant, p = 0 and
v, =Ne-#s I (1) coviviviriiniininininnnn, )
Where I, (1,) is the Bessel function of the = order for an imaginary
argument.
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When f + f*, but both are constant, 4 = p, and
v, = Ne-w: (’i%’ﬁ LNEEZTD cveererenns (8
- 3

(The value p, is written here in place of p, as the position for x = 0
may not be known.)
Where f, = f, = b + ¢z,

— 21’.4—: tr
v,=Nb(b +¢c)... (6 +cx—1)(1+ct) ( ¢ ):—z:-'
F(-%, ——%+1,x+1~, At . (9)

3. Two dimensional cases and correlation. The schema for these,
if the variables x and y are independent, is obviously as shown in
figure 5.

2Ta

ldal-»

2T2T2

l-*l-§l_*

2T2T2T2

| | i ]

2 P2 T+ TeT2

1 ,)l | 9 | | | |

2 P2+ T2 T2 T2

| J L 3 aJ L) | ) ]

e e L A A
Fig. 6

There are now two movements, one in the x dimension, and one in
the y dimension. Consequently

dvam y = (-f;—l. y Y21y _flv vzv) dt + (gz. y=1Ys =17 Jr, y Vs, y)d‘ (10)
When f,, =b + cx, and g, , = d + ey,

b /b b
Y., = Y0 —;(7 +1) (—;— + - 1)

(-5
mel 4 (i + l)

x! e \e
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where p, = X5 v, = N
00
@ W
Por = = E(‘L /Lzl) Cor = y
00
'rtlsoi = ‘u—r)_—/i”— and L _ If—’————yi ..................... (12)
b a1 Hn”
7 [
In the case where % and 7 tend to zero,
ol ey * 1)
o, =Ne " (—"—l ("4)— ............... (13)
‘ X Yy
T
$»
1
T
D
1
T
2 T

+
5
b

.
2. 7.7,
P P
+$ b
.’
3

b P >

Fig. 6

There is, however, a third direction of movement and this is
illustrated in figure 6: individuals may move from the compartment
x, y into the compartment « + 1, ¥y + 1. In figure 5 where
there is no oblique movement of this sort, we assumed that
the probabilities of movement f, d¢ and g, d¢ were so small
that in comparison with them their product is negligible. This is
true of events which are independent. But if when an event of the
one sort is likely to happen, an event of the other sort is also likely
to happen, then oblique movement is no longer negligible. This
relation between the two types of events is the logician’s definition
of correlation. I bave been in the habit of calling it ‘¢ oblique ”
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correlation for the following reason. It is obvious that when no
correlation exists between x and y the numbers v,, will, when a
sufficient period of time has elapsed, be so arranged that equal
values of », , will lie on contours which have their major and minor
axes parallel, the one to the = coordinate and the other to the y
coordinate. When oblique correlation exists (as denoted by the
oblique arrows) there will be a tendency for these ovoid forms to be
dilated in the 2 = y direction and so oblique ovoid forms will result.
But this type of oblique contour may be also brought about by
mathematical considerations of apother nature. Thusif /, ,isan
increasing function of y, a ¢ shear” movement will tend to push
the upper portion of a non-correlated distribution in the x direc-
tion, and similarly if g, , is an increasing function of x there will
be a shear movement pushing the portion on the right in an
upward direction. This type of movement is shown in the third
diagram of figure 7. T have been in the habit of denoting this
variety by the name ‘“shear” correlation. Statistically it means
that the chance of an occurrence of one sort depends upon the
number of previous occurrences of the other sort.

No correlation. Oblique. Shear.
Fig. 7

“Shear ” correlation may be illustrated in the following example
from vital statistics. If 2 be the number of males, ¥ the number
of females, and v, , denote the number of communities containing
x males and y females, then the probability of a child (male or
female) being born will depend (subject to the type of marriage
which is in operation) upon the number of parents of both sexes,
that is to say it will be a function of @y. In the resuiting dis-
tribution the largest values of v, , will lie along the diagonal & = v,
or in other words there will tend to be an equality of sexes in the

communities
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The general equation, which includes both types of correla-
tion, is
dr

&£ o

__d'[.ﬁ = ./:c—l. vy Vet y = Jﬂz v Vay
+ 9., y=1V2y—1 " Gz, y v:.'/
+ hz—l.!/—l t73:—1.,y—-1. - hx. ¥ vz, ¥
In the case where f, g and & are all constants, that is to say a
simple case of oblique correlation, with no shear, the solution is

= N '(I‘- + - z) S (’Lﬂ- P’“)z—‘ (’L"’2—’L:’)'—‘&’L‘ ...... 5
ey AT e s=0 (z - 8)! (v -s! s! (13)

where p,, is written for £2 (xy — p, p,) v, + N,
00

and the upper limit of the summation in the expression for
v, is 8 = x or y whichever is least.
The moments may be obtained as follows We bave for v, the

. dv .
relation %’ = — (Jfoo + oo + Rao) Yoo

or if m be written for logi
LY
am _ . A
at = foo + Joo + /o
In the case where
So g = 0+ 002+ 0gy
gt.ﬂ = Bl + B’.‘x + Bsy
by =%+ 72T+ ¥

if we also write

o
P= —rrp—
o+ B 7

_ B:
9= o+ B+
=Y
o+ B+

equation (14) takes the form

dv,
d_’;:=(P1+Pz(z" 1) + Pyy)v.y,, — (P + Pox + Pyy)v, ,

+(Q+ Qx + @y - 1))ve 1~ (A + @z + Q) v,
+(R1+R~J(w‘1)+R3(3/'_l))vz—l.u—l—(R1+R2x+ksy)vt.r
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Hence by differentiating the expressions for the moments we have

d
e
dmI, =P+ R)+ (P, + B)p, + (P; + By p,y
d
T @+ B) (G R+ (O + B,

dp,,
#:,; =P+ B) + (Pe + By p + (P + @) 1y + 2(Po + By ps
+2(Py+ R)yp,,
dp,,
TE (@t B) (@t B + (Gt Bopi + 2(Q+ B,
J + 2(Qs + By) pe
L = B+ Bupin + Ropp + (@ + B s + (Ps + B) s
+ (P2 + &, + Qs + R:;)F'zy
(We may remind the reader at this point that oblique correlation
depends upon the values R,, R, and £, whereas shear correlation
depends upon P; and ¢,) These equations may be solved by the
usual methods.
In the particular case where f, g and & are all constants, we
have from the above,
Ba = po = (P + B)m
P == (@ + B)m L (17)
/l':y = le
Hoxy Rl
whence s S (18)
N//‘r_'/“y'.' v (£r + B) (@ + Ry)
an expression from which » and consequently ¢ has been elimipated.
This is of cours2 the ordinary Pearsonian correlation coefficient ».
It is easy to show, by summations of the values of v, ,, that if
the statistics are arranged in the four fold table

notAv ”A o
not, B a | b
B ¢ I d ‘l

o a{a+b+c+d)
_ S (a+b)(ato
= \/lo"a+b+c+d a+b+c+d

—--— .log

a+ b a+c .
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c+d b+d

and it is interesting to note that when - , ———, and
‘ a+b "+ ¢

d - be
(T :b—-——-) @ :_ py are so small that their squares may be neglected,
ad — be

V(e +8)(@+c)(6 +d)(c + d)
the Pearsonian coefficient ¢.

which is

this value of r reduces to

4. Summations.
Befere leaving this part of the subject attention may be drawn
to the following schema fig. (8) which shows the effect of collecting

the values of v,, in either diagonal direction, i.e. acecording to the

2 [ J
) L

Y T 2%
AT

Fig. 8
relation n =z + y or » =2 — 5. Such summations may be
written in the forms
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These are important in medical statistical problems. For example
if & denote the number of fresh infections ¢f a disease, and y
denote the number of relapses, then « + y = n denotes the number
of attacks of the disease. The functions f,,dt, and g,,dt, for fresh
infections and relapses respectively, are certainly not identical,
and as it is impossible to differentiate clinically between fresh
infection and relapse, statistics are only available in the form S,.
It is at once apparent from the figure, that where f, g and 4
are constants the result of the summation n = = + y, is to convert
an irreversible two dimensional schema into a reversible schema
in one dimension (the effect of oblique correlation does not appear),
and the solution is the Bessel form which has already been dealt

with.
Summation according to n = z + y gives the equation
ds, .
m (P+Q)(S—y - S) + B(Saa = 8) vennenin (20)

where for convenience the suffixes of P,, {, and R, are dropped,
whence for the moments according to = we have

p=P+Q+2Bm=(1+ R)m'

pr=(P+Q+4R)m = (1 + 3R)m | ..co........ (1)
p=LP+Q@+8R)m=(1+ 7R)m[
Consequently R = 'MT_;;% ............................................. (22)
AN Py = 3fp — 2 e (23)

From the latter expression we also obtain the relation

_ S (A — A) £ A JOAT— TAE— 8A A, + 6A,Ay) (24)
S SN+ Ny 2

Also after some reduction we find

N

" <2 + 2 + —Q—>R
oo o B _ e~ (25)
“PIiBOTE (P Q) R 2
1+ 0 + 3 R+ F
9
(and thus when P = @, » = ljf-RR = % - ) ................ (26)
Finally we have
‘ (I’-. - ,"'1>s
S = Ne-2 Qe oy 2 @7)
e=0  (m — 28)! s!

8 Vol. 44
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Ezxample 4. In a phagocytic experiment it seemed likely that
bacteria which were being ingested were not all discrete, some of
them were united into pairs. 1f one considers for the moment that
they were of two types, and that a pair consisted of one of each
type, then the above analysis is applicable.

The figures were as follows—
Observed Calculated

Leucocytes containing 0 bacteria 269 268
" ’ 1 " 4 7
’ ’ 2 ” 26 23
” » 3 " 0 0.6
» ” 4 " 1 1.1

and, since in this case P,= @, » = 0.86.

This example rests upon incomplete assumptions, and upon
insufficient data. It isintroduced only to show how, when P = ¢.
the correlation coefficient may be calculated from one dimensicnal
data.

5. Restricted Cases.

So far we have been dealing with the complete case in which
entry into all compartments in the schema is possible. Let us
now turn to particular cases in which certain limitations are
introduced.

Y g )
6!
peeeoon =
5 -+
i... 1 2
: | !
4 -+ b
i 2 1l o] 2
H ] ! I
3! 4 b 4
2 1 4
L A L L
2 - P H
O 2 1 ol sl a
e I L
1 -+ - 4 P P
4 K
S T O s
0 4 P +$H b P $
o 1 2 3 4 5 & X

Fig. 9

https://doi.org/10.1017/50013091500034428 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500034428

111

Example 5. The problem of house infection may be approached
in a manner rather different from that suggested in 1. In the
accompanying figure (9) the coordinate x denotes infections arising
from without the house, and the coordinate y denotes infections
originating within the house itself. There can be no entrance into
the upper compartments of the zero column, for an internal infection
is only possible after an infection from the exterior has taken
place. The chance of an external infection occurring is pro-
portional to the number of cases in all houses except the house
with which one is dealing, and the probability of occurrence of an
internal infection depends upon the number of cases which have
already occurred within the house itself.

Thus, in its simplest form, we have
% =k {(EE (x+y) Vpy— Mt 1) Veory — (22 ({L' + y) Prow n) Uy, 7/}

dt
+i{(n = 1), , = nv,,} (28)
where kdt and Id¢ denote the chances of external and internal
infections respectively.
Hence for the value S, we have

‘%St-"— =kNp(S,_; -S)+ (I -%{n-~-1)8,_, -n8} ... (29)
where the moment u is taken with reference to n.
dN;
Consequently —T:L— = Jk(N -1)+1} Np
P _N(p - )
and 7‘:‘ = ———T - N + 1, ................................ ...(30)
log —
S

where p is the initial value of u.

That is to say from the total number of cases (¥p), the total
number of houses (¥), and the number of infected houses S,, we
can find the ratio of the probability of external infection to that
of internal infection, as in most cases g, is small as compared
with u.*

* If the whole distribution is given we can use the expressions

Loy 4Nk (31), and - 2 (32).
k Mg + M Mo Mg

In the case of the cancer statistics one thus obtains Tl‘ = 0°966 and for the left

side of the second expression (32) the value 1-28.
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In the case of bubonic plague, from four epidemics in con-
. . - ! .
secutive years in a certain village, 7= 199. For a similar number

of epidemics in a neighbouring village the value was 231.
Allowing for a large error, the probability of internal infection
would appear to be about 200 times as great as that of external
infection. In the case of cancer, from one group of statistics a
value of 10 was obtained, and from another a value of —~ 9. Each
of these numbers is the difference between two large numbers and
has a large error. The high value of the ratio —Ii—in the case of
plague may be easily understood when one remembers that the
disease is transmitted by fleas, a species of animal which does not
as a rule travel far from its own neighbourhood. In the case of
cancer the figures afford no evidence either of insect infection or
of infection by contagion. Present theories regarding the trans-
mission of kala azar point to transmission through either the bed-
bug or the sand fly. The former is a very local insect, the latter
is supposed to be distinetly localised, though not as strictly so as
either the flea or the bed-bug. From figures which have been
l
&
that the sand fly is the more likely carrier.

placed at my disposal the value of — was of the order 70, suggesting

Example 6. The problem of infection and relapse in malaria
is similar to that dealt with in the last example. The figures
which follow relate to sizes of spleen of young children, and those
who have studied the disease consider that the size of the spleen
bears a direct relation to the number of attacks which the patient
has experienced. As in this case the disease is endemic (that is to
say it is in a more or less steady state) the number of sources may
be taken as constant (a).

The equations are consequently

d
v = - Lavy,, —5;—0 = kavy, — (ka + 1) vy,

dt
and for values of y greater than zero, .(33)
d
Zzéy =ka(v,_1.y — V) + 1 (Teyy — ¥ )
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where kdt is the probability of external infection, and Id¢ is the
probability of relapse.

From this we deduce the series of equations.

ds, y
TJT = - kabo W
dSl I
@ = ko - (ke + DS, S (34)
and for values of n greater than unity,
ds,
el (ka + 1) (S,_1 - S,). J
l m -
e s 35
Thus we find T o (35)
(lm)r
n—1 n-1 _im
and sn_so@<’ﬂ 1) [1-2 ka '«-] ............ (36)
{ l 0 r!
The figures are as follows
Valuesof n =0 1 2 3 4 5 6 7 lka

A. Aden Malarious Villages
obs. 89 38 36 26 10 9 1 1
cale. (89) 39 35 24 13 6 2 1 178

B. Aden Sheikh Othman
obs. 1006 38 23 13 %
calc. (1006) 34 25 16 7 3 1 25.6

=4
'S

C. Punjab (1909) Spleen rates 30-407/
obs. 264 67 44 15 3
cale. (264) 70 39 16 5 1 2.23

{3

D. Punjab (1909) Spleen rates 5060 %/,
obs. 81 38 26 16 6 3 2
cale. (81) 35 28 17 8 3 1 1.56
Example 7. The problem of the behaviour of epidemics may
be considered from various points of view, one of which is as

follows. Let us trace what is likely to be the distribution of a
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number of epidemics in similar communities each starting from a
single case, and let us adopt as variables the relation

case (n) = infections (x) — recoveries (y).

The course of affairs is illustrated in figure 10

Y | """"""'r""1""'1_'"
6! : : °
S SRR SRUURS SRS T 4
S L LK .
wepoee ? *_..

4; [ [ 2R W
cccecpae * ’ 1_.

s H ) [ - RN . I R
e 14T

2 : . 1P 2P 2P, P
tp-

1 ° L edd) 2 ) 3 P 4 =) 5 =4
t S S

° 1 o> 2 4D 3 =dp 4 = 5 4> ¢ >

1) ' 2 3 . s c X
Pig. 10

We notice that each epidemic starts initially in the compart-
ment (1, 0), <.e. one case which has not yet recovered, and also
that when a compartment n = 2 — y = 0 is arrived at, the epidemic
has come to an end for there are no more cases. Thus when the
probability of recovery exceeds the probability of infection all
epidemics must come to rest in one or other of the compartments
n=0. If we assume that %d: is the chance that an individual
may convey infection, then the probability that an epidemic of n
cases will receive an additional case is kndt. Similarly the chance
that it will lose a case is Indt. We assume also, in the first
instance, that the population concerned in each epidemic is
unlimited. Consequently from the schema
Tor o kETT -y)os, - @ - )0 )

FUHE -G Doy = (& = 90, (87)
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I have obtained solutions of this equation for serial values of x and
¥ up to v, ,, but the expressions are not concise, and do not suggest
a general form. If, however, one is content with finding the
values vy ,, Vs V55 ... after an infinite time— that is to say if the
problem is to find the distribution of a group of epidemies, which
have reached finality, classified according to the number of cases
which they have experienced, then the problem is less refractory,
and the solution is

k n~1 l n
= — —_— e 8
Yn.n “"<k ¥ 1) <lc ¥ z) .. (38)
where a =1
a=a,a =1

a; = a,a, + a,a, = 2

@, =00e,_,+ 0a, + a8, s+ ...Q,_,0,.
These values may be obtained more concisely by means of the

Q

n - 3

formula a, = 2a,_,, for which I am indebted to Dr W. O.

Kermack. It follows also from equation (37) as well as from

equation (38) that % = ,U-L It will be seen that the coeffi-
cients a, are the number of different paths by which an individual
moving either east or north may pass from the compartment (1, 0)
to the compartment (», n). The resulting curves for v, , are of
the J type, that is to say they are like exponential curves with a
negative index, in which the tail is unduly prolonged.

During the great epidemic of influenza in 1918, very accurate
statistics were collected by the Australian Government,® of
epidemics which had occurred in incoming ships during their voyage
to Australia. The figures are as follows

Number of epidemics with 1 case - 34
1 13 13} 1 2 cases e 15

" (1) 2] 2] 3 1 - 5

tH] " 1] 2] 4 L] - 3

” " " " 5 13 - 8

3 1y 2] E3] 6 2 - 1

”» ” ” 1 7 ” - 3

2 2] ” ” 8 i3] - 4

" 1 11 3] 9 i3] - 2
more than 9 cases - 17
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I have been unable to fit these figures by means of equation (38);
on the one hand the approximations are probably insufficient, and
on the other the crews of the ships varied very considerably. But
the J character of the distribution is evident. It is also interesting
to note that in 82 per cent. of the ship epidemics the number of
cases was less than ten. Now influenza is a peculiarly difficult
disease to diagnose in the individual case; consequently epidemics
of less than 10 cases are in ordinary circumstances seldom recognised
and reported. The conclusion is suggested that as our limited
experience of epidemic influenza is based upon statistics which
may relate only to a small selected minority of the total number of
epidemics, it may be in no sense representative, and may even be
misleading.

If in the second place we wish to investigate the distribution
of epidemics according to their duration, we have to find the value

of 8, = Z v, , as a function of the time. The problem then reduces
0

to one in a single dimension =, in which there is an instantaneous
point source at n = 1, and in which (for / > %) all epidemics finally
enter the compartment S,.

Let us now turn to the case where the population affected by
each epidemic is limited, and of constant value p.
The equation is

d.%’” =k{p-2- D@ -1-9v.,-(-2)(-y)v,}

+l{E -y - Do, (=90, ) e (39)

For magnitude of epidemics we have as before to find the value of
v, ., When ¢ tends to infinity.
These are found to be

v, =0, N
Vpp = :8,:—1 “ﬂp—c N ]

vy = Byos By, NS, ‘ ............
Vin=Byos BpoBpzo’ VS,

ete,
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k(p — 1)

and B — for Wl

l
where «,_, is written for le
The values of S;, S, ... are related as follows

Sy = p—3 + Op_o
Sy =0y (0py + Doz + 0y_a) + 0p_g(o, 3 + &,_,), ebe.

These may be written symbolically in the form
S;=(8+2
S;=4(++3+2)+3(8+ 2) ete.

Let us further, taking the suffix 5 as an example, use the notation
A4; =5+ 4 +3 +2
B,=5(3+4+3+2)+4(4+3+2)+3(3+2)
C;=5{5(3+4+3+2)+4(4+38+2)+3(3 +2)}

+4{44 +3+2)+33+2)}

whence B; = 54, + 44, + 34,
C; = 5B, + 4B,

Similarly By = 64, +5d, + 44, + 34,
C, =68, + 5B, + 4B,
Dy = 6Cs + 5C,.
‘Then 8; = 4,
S, =44, + 34; = B,
Ss = 5B, + 4B, = C;
S, = 6C4 + 5C; = Dy

S, ="1D, + 6D, = E,, etc.
In the first instance the values 4,, 4,, ..., etc., are calculated, and
from these are obtained successively the B’s, then the C’s and so
on. The character of the curves for the values of v, , may be seen
from the following numerical examples in the first of which

l
N =1, L = 2,and p=>5: and in the second N =1, — =2, p=6.

k k

vy, 0.33 0.29
Vs 4 0.11 0.08
vy s 0.09 0.06
v, 0.13 0.08
Ve s 0.34 0.13
Vs, 6 0.37

1.00 1.01

The distributions are of the U type.
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6. Generalisation.

The equations of all the examples with which we have been
engaged may be written generally in the form
dv,,

e, y . : . v
dt =f‘—-l,yrx—1.y = Ja Ty +fz+lvy Vepry = Jaglay

, ,
F e y—1V 1 ~ Gy Vs T Ty 41V y+t ~ Gy Vany (41)

Y
+ hz—-l,y—l Veeliy—1 "]‘x,yvz.y Thx+‘n,y+lvz+l‘u+l
'
- h’z. yVx v

. . .’ *r
+7'z—1.y+11:x—l,y+l - 1x,y’vz.y+"’ z+1.y—1vz+l,y-l =1, yvz. ¥y

in which £, g, h and ¢ refer to forward translations, and £’ g," A’
and 1’ refer to backward translations, and this generalisation may
obviously ‘be extended to any number of dimensions. If in place
of a continuous variation through time we are dealing with a

dv .
7 we write v,_; — v,.

Thus generally for any two variables x and y, a general equation
may be built up by equating the right hand side of the preceding
equation to zero. This may be represented schematically in
the form

succession of events, then for -

-1
—~t—
Y. /a

7, N {
1S

Al
RS

Fig. 11

The arrows no longer rvepresent translations, but are now
differences between the numbers in the compartments which they
connect. The schema, and its corresponding equation, now indicate
the relationship which exists between the numbers in a particular
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compartment and those in the compartments with which it is
contiguous. In 2 dimensions the number of nearest neighbours is
8, in 3 it is 26, and in n dimensions it is 3" -~ 1. So long as the
variables are discontinuous, and proper units are employed, the
above schema is generally descriptive, and the problem becomes
one of a matrix of pure numbers. In certain cases which I have
examined, more distant compartments also have an influence, but
these cannot be dealt with here.

Example 8. For a purely discontinuous example we may turn
to ordinary probabilities. Let p be the probability of » successes in
n events. The variables in this case are y = n and z = ». Also
h=p,andg =1 - p. Inaneventan individual may either have
experienced a failure in which case he moves up one compartment
in the n direction, or he may have been successful in which case
he moves obliquely in a north-easterly direction (fig. 12). There
can obviously be no success without an event, so no horizontal
arrows are drawn. This then is a problem of correlation, and its
equation is

Fig. 12

T = 0, ) + P (V01 =0, ) =0 . (42)

The solution of this equation, in the case in which initially
no events, and no successes have occurred, is the well known
expression,

Y (._T)'_,r_, R e (43)

For the coefficient of correlation » we find

P —P ceren(44)
1-( -
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which shows that # is not in this case a satisfactory coefficient.
Again if a success entails a gain, and a failure a loss, then if ¥
denotes the number of events, and « the number of gains, A = p
and ¢' = ¢ — p. The schema is as in fig. 13, and the well known
result follows.

LY

Fig. 13

7. Continuous Variables.

A consideration of continuous variables leads us from the
foregoing general equation, on the one hand into the domain of
mathematical physics, and on the other into wider statistical fields.
Each uncorrelated term of equation may in this case be written as

JetkVzipk = foyVsy
k

which after expansion becomes

2 2
o, k e B o
ox 2! x* 3! ox*

+

Similarly for the correlated terms we have

hysb,yrkOopbyxk = R 0.,
k
, ~2 a2 s
=<:i’£ta—}‘i> —’i<°——h”+2—°h”+‘i:"—f)t
ox dy 2!\ 0x? ox oy T

It is to be noted that in considering correlation a movement in the
oblique direction consists of a movement of one unit in each
dimension ; hence if a unit is denoted by % it is the same for
both = and v.

By making use of the above forms of expansion, the general
equation may be built up. Thus for example in a reversible case
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in the three dimensions of space, when % is so small that its square
may be neglected, and the functionsof f, g, etc., are equal constants

ov k /0% o%w v
== — Bl I 45
ot f21<8x"’ * oy° * 8z> (£9)

which is the ordinary equation for diffusion (of matter or of heat).
In this case % is the length of the mean freepath of molecule or
electron as the case may be. If % tended to zero there would be
no diffusion, and if & were large it would be necessary to include
higher differentials. Thus Fourier’s equation contains in its
essence the idea of heterogeneity or discreteness.

Similarly in a reversible case in two dimensions in which the
variables x and y are correlated we have

ot 21

o T of T o T ey T oy

ov k <B2fv Fgv FThv  Pho azlw>

which when £, g and % are constant is the equation of the correlated
frequency surface.

Again in the general case in three dimensions without oblique
correlation, if & tends to zero we have

w S g mghe Bl o B gy
at ox Oy 0z

The left-hand side of the equation is equal to zero if there is no varia-
tion of material (i.e. of v), and if there be a variation it is equal to

Z—:—,, where this differential expresses the rate of variation of sub-
stance in following the element in its movement. If the functions
S 9,6 f, ¢, ¢, are constants this is the ordinary equation of
hydrodynamics. In actual fact £ does not tend to zero. Diffusion
must always take place as an element of the fluid flows onwards,
but the place left empty is filled up from neighbouring elements,
and the diffusion is so to speak neutralised.

Example 9. Let us now turn to a problem in vital statistics.
Let the variables be the time (z) and the age (§)—thus v, , denotes
the number of individuals aged 6 at the time . Time and age are
continuous (4> 0), are absolutely correlated (r = 1) and the rate
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of movement through both time and age are the same and are
constant. The translation is irreversible (fig. 14). Thus if there

is no death rate
e

/
Fig. 14
Ce-k, 0-k = P4 v _ 0 or 5£+_'a_v~_0

ot 80
If there be a death rate then
A + ai _dv
o 06  dt
where % has the same significance as in the hydrodynamical

equation, viz., it is the variation in the element as one follows it in
its movement.

Writing % = — ft,0Y. ¢ Where f, ,dt is the probability of dying

at age 0 and at time ¢, we have

ov or

BT + 56 = —f;'g’U,_g.
Whence

- [l -0+ 04
V4 6="Pi-50€  eesesessereenn (49)

which may be translated as follows :—the number of persons aged 6§
at the time ¢, is equal to the number born at the time ¢ — 6 reduced
exponentially by the successive death rates (taken for convenience
discontinuously)

for age 0 at the time ¢ — 6
for age 1 at the time ¢ — 6 + 1
for age 2 at the time ¢ — @ + 2 and soon up to £ = 6.
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If we neglect variations in the death rate with the time, we know
that 7(6) has roughly the form drawn in fig. 15.

o

Fig. 15

Thus for a number of pairs of values 6,, and 6,, f(6,) = f(6.).
Now if a population is decreasing according to the relation

g:l = - cv, where c is constant, the equation takes the form
v, .
8_00 = - (.fo - 0) V.

If ¢ is less than the minimal value of f(6), then v, will always
decrease with increasing 6.

If ¢ is equal to the minimal value of /() there will be one level
point, and if ¢ is greater than the minimal value but less than £(0)
there will be two level points.

Thus age distribution curves will have forms roughly as in fig. 16.

https://doi.org/10.1017/50013091500034428 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500034428

124

In this diagram the dotted curve a is intended to represent the
form when the population is steady, and the dotted line b is the
locus of the level points. The curves above a are those of increasing
populations, and those below it represent the age distributions of
populations which are on the decrease. The hump on the curve
occurs between the ages of 20 and 40, the child-bearing age, con-
sequently the more a population is on the decrease, the greater is
the tendency for the earlier part to be pushed up by the birth of
children. This is an interesting example of a natural * governor”
mechanism.

Example 10 (with Dr W. O, Kermack). The problem of the
course of an epidemic of a contagious disease is similar to the last.
The variables are as before, the time (¢) and the age (¢), and these
are absolutely correlated (fig. 14). We have to deal with an
infective rate ¢ (4, 6), and a rate of removal (including death and
recovery) ¥ (¢. §). We shall suppose that these are independent of
the time. Let us treat the problem in the first instance as if ¢ and
# were discontinuous variables.

The equation is then
Ve-1,0-1 — U, g = ‘L(G)‘W,g .................. (50)
whence

_ Y-ne-1 V-9 02 L
Ce = 10 A F e (@) - e Be B

where B, is written for the reciprocal of

L+ (0 +¢(0-1))...(1L+¢(1))

Now the number v, , denotes the number of persons who became
infected at the time ¢, and this by hypothesis is equal to 2%4)0 Vi, 6,

1
whence

t t
—_ S
’L‘t,o—;’d(i)o.Bg’U[_g,o:-EAo’Ug_g,o ............... (52)
1

where for conciseness 4, is written for ¢, B,.
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» © t
Hence Z;ac‘ vy, o = Eorv‘ ZIAe vi-60 + &N, where ¥y = v,
L] o
= Zaf v, 022 4, + N,
0 1
x being chosen so that the series are convergent,
® N,
SE U g = e (53)
0

@
1 - Zxf 4,
1

Let X, denote the number of persons infected at the time ¢,

t t
then M:Em,o:EBev;_g,o
] 1]

o

©
and Zx'N,=Z'Z By vi_40
[}

o

- .
= Satv,o 32 B,
[

N, Zx8 By
= e (54)
1 - Zaf 4,
1

v, o and N, are the coefficients of 2f in the expansions of the above
expressions (53) and (54).

By cross multiplication, expansion and equating like powers of
z it is easy to show also that

N, =BNy+ SA Nt g oooeeeraiennn, (55)
1

Passing to the continuous form ; from equation (53) we have

[ v gdt = o
0 1_§ w9 A, dO
/]

A ww)

(where Ay = ¢y By = Pge

or j e 0y o dt = e, (56)
0 1- j e~ A4,d0

9 Vol. 44
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whence using Laplace’s transformation

v, o= —I—_J.a+iwc“je“"v,,,dtdz- ! a+m——#u———~ dz
Sl N ¢ N
0

N, : ;
or shortly v, ,= L ._w_°_> }

1 —j e-"AodH
0

This then must under the conditions of the case be also a solution
by equation (52) in its integral form,
t
o0 = j Y L — (58)

This solution appears to hold only when singularities exist in
v, 4. In the case which we are discussing there is a singularity at
t = 0, since one assumes that there is an instantaneous infinite
infection rate at the origin. If a singularity of similar type exists
at a point ¢ = ¢, then it can be shown that the solution is

o,
v.0=1L Noe ™o e, (59)
1-j e—# Ay db

’ N.,I e~ By df
N =1L (—‘L——— .................. (60)

1 —j e—“AodO /

Similarly

0
and this is by equation (55) a solution of the integral equation
t
N, =B, N, + I AgNi_gdb, ...ooovininninnn. (61)
0

a result which has been obtained by Fock.

Thus if the infection and removal rates are known and can be
expressed as continuous functions, both v, , and &, can be obtained.
In actual experience ¢ (6) and ¢ (8) are not available, but statistics
regarding v, , are readily accessible, and values of ¥, could also be
obtained. The above operations must therefore be reversed.
Equation (56) may be written in the form

I e—® 4,d0 =1 - w—ﬂ
0 J i P
)
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GoBo=dg=1L 1_——;——%——- ............ (62)
j e~ v, , dt
°

where the exponential within the operator L is in this case ¢*,
Also from equation (54) in its continuous form, and from (56)

whence

R j e== N, dt
j’ e-®Bydf = 10 s (63)

0 I e~ % w,,dt
0
whence

j e~ 2 N, dt
o

Bo=L |4 ). (64)

o«
j e~ * v, dt
0

Thus if &, and v, , can be expressed as known functions, the values
-of ¢ (6) and ¢ (6) may be deduced. For the numerical solution of
the problem the reader is referred to Whittaker (Proc. R.S., 94,
p- 367, 1918). From which it will be seen that if a series of
numerical values of v,, are known the corresponding values of
4y may be determined from equation (58) in the form

¢
V0 = _’-0 Ag-g vo’ode.

The values of By may then be determined directly by means of
equation (61)

Thus the values of the functions ¢ () and ¢ (6) may be calcu-
lated either formally or numerically from statistics giving the
values of v, , and W,.

In the above we have considered the case in which there is no
seasonal effect on the ¢s and the ys. If that be not the case then
¢ and ¢ are both functions of ¢ and 6. If ¢ (4 6) = «, By, and
¥ (¢ 0) = «', 8%, then the above method of treatment can be
applied, but not otherwise. In many instances the product form
may reasonably be used. For example, if o, depends upon the
number of mosquitos, and the disease is malaria, then it would be
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reasonable to suppose that the effect of a multiplication of the
number of mosquitos would be to multiply the chances of infection
at the various case ages 6.

These results may obviously be applied to the previous example
if the birth rate can be expressed in the form ¢ (0).

8. Vorticity in statistical problems.

Returning to equations (16) which also hold when x and y are
continuous, and also if the constants be suitably modified when
the progression is reversible, and omitting the £ coefficients we
have for the equations of the coordinates of the centre of gravity of
the moving system

dp,
%=P1+P2#1+P3F’y
dp,

d’:’; = Q]+QZ,”‘:+ QRIU'J/

whence

d2 x d! 2]
d—:l,?— (P2+Q3) Jl’:;b'+(PzQs"1:1Q2)1“'1=P3Q1"P1Q3

and a? q
2:7;1 - (Pﬂ + Q3) d::;l + (PzQx‘“PzQz)Fy =@ P - QP

The motion is periodic if
— 4P Q> (P - Q)

therefore periodicity depends primarily upon the condition that
one, but not both, of P; and §, must be negative.

Again if (P, + @,) is pegative the motion will be damped,
whilst if (P, + ¢;) is positive there will be augmentation of
amplitude.

Example 11. During the course of a microbic disease a battle
is raging between microbes on the one hand and protective ““ anti-
bodies” on the other. These antibodies are themselves called into
being by the action of the microbes. The process is reversible for
both variables (x = microbes and y = antibodies).

Now microbes multiply by compound interest, hence 2P, is
positive ( = a,), and are destroyed at a rate proportional to the
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number of antibodies present, hence P; is negative (= — a,). The
state of affairs is as shown in figure 17.

b D

x

0 —_ e

0 x
Pig, 17

Antibodies are produced at a rate proportional to the number of

microbes hence @, is positive ( = b,), and are destroyed in the

general metabolism, in such a manner that the more the antibody

the more the destruction, hence ¢, is negative ( = - b,).

Hence if 4a;b6, > (a, + b,)* a vortex is formed, and if a, — 6, >0

there will be augmentation of amplitudes, whilst if b — a, > 0

there will be damping.

Also when ¢ =

P,Q - P =P1b3" @ a;

Ha = P,Q, — PyQ, az b, — a5 by
and B, = P @ - PO - Plb‘z‘Ql%'
L@ - P Qs as by — ayby

From these considerations arrived at from the approximate

equations, we can deduce at once—

(1) Augmentation of amplitude (a, > b;) will lead to total and
relatively sudden extinction of organisms at the end of an
attack (or series of attacks) for the motion will enter the
column % = 0,

(2) Damping (b; > @) will lead to a final state at which both
organism and antibodies will continue in a steady state,
their relative proportions depending upon the above relations.

(3) Relapses will occur when 4a,b, > (a, + b;)>. They will seldom,
if ever, occur where amplitudes augment (a, > &;) they will
be a prominent feature as a, and &; tend to equality, and they
will be absent when &; is very much greater than a,, as in
this case the motion becomes a-periodic.
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This is only a rough approximation but it places in evidence
the main features of infectious diseases, viz, (a) termination by
“crisis” and complete extinction of the disease, or (b) gradual
decline by ‘‘lysis,” with continued *‘carriage” of the disease. It
draws attention also to (c) the occurrence of relapses in the inter-
mediate types. This latter consideration is exemplified in Malta
Fever, in which there may occur a series of relapses, and in which
both types (a, > &;) and (by > a;) are found to occur.

A better approximation is obtained by introducing a third
variable, the temperature. The differential equations for the
coordinates of the centre of gravity of the system are then of the
third order, and more in accordance with experience (see also
reference 11).

In conclusion the author desires to thank Dr W. O. Kermack
for continued help and criticism, and Mr E T. Copson for
encouragement and advice in many directions.
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