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Abstract

Let Ps(n) denote the nth s-gonal number. We consider the equation

Ps(n) = ym

for integers n, s, y and m. All solutions to this equation are known for m > 2 and s ∈ {3, 5, 6, 8, 20}. We

consider the case s = 10, that of decagonal numbers. Using a descent argument and the modular method,

we prove that the only decagonal number greater than 1 expressible as a perfect mth power with m > 1 is

P10(3) = 33.

2020 Mathematics subject classification: primary 11D41; secondary 11G99.

Keywords and phrases: Diophantine equations, polygonal numbers.

1. Introduction

The nth s-gonal number, with s ≥ 3, which we denote byPs(n), is given by the formula

Ps(n) =
(s − 2)n2 − (s − 4)n

2
.

Polygonal numbers have been studied since antiquity [6, pages 1–39] and relations

between different polygonal numbers and perfect powers have received much attention

(see, for example, [7] and the references cited therein). Kim et al. [7, Theorem 1.2]

found all solutions to the equation Ps(n) = ym when m > 2 and s ∈ {3, 5, 6, 8, 20} for

integers n and y. We extend this result (for m > 1) to the case s = 10, that of decagonal

numbers.

THEOREM 1.1. All solutions to the equation

P10(n) = ym, n, y, m ∈ Z, m > 1 (1.1)

satisfy n = y = 0, n = |y| = 1 or n = y = m = 3.

In particular, the only decagonal number greater than 1 expressible as a perfect

mth power with m > 1 is P10(3) = 33.
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We will prove Theorem 1.1 by carrying out a descent argument to obtain various

ternary Diophantine equations, to which one may associate Frey elliptic curves. The

difficulty in solving the equationPs(n) = ym for a fixed value of s is due to the existence

of the trivial solution n = y = 1 (for any value of m). We note that adapting our method

of proof also works for the cases s ∈ {3, 5, 6, 8, 20} mentioned above, but will not

extend to any other values of s (see Remark 3.1).

2. Descent and small values of m

We note that it will be enough to prove Theorem 1.1 in the case m = p, prime. We

write (1.1) as

n(4n − 3) = yp, n, y ∈ Z, p prime (2.1)

and suppose that n, y ∈ Z satisfy this equation with n , 0.

Case 1: 3 ∤ n. If 3 ∤ n, then n and 4n − 3 are coprime, so there exist coprime integers

a and b such that

n = ap and 4n − 3 = bp.

It follows that

4ap − bp
= 3. (2.2)

If p = 2, we see that (2a − b)(2a + b) = 3, so that a = b = ±1 and so n = |y| = 1. If

p = 3 or p = 5, then using the Thue equation solver in Magma [5], we also find that

a = b = 1.

Case 2: 3 ‖ n. Suppose that 3 ‖ n (that is, ord3(n) = 1). Then, after dividing (2.1) by

3ord3(y)p, we see that there exist coprime integers t and u with 3 ∤ t such that

n = 3tp and 4n − 3 = 3p−1up.

Then

4tp − 3p−2up
= 1. (2.3)

If p = 2, we have (2t − u)(2t + u) = 1, which has no solutions. If p = 3, then we

have 4t3 − 3u3
= 1 and, using the Thue equation solver in Magma [5], we verify that

u = t = 1 is the only solution to this equation. This gives n = y = 3. If p = 5, Magma’s

Thue equation solver shows that there are no solutions.

Case 3: 32 | n. If 32 | n, then 3 ‖ 4n − 3 and, arguing as in Case 2, there exist coprime

integers v and w with 3 ∤ w such that

n = 3p−1vp and 4n − 3 = 3wp.

So,

4 · 3p−2vp − wp
= 1. (2.4)
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If p = 2, then as in Case 2 we obtain no solutions. If p = 3 or p = 5, then we use

Magma’s Thue equation solver to verify that there are no solutions with v , 0.

3. Frey curves and the modular method

To prove Theorem 1.1, we will associate Frey curves to equations (2.2), (2.3)

and (2.4) and apply Ribet’s level-lowering theorem [8, Theorem 1.1] to obtain a

contradiction. We describe this process as level-lowering the Frey curve. We have

considered the cases p = 2, 3 and 5 in Section 2 and so we will assume that m = p

is prime with p ≥ 7.

We note that at this point we could directly apply [3, Theorem 1.2] to conclude

that the only solutions to (3.1) are a = b = 1, giving n = 1, and apply [2, Theorem

1.2] to show that (3.2) and (3.3) have no solutions. The computations for (3.1) are not

explicitly carried out in [3], so for the convenience of the reader and to highlight why

the case s = 10 is somewhat special, we provide some details of the arguments.

Case 1: 3 ∤ n. We write (2.2) as

−bp
+ 4ap

= 3 · 12, (3.1)

which we view as a generalised Fermat equation of signature (p, p, 2). We note that

the three terms are integral and coprime.

We suppose that ab , ±1. Following the recipes of [3, pages 26–31], we associate

Frey curves to (3.1). We first note that b is odd, since bp
= 4n − 3. If a ≡ 1 (mod 4),

we set

E1 : Y2
= X3 − 3X2

+ 3apX.

If a ≡ 3 (mod 4), we set

E2 : Y2
= X3

+ 3X2
+ 3apX.

If a is even, we set

E3 : Y2
+ XY = X3 − X2

+

3ap

16
X.

We level-lower each Frey curve and find that for i = 1, 2, 3, we have Ei ∼p fi for fi
a newform at level Npi

, where Np1
= 36, Np2

= 72 and Np3
= 18. The notation E ∼p f

means that the mod-p Galois representation of E arises from f. There are no newforms

at level 18 and so we focus on the curves E1 and E2. There is a unique newform, f1, at

level 36, and a unique newform, f2, at level 72.

The newform f1 has complex multiplication by the imaginary quadratic field

Q(
√
−3). This allows us to apply [3, Proposition 4.6]. Since 2 ∤ ab and 3 ∤ ab, we

conclude that p = 7 or 13 and that all elliptic curves of conductor 2p have positive

rank over Q(
√
−3). However, it is straightforward to check that this is not the case for

p = 7 and 13. We conclude that E1 /p f1.
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Let F2 denote the elliptic curve with Cremona label 72a2 whose isogeny class

corresponds to f2. This elliptic curve has full two-torsion over the rationals and has

j-invariant 24 · 3−2 · 133. We apply [3, Proposition 4.4], which uses an image of inertia

argument, to obtain a contradiction in this case too.

REMARK 3.1. The trivial solution a = b = 1 (or n = y = 1) corresponds to the case

i = 1 above. The only reason we are able to discard the isomorphism E1 ∼p f1 is

because the newform f1 has complex multiplication. The modular method would fail

to eliminate the newform f1 otherwise. For each value of s, we can associate to (1.1)

generalised Fermat equations of signature (p, p, 2), (p, p, 3) and (p, p, p). We found we

could only obtain newforms with complex multiplication (when considering the case

corresponding to the trivial solution) when s = 3, 6, 8, 10 or 20. A similar strategy of

proof also works for s = 5 using the work of Bennett [1, page 3] on equations of the

form (a + 1)xn − ayn
= 1 to deal with the trivial solution.

Case 2: 3 ‖ n. We rewrite (2.3) as

4tp − 3p−2up
= 1 · 13, (3.2)

which we view as a generalised Fermat equation of signature (p, p, 3). The three terms

are integral and coprime. We suppose that tu , ±1. Using the recipes of [4, pages

1401–1406], we associate to (3.2) the Frey curve

E4 : Y2
+ 3XY − 3p−2up Y = X3.

We level-lower E4 and find that E4 ∼p f , where f is a newform at level 6, an immediate

contradiction, as there are no newforms at level 6.

Case 3: 32 | n. We rewrite (2.4) as

−wp
+ 4 · 3p−2vp

= 1 · 13, (3.3)

which we view as a generalised Fermat equation of signature (p, p, 3). The three terms

are integral and coprime. We suppose that vw , ±1. The Frey curve we attach to

(3.3) is

E5 : Y2
+ 3XY + 4 · 3p−2vp Y = X3.

We level-lower and find that E5 ∼p f , where f is a newform at level 6, a contradiction

as in Case 2.

This completes the proof of Theorem 1.1.
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