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ABSTRACT

We show that the Hilbert scheme, that parameterizes all ideals with the same Hilbert
function over a Clements—Lindstrém ring W, is connected. More precisely, we prove that
every graded ideal is connected by a sequence of deformations to the lex-plus-powers
ideal with the same Hilbert function. This is an analogue of Hartshorne’s theorem that
Grothendieck’s Hilbert scheme is connected. We also prove a conjecture by Gasharov,
Hibi, and Peeva that the lex ideal attains maximal Betti numbers among all graded
ideals in W with a fixed Hilbert function.

1. Introduction

Throughout the paper, S = k[z1, ..., z,] is a polynomial ring graded by deg(z;) =1, for all 7,
over an algebraically closed field k of characteristic zero. If U is a finitely generated graded
module over a graded quotient of S, then, for each ¢ € Z, we denote by U; the graded component
of U in degree 4. The Hilbert function w : ¢ — dimU; measures the size of the graded components.

One of the central results in commutative algebra is Macaulay’s Theorem [Mac27], which
characterizes the possible Hilbert functions of graded ideals in S. The key idea is that for every
graded ideal in S there exists a lex ideal with the same Hilbert function. Lex ideals are special
monomial ideals, defined in a simple combinatorial way: denote by <jex the degree-lexicographic
order on the monomials in S with =1 >jex - * * ™lex n. A monomial ideal L in S is lex if the
following property holds: if m € L is a monomial and ¢ >jex m is a monomial of the same degree,
then g € L.

Hilbert functions of graded ideals in an exterior algebra (equivalently, in the quotient ring
S/(x2,...,22)) have been extensively studied in combinatorics because they correspond to
f-vectors which count faces of simplicial complexes. Counting faces of simplicial complexes
naturally generalizes to counting in multicomplexes; this leads to considering Clements—
Lindstrém rings. A Clements—Lindstrom ring W has the form W =S5/(z{*, ..., z%") with
a; <ap <---<ap <oo (where 2° =0). The Clements-Lindstrom Theorem [CL69] states that
Macaulay’s Theorem holds over W, that is, for every graded ideal in W there exists a lex ideal

with the same Hilbert function.

Lex ideals play an important role in the study of Hilbert functions over S. The connectedness
of Grothendieck’s Hilbert scheme and the result that lex ideals attain maximal Betti numbers
are two of the nicest results proved using lex ideals. In this paper, we prove analogues of these
results over a Clements—Lindstrom ring W.
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Grothendieck’s Hilbert scheme, introduced by Grothendieck [Gro60/61], parameterizes
subschemes of P” with a fixed Hilbert polynomial. The structure of Grothendieck’s Hilbert
scheme is known to be quite complicated. The following result of Hartshorne is the main known
positive structural result.

THEOREM 1.1 [Har66]. Grothendieck’s Hilbert scheme, which parameterizes subschemes of P"
with a fixed Hilbert polynomial, is connected.

A minor modification of its proof establishes the following result.

THEOREM 1.2. The Hilbert scheme Hg(w), which parameterizes all graded ideals in S with a
fixed Hilbert function w, is connected. Every graded ideal in the polynomial ring S is connected
by a sequence of deformations to the lex ideal with the same Hilbert function.

Theorem 1.2 implies Theorem 1.1 since, if L and L’ are two lex ideals with the same Hilbert
polynomial, then L and L’ represent the same point on Grothendieck’s Hilbert scheme (because
L; =L, for i >>0).

Clements—Lindstrom rings are a natural class of quotient rings to consider because Macaulay’s
Theorem holds over them. We consider the Hilbert scheme Hyy (h) that parameterizes all graded
ideals in W with a fixed Hilbert function h. Equivalently, this Hilbert scheme parameterizes
all graded ideals in S’ containing the powers z{', ..., z% and with a fixed Hilbert function. Set
P=(ai",...,28"); werefer to z{*, ..., 2% as the P-powers. In § 3, we define that a deformation
is a P-deformation if it connects ideals containing the P-powers. The generalization of the notion
of a lex ideal to W is the notion of a lex+ P ideal, defined in § 2; the Clements—Lindstrém Theorem
states that for every graded ideal in S containing P there exists a lex+P ideal in S with the
same Hilbert function. In § 3, we prove the following theorem.

THEOREM 1.3. The Hilbert scheme Hyy (w), which parameterizes all graded ideals in W with a
fixed Hilbert function w, is connected. Every graded ideal in the polynomial ring S that contains
the P-powers is connected by a sequence of P-deformations to the lex+P ideal with the same
Hilbert function.

Note that generic changes of coordinates, used by Hartshorne, do not work over W since
they destroy the P-powers. Also, note that the Hilbert scheme Hyy (w) is much smaller than the
Hilbert scheme Hg(w) which parameterizes all graded ideals in S with a fixed Hilbert function w.
In this situation, it is rather surprising that Hy (w) is connected.

We prove Theorem 1.3 as follows. Given an ideal V on the Hilbert scheme Hy (w), we
construct a path from V to the lex ideal on Hyy(w). As we mentioned above, a generic change of
coordinates does not work in W because it destroys the P-powers. We overcome this difficulty by
constructing paths on Hyy (w) in an entirely different way than Hartshorne’s. Our paths consist of
repeatedly performing the following two steps. Step 1: we construct a path based on the idea
of ‘filling gaps’. This idea was used by Peeva and Stillman in [PS05] over an exterior algebra,
the construction over W is more intricate because the gaps have a more complicated form than
those over an exterior algebra. Step 2: we construct paths using special changes of coordinates.

As a corollary of Theorem 1.2, Macaulay’s Theorem was generalized to Betti numbers by
Bigatti et al. (cf. [Par96]) as follows.

THEOREM 1.4. Every lex ideal in S attains maximal Betti numbers among all graded ideals
with the same Hilbert function.
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The above result holds over an exterior algebra as well. Aramova et al. [AHH98| proved that
every lex ideal in an exterior algebra attains maximal Betti numbers among all graded ideals
with the same Hilbert function. It was conjectured by Gasharov, Hibi, and Peeva [GHP02] that
Theorem 1.4 holds over Clements—Lindstrom rings. In §4, we prove the conjecture.

THEOREM 1.5. Every lex ideal in W attains maximal Betti numbers among all graded ideals
with the same Hilbert function.

Note that Theorem 1.4 is about finite resolutions, while Theorem 1.5 is about infinite ones.

The paths on the Hilbert scheme that we construct in §3 do not give information on how
the Betti numbers change along the path. In order to prove Theorem 1.5, we construct special
changes of coordinates and use them to build a construction that starting with a monomial ideal
yields a lex-closer ideal with bigger Betti numbers. The construction may not yield a path on
the Hilbert scheme Hyy (w) between the two ideals.

2. Preliminaries

Here we recall and introduce several definitions and notation, which will be used in the next
sections.

Throughout this section, all ideals and monomials live in the polynomial ring S. For a
monomial ideal M, we denote by mingens(M) the unique set of minimal monomial generators
of M.

We say that a monomial m € S is P-free if its image in the quotient ring W is non-zero, that
is, for each 1 < i < n we have that z}* does not divide m. If P is generated by the squares of the
variables, then the P-free monomials are called squarefree.

We say that a graded ideal [ is an ideal+P if it contains the ideal P. Furthermore, a
monomial+ P ideal is a monomial ideal containing P. Such an ideal M has a unique minimal
system of monomial generators that consists of P-free monomials and some of the P-powers;
this system of generators is mingens(M).

We order the variables 1 > - - - > x,. Order the monomials in each degree lexicographically.
Denote by =ox the degree-lexicographic order on the monomials in S; for simplicity, we call this
order lex. For a monomial m # 1, set

max(m)=max{i € N|z;/m} and min(m)=min{ie N |z;/m},

where x;/m means that the variable x; divides the monomial m.

Lex-plus-powers ideals were introduced by Evans. They are preimages in S of lex ideals
in W. We recall the definitions. A k-vector space F spanned by monomials of the same degree
J is called lex-segment+-P if it contains P; and the following property is satisfied: if m € E is a
P-free monomial and ¢ >1ex m is a monomial of deg(c) =7, then ¢ € E. An ideal L C S is called
lex+ P if for each j > 0 the vector space L; is spanned by a lex-segment+P. Clearly, L O P. Note
that the ideal P is lex+P.

Borel ideals in S are very useful tools in the study of Hilbert functions since they arise
as generic initial ideals; cf. [Eis95, ch. 15]. In the spirit of lex-plus-powers ideals, we can define
Borel-plus-powers ideals as follows. An ideal M is called Borel+P if it is generated by monomials,
contains P, and the following property is satisfied: if m is a P-free monomial in M, a variable x;
divides m, and 1< j <1, then z;m/x; € M. Borel-plus-powers ideals do not arise as generic
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initial ideals, because a generic change of the variables destroys the powers of the variables.
Nevertheless, they are helpful tools in the study of Hilbert functions.

Ezxample. Every lex+ P ideal is Borel+P. Many Borel4+P ideals are not lex+P; for example, in
klx1, xo, x3, x4] we have that

2 2 2 2
(27, 3, X3, Ty, T1T2, T1T3, Z2x3)

is Borel+(x?, 23, 22, x3), but is not lex+ (2%, 3, 23, 23). The point is that the ideal contains x9z3,

but does not contain the lex-greater monomial x;z4. In such a case, we say that z1x4 is a gap
in the ideal. This illustrates the following definition.

DEFINITION. A P-free monomial m is called a gap in a monomial+P ideal M if m ¢ M and M
contains a lex-smaller P-free monomial of the same degree.

DEFINITION. Let M and M’ be two monomial+P ideals with the same Hilbert function. We
say that M is lez-closer than M’ if there exists a degree r such that the following conditions are

satisfied.

(1) M; = M; for each j <r.

(2) Let g¢1,...,9, and ¢f,... ,g;), be the gaps of M, and M/, respectively, ordered
lexicographically in decreasing order. Then gg» ~lex gj for the first j for which the jth gaps are
different.

We also recall some definitions related to free resolutions. Let C' be a graded ideal in S and
let

FZ---—>F28—2>F18—1>F0
be the minimal graded free resolution of C. Note that F can be considered as a homologically
graded module, and F; stands for its component of homological degree i. The rank of F; is called
the ith Betti number of C and is denoted bf(C’). The submodule Im(9;) = Ker(9;_1) of F;_; is
called the ith syzygy module of C, and its elements are called ith syzygies. In particular, Im(0;)
is the first syzygy module and its elements are the first syzygies of C.

3. Connectedness of the Hilbert scheme

In this section, we prove Theorem 1.3.

3.1 Reduction to the Borel+ P case

DEFINITION 3.1.1. Consider the ring S =S ® k[t]. Let C be an ideal in S such that S/C is flat
as a k[t]-module. For a € k, the quotient S/C ® (k[t]/(t — a)) is denoted (S/C)4 and is called
the fiber over a. For any a, 3 € k, we say that the fibers (S/C), and (S/C)g are connected by
a deformation over Al.. We say that two ideals C' and C’ in S are connected by a sequence of
deformations over A,%/, if S/C and S/C" are connected by a sequence of deformations over A,%/,. For
simplicity, we often say ‘deformation’ instead of ‘deformation over A’. We have a P-deformation
if C' D P; in this case, Cyy D P for every a.

The following lemma is well known; cf. [Eis95, ch. 15].

LEMMA 3.1.2. Let C be a graded ideal in S that contains the powers P. Fix a monomial order <.
The initial ideal in,C' and C are connected by a P-deformation.
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Construction 3.1.3. Fix a 1<j<n. The jth polarization of a monomial m =[]z is
pol, (m) =m if z; does not divide m, and otherwise

st o= (I Yo

i#]
where the variables y; are new variables. Let M be a monomial ideal in S. Let s be the largest
power of z; occurring in a minimal monomial generator of M. Set S =k[z1,..., Zp, y1,. .., Ys—1].

Then, for every monomial m € mingens(M), we have pol, (m) € S. The jth polarization of M

is the ideal polij of S generated by the jth polarizations of the minimal monomial generators
of M, that is,

pol,, M = (pol,,(m) | m € mingens(M)).
Assume that a; <oo. Let ¢ be a fixed primitive ajth root of unity (for example, ¢ =
cos(2m/a;j) ++/—1sin (27/a;)). Fix an [ # j and define the automorphism ¢;; of S by
duj(xi) =i for i # j,
¢ij(xj) = w1 — xj,
Qi (yi) =2 — C'wj +y; for all y.
Set

M" = (f(z1,...,20,0,...,0)[ f = ij(pol,, (m)) for m € mingens(M)) C S
and denote by M’ the ideal in S generated by the same generators.

LEMMA 3.1.4. We use the notation in Construction 3.1.3. Let rlex be a revlex monomial order
in S so that the y-variables are smaller than the x-variables. Suppose that M is a monomial
ideal that satisfies the following conditions.

(1) The minimal monomial generators of the ideal innex¢y;(pol,, M) are monomials in the
polynomial ring S.

(2) The ideals M and (inyex¢j(pol,, M)) NS have the same Hilbert function.

(3) Both M and M" contain the P-powers.

Then the ideals M and (inrleX@j(polij))ﬂS are connected by a sequence of two
P-deformations.

Proof. Note that the ideal M’ contains the P-powers by (3).
By (1), it follows that M" and ¢;;(pol, M) have the same initial ideal with respect to rlex.
Hence,
inexM' = (inplex i (polxj M))nS.
By Lemma 3.1.2, it follows that the ideals M’ and inyexM’ = (inyexi; (polx], M))NS are
connected by a P-deformation.

On the other hand, consider a lex order lex on S such that z; >jex 2;. By construction, it
follows that M C injex M'. By (2), we conclude that M’ and M have the same Hilbert function.
Hence, M = injex M'. Therefore, M and M’ are connected by a P-deformation by Lemma 3.1.2. O

Applying Lemma 3.1.4 to the results by Mermin and Murai in [MM11, § 3], we obtain the
following result.
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ProrosITION 3.1.5. Let Z be a monomial+P ideal which is not Borel+P. There exists a
Borel+P ideal B which is lex-closer than Z and which is connected to Z by a sequence of
P-deformations; in particular, B has the same Hilbert function as Z.

Remark. Mermin and Murai did not state that B is lex-closer than U. However, it follows from
their proof that the construction given in [MM11, § 3] always gives a monomial+ P ideal which
is lex-closer than the original ideal.

3.2 Filling gaps in a Borel+ P ideal

In the rest of §3, all ideals and monomials live in the polynomial ring S, and B stands for a
Borel+P ideal that is not lex+P.

Construction 3.2.1. The goal of this construction is to build a binomial ideal N and an initial
ideal @ of it, which we will use later in order to prove Proposition 3.2.2.

If m=2{" - zf is a monomial and 1 < j < deg(m) is an integer, we define the jth beginning
of m to be the monomial
m

7

n

beginj(m) =z xfff:v where 1 < < e; and deg(af" - - a:ffllxi ) =7.

Set
g = min{h € N | By, is not spanned by a lex-segment+P}.
Furthermore, denote by g the lex-greatest gap in B, and denote by b the lex-greatest P-free

monomial in By that is lex-smaller than g. We can write § = dg’ and b=dl, where d, ¢, b/ are
P-free monomials and either d = 1, or max(d) < min(¢’) and max(d) < min(?’).

Choose the minimal number [ € N so that the set of monomials

C; = {beginj(l;)u € mingens(B) | beginj(l;)u is a P-free monomial, j > deg(d),
begin,;(§)u ¢ B,

min(u) > max(begin;(g)) if u# 1}

is not empty. Set C =, and let b = begin;(b) and g = begin;(g). We form the binomial ideals
T = ({bu — gu | bu € C}, mingens(B)\{bu | bu € C}),
N =T+ (af" | 2" ¢ T,1 <h<n),

where b and g are fixed and wu varies. Furthermore, set

Q = injex V.

We denote by GB(/V) the set of generators of N listed in the formulas above; we will prove
in Lemma 3.5.4 that GB(NN) is a Grébner basis of N. This completes Construction 3.2.1.

The main result in this section is the following proposition.
PROPOSITION 3.2.2. Let B be a Borel+ P ideal which is not lex+P. The monomial+ P ideal Q,

constructed in 3.2.1, is lex-closer than B and is connected to B by a sequence of P-deformations.
In particular, the ideal (Q has the same Hilbert function as B.

The proposition is proved in a series of lemmas and constructions.

Notation introduced in a construction or in the statement of a lemma will be used throughout
the rest of the section.
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3.3 The first gap in B
LEMMA 3.3.1. The P-free monomials § and b, defined in Construction 3.2.1, have the form

a — a]‘ 042 o .. as
g=dz;'z, T;°,
7 g.0i+1—1 aipe—1  aippa1—1 B
b=dx;\y w5 Titp—1  Litp

where the following conditions are satisfied:
o d is a P-free monomial and max(d) <i if d # 1;
o I1<i<ig< - <ig<Nn;
op=l;
o B,aq,...,as € N\0O;
o B+ Zlghgpfl (an —1) = Zths Qh;
o B< ajpp — 1.

Proof. We can write the monomials § and b in the form

~ a1 02 Qg
g =dx; Tl ms,
7 Bi1,.B2 . Br
b= dle L L, s

where

Biy ..oy By a1, o, ..., a5 € N\O,
i 7 J1,

1<i<ig< - <is<n,
I<ii<je<---<jr<

I

n

and d is a monomial such that either d =1, or max(d) < i and max(d) < ji. The property that
1 # j1 comes from the fact that we can choose the monomial d to be the maximal monomial so
that the rest of the properties hold (that is, d is the maximal common beginning of the monomials
g and b).

Since § >1ex b, it follows that ¢ < j;. Hence, each of the numbers ji, jo, ..., js is greater
than or equal to i + 1. Choose p to be the biggest integer for which the difference ), ., an —
>1<f<p—1 (@itf — 1) is positive. Set

B=> an— Y, (aps—1).
1<hss 1<f<p—1
As b€ B is a P-free monomial and the ideal B is Borel+P, it follows that the monomial

e g@it1—1aipo—1 Git+p-1—1_p
m.—dxH_1 ;15 IR A xH_pGB.

Note that this monomial is P-free since max(d) <1 <1+ 1. Since m is the lex-greatest P-free
monomial in By that is lex-smaller than g and since ¢ # j1, we conclude that

7 g.0i+1—1_aito—1 aiyp1—1 g3
b=dr; 7y x5 Tivp—1  Titp

as desired. O

LEMMA 3.3.2. We have that either max(b) < max(g), or max(b) = max(g) and 3 < as. In the
latter case, max(b/xﬁ_p) < max(g/x;ﬂp).
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Proof. We have that max(§) =1is and max(b) =i+ p by Lemma 3.3.1. Suppose that the
inequality 75 <7+ p holds. Then is_, <i+p—r forevery 0 <r<p— 1.

Suppose that either i3 <i+ p, or is =7+ p and § > «a,. Since be B and B is Borel+P, it
follows that g € B because a1 < - - - < a,,. This is a contradiction, since § is a gap by assumption. O

LEMMA 3.3.3. We have that b € mingens(B).

Proof. Suppose that b is not a minimal monomial generator of B. Therefore, be S, By_1.As By
is spanned by a lex-segment+F;,_1, it follows that Si1B;_1 is spanned by a lex-segment+F,.
As both g and b are P-free monomials and J " lex lN), we conclude that g€ S1B;—1. This is a
contradiction, because g is a gap by assumption. O

LEMMA 3.3.4. We have that gzj, € B for every number h < max(g).

Proof. If the monomial gxj, is not P-free, then we are done. Suppose that it is P-free. Let h < i
be a natural number. We have that (§/%max(3))Th =1ex §- Hence, (§/Tmax(g))Tn € B because g is
the lex-greatest (first) gap in By. Therefore, gz), € B. a

3.4 A binomial+ P ideal

Consider § and b introduced in Construction 3.2.1, and recall the definition of the set of
monomials C;.

LEMMA 3.4.1. There exists a j € N such that C; # 0.

Proof. By Lemma 3.3.3, we have that b € C with v =1 and beginj(l;) =b. O

LEMMA 3.4.2. Ifbu € C, then either min(u) > max(g) or u = 1.

Proof. If uw# 1, then we have that min(u) > max(begin;(§)) = max(g) by Construction 3.2.1. O

Construction 3.4.3. Choose the minimal number [ € N so that C; # (. Recall that C =, and

b = begin;(b) and g = begin;(g) by 3.2.1. By Lemma 3.3.1, it follows that the /th beginning of b
has the form

. 7 i -1 i —1 itt—1—1
b=begin;(b) = dzj} ' 2y @i vl
for some 1<t <p and such that either t=p and 1< y< g, or t#p and 1 <y < a4 — 1.
Furthermore, the [th beginning of § has the form

g = begin;(§) = dzi 3> - - - af

ir?

where 1 < v < «,. The integers ¢ and r above are defined by the condition that the beginning
monomial should have degree .

LEMMA 3.4.4. If (b/Zmaxp))v € mingens(B) and min(v) > max(g), then (g/Tmax(g))v € B.

Proof. We consider two cases for the form of g.

Let g=dxpayg)- By Construction 3.4.3, it follows that b=dz;+1. Hence, in this case
(g/xmax(g))v =dv= (b/xmax(b))v € B.

Let g # doyax(g)- Suppose that (g/Tyax(g))v ¢ B. Therefore, (b/Tmaxp))v €C. This

contradicts the choice in Construction 3.4.3 that bw € C is such that b= begin;(b) has minimal
degree (since one can replace w by v). O
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LEMMA 3.4.5. For each h < g, we have mingens(B);, = mingens(NN);, and Bj, = Nj,.

Proof. The lemma holds because there are no gaps in By O

LEMMA 3.4.6. We have max(b) < max(g).

Proof. We have that max(g) = i, and max(b) =i + ¢t by Construction 3.4.3. The argument in the
proof of Lemma 3.3.2 yields that max(b) < max(g). But max(b) = max(g) contradicts the choice
in Construction 3.4.3 that bw € C is such that b= begin;(h) has minimal degree (since one can
replace w by Tyax(v)w)- O

LEMMA 3.4.7. Recall that GB(N) is the set of generators of N listed in the formulas in
Construction 3.2.1.

(i) If e is a monomial of degree q such that e > g, then e is divisible by a monomial
in GB(N).
(ii) If gv € B is a P-free monomial with min(v) > max(g), then the monomial gv is divisible
by a monomial in GB(N).
(iii) Let bu € C. If h < max(g), then the monomial xjgu is divisible by a monomial in GB(N).

Proof. (i) There are no gaps in B, that are lex-greater than g. Therefore, e € By. It follows that
there exists a monomial ¢’ € mingens(B) that divides e. If deg(e’) < ¢, then €’ € mingens(N) by
the previous lemma. If deg(e’) = ¢, then €’ € mingens(N) because there are no gaps lex-greater
than e’.

(ii) Suppose that the monomial gv is not divisible by a monomial in GB(N). Since gv € B,
we have that gv is divisible by some minimal P-free monomial generator of B. As this generator
is not in GB(N), it has to be an element in the set C. Thus, there exists a u such that bu € C
divides gv. By Lemma 3.4.6, it follows that the monomial b divides g, which is a contradiction.

(iii) Since bu € C, we have that the monomial gu is a gap in B. Therefore, deg(gu) > ¢. Hence,

deg(zpgu) > q. Write xpgu = xpgu’u”, so that deg(zpgu’) = ¢ and max(v') < min(u”). We have

that zpgu’ =1ex §. As g is the lex-greatest gap in By, we can apply Lemma 3.4.7(i) and conclude
that zpgu’ is divisible by a monomial in GB(V). Hence, xpgu is divisible by a monomial in
GB(N). O

3.5 Grobner bases of N

LEMMA 3.5.1. Denote by <ex the revlex order with 1 <ylex T2 <rilex * * * <tlex Tn- Lhe initial
ideal inpex N contains B.

Proof. Since g >1ex b, we have that gu 1o bu for each bu € C. Therefore, bu > gu for each
bu € C. Therefore, in, N 2 B. O

Construction 3.5.2. We will need a description of the first syzygies of B. Consider the following
four types of syzygies.

(Syz 1) If 23" and x(;cf are minimal monomial generators of B, then there exists a first syzygy
corresponding to the relation xzhxjcf - xiha};f =0.

(Syz 2) Given a P-free monomial a € mingens(B) and a natural number h < max(a), let ¢ be the
pure-lex-greatest (here, pure-lex is the pure lexicographic monomial order) minimal monomial
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generator (of B) dividing xja. Sometimes we denote this by ¢ =source(zpa). Let z be the
monomial such that xpa = zc. We have a first syzygy corresponding to the relation zpa — z¢ = 0.
Note that min(z) > max(c).

(Syz 3) Given a P-free monomial a € mingens(B) and a natural number i < max(a), such that
xp, divides a and ac‘;bh € mingens(B), let x£ be the highest power of x; that divides a. Set
z= a/:r;ﬁ. We have a first syzygy corresponding to the relation J;‘;Lh_fa — zayh =0.

(Syz 4) Given a P-free monomial a € mingens(B) and a natural number h, such that z; does
not divide a and z}" € mingens(B), we have a first syzygy corresponding to the relation
zyha — axy" = 0.

LEMMA 3.5.3. The set of all syzygies of the forms listed in Construction 3.5.2 contains a minimal
system of generators of the first syzygy module of B.

Proof. First we make a remark about the pure powers contained in B. For each 1< h <n,
denote by a; € N the minimal power such that :BZ” € B. Clearly, aj, < ay, since B contains P. It

is possible that Izh € C if a;, < ap,. Note that in this case xzh is a P-free monomial.

The ideal B is a monomial ideal, so Taylor’s resolution provides a possibly non-minimal free
resolution. The first syzygies of B in this resolution correspond to the relations of the form
1 ! 1 !
cm(m/, m )m, _ lem(m, m )m o0,
m m
where m, m’ € mingens(B). If both m and m' are not P-free, then these are the syzygies of type
(Syz 1). If one of m and m’ is P-free and the other is not, then these are the syzygies of types
(Syz 3) and (Syz 4). It remains to consider the case when both m and m’ are P-free. We call
such syzygies P-free syzygies, since the multidegree lem(m, m’) of such a syzygy is P-free.

Denote by B’ the monomial ideal generated by the P-free minimal monomial generators
of B. By [GHP02, Theorem 2.2], the minimal free resolution of B’ is the P-free Eliahou-Kervaire
resolution. Therefore, the syzygies of type (Syz 2) form a minimal set of generators of the first
syzygy module of B’. By [GHP02, Theorem 2.1], it follows that the syzygies of type (Syz 2)
generate all P-free first syzygies of B. O

LEMMA 3.5.4. We have in,o N = B.

Proof. We will prove that the set GB(NN) is a Grobner basis of the ideal N, defined in
Construction 3.2.1. By [Eis95, Theorem 15.8], it suffices to check that if A, D € GB(N) and
0 inyex(A) — T inyex (D) = 0 is a relation yielding a minimal first syzygy of B (where o and 7
are monomials), then 0 A — 7D can be reduced to zero. By Lemma 3.5.3, it suffices to consider
first syzygies of the four types listed in Construction 3.5.2. The case when both A and D are
monomials is trivial. Suppose that A is a binomial. Then we have that A =bu — gu for some
bu € C. If D is a binomial, then we can write D = bv — gv for some bv € C, and we get case (1)
below. If D is a P-free monomial, then, by Construction 3.5.2 (Syz 2), we can write D = ¢ for
some ¢ € GB(N) and we get either case (2) or case (3) below. Let D = 7" for some 1 < h < n.
Then, by Construction 3.5.2 (Syz 3 and Syz 4), we get cases (4) and (5).

It follows that we have to check that each of the types of elements described below can be
reduced to zero using elements in GB(N). Below, e, ¢, u, v stand for monomials, and bu, bv € C.
In particular, bu € mingens(B) and bv € mingens(B). Note that bu, bv € ingjexN.
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The five cases are:
(1) e(bu — gu) — zp(bv — gv), where ebu = xpbv, ) divides bu, h < max(bv), and min(e) >
max(bu);
(2) e(bu — gu) — xpe, where ebu = xpe, ¢ € GB(N), zp, divides bu, h < max(c), and min(e) >
max(bu); here bu = source(xpc);
(3) zp(bu — gu) — ec, where zpbu = ec, c € GB(N), xp divides ¢, h < max(bu), and min(e) >
max(c); here ¢ = source(zbu);
(4) a:zrf(bu — gu) — zay", where h < max(bu) is a natural number such that z; divides bu,
" ¢ C, 3:£ is the highest power of xj that divides bu, and z = bu/x%;
(5) xy"(bu — gu) — buxy", where h is a natural number such that x; does not divide bu and
" ¢C.
We consider each case separately.
(1) Consider the element

e(bu — gu) — zp(bv — gv) = —egu + xpgv.

Since ebu = xpbv, it follows that eu = xpv. Hence, —egu + xpgv = 0.
(2) Consider the element
e(bu — gu) — xpc = —egu.
We have to show that the monomial egu is divisible by a monomial in GB(V). Suppose that egu
is P-free; otherwise we are done.

If min(e) < max(g) then, by Lemma 3.4.7(iii), we have that the monomial egu is divisible by
a monomial in GB(V). Suppose that min(e) > max(g).

We consider two cases depending on whether xj divides the monomial u.

First, we suppose that the variable xj divides the monomial u. Set v = (u/xp)e. Note that
min(v) > max(g) because min(e) > max(g) and min(u) > max(g). We have that bv = ¢ € GB(N).
Since bv ¢ C and min(v) > max(g), it follows that gv € B. By Lemma 3.4.7(ii), we get that the
monomial gv is divisible by a monomial in GB(N). Thus, egu is divisible by a monomial in
GB(N).

Now, we suppose that the variable x;, does not divide the monomial u. Therefore, x;, divides b.
Set v =wue. We have that (b/xp)v = c € mingens(B). Since the variable z;, divides b, we have
h < max(b). As (b/zp)v € B and the ideal B is Borel+P, it follows that (b/%yaxe))v € B.

By Lemmas 3.4.2 and 3.4.6 we have that min(u) > max(g) > max(b). Hence, max(b) < min(v).
Therefore, there exists a (b/Tmaxp))v’ € mingens(B) such that v’ divides v and min(v') = min(v).
By Lemma 3.4.4, it follows that (g/Tmax(g))v’ € B. Hence, gv € B. By Lemma 3.4.7(ii), we get
that the monomial gv is divisible by a monomial in GB(/V). We conclude that egu is divisible
by a monomial in GB(N).

(3) Consider the element

xp(bu — gu) — ec = —zpgu.
We have to show that the monomial zjgu is divisible by a monomial in GB(N). Suppose that
rpgu is P-free; otherwise we are done.

If we have the inequality h < max(g), then the monomial zjgu is divisible by a monomial in
GB(N) by Lemma 3.4.7(iii). Suppose that h > max(g) holds.
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Since xpbu=ec, we can write ¢ = buzy,, where b divides b and @ divides w. Set v = uzy,.
We have that min(v) > max(g). Suppose that b # b. Then biiz}, = ¢ = source(xp,bu) implies that
h < max(b). By Lemma 3.4.6, we get h < max(g), which is a contradiction. Therefore, b = b. Then
bv=c € GB(N), so bv ¢ C and bv € mingens(B). Hence, gv € B, so gvxy, € B, and then we can
apply Lemma 3.4.7(ii).

(4) Consider the element

(bu — gu) — zaph = —xzh_fgu.

ap—f
z,"
We consider two cases depending on whether the variable xj divides the monomial b.

Suppose that the variable xj divides the monomial b. Then the inequalities h < max(b) <
max(g) hold by Lemma 3.4.6. Since bu € C, we have that bu € mingens(B) and hence x;" does
not divide the monomial bu. Therefore, the variable x; divides the monomial xihff . We can
write xzhffgu = (a:fbhff/xh)(xhgu). By Lemma 3.4.7(iii), it follows that the monomial zpgu is
divisible by a monomial in GB(NV). Hence, so is thff gu.

Suppose that the variable xj;, does not divide the monomial b. Therefore, x{l divides u. Hence,
zp" € N divides J:Zh_f gu.

(5) Note that x;" € mingens(B) implies that x}" € GB(NN) by Construction 3.4.3. We have
that the element

zy" (bu — gu) — buzy" = —x7" gu
is divisible by the monomial z}" € GB(N).
The proof is finished, since we have checked all cases. O

3.6 Proof of Proposition 3.2.2

Recall that @Q =ine/N by Construction 3.2.1. The following lemma follows from
Construction 3.2.1.

LEMMA 3.6.1. (i) The monomial ideal () contains P.
(ii) The ideal Q is lex-closer than B.

LEMMA 3.6.2. The ideals Q and B are connected by P-deformations and have the same Hilbert
function.

Proof. By Lemma 3.5.4 and Construction 3.2.1, we have that the ideals () and B are two different
initial ideals of the binomial ideal N, and N D P. O

The proof of Proposition 3.2.2 is complete.

3.7 Proof of Theorem 1.3
We are ready to prove Theorem 1.3.
Proof. Let C' be a graded ideal and C O P. Fix a monomial order > in .S. The initial ideal

Z =in<C is a monomial+ P ideal and is connected to C' by a P-deformation.

Iteration step. If the monomial ideal Z is not Borel4P, apply Proposition 3.1.5 to Z. We obtain
a Borel+P ideal B, which is lex-closer than Z. If B is not lex+ P, apply Proposition 3.2.2. We
obtain a new monomial+ P ideal, which is lex-closer than B.
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Apply repeatedly the iteration step above. At each step, we obtain an ideal which is lex-closer
than the original monomial ideal. Since there exist only finitely many different monomial+ P
ideals with a fixed Hilbert function, it follows that the process terminates after finitely many
steps. Therefore, the last ideal is lex+P.

We remark that the fact that there exist only finitely many different monomial+P ideals
with a fixed Hilbert function is obvious in the case a,, < co when the Clements—Lindstréom ring
is artinian. If a,, = oo, then the fact follows from the Clements—Lindstrém Theorem [CL69] since
the theorem implies the following bound: if L is a lex+P ideal and M is a monomial+ P ideal
with the same Hilbert function, then the maximal degree of a generator in mingens(L) is an
upper bound for the degrees of the generators in mingens(M). O

4. Maximal Betti numbers

In this section, we prove Theorem 1.5.

4.1 Preliminaries
Let V be a graded ideal in W and let

FZ'-'—>F28—2>F18—1>F0

be the minimal graded free resolution of V' over W. This resolution is usually infinite. The rank

of F} is called the ith Betti number of V (over W) and is denoted b} (V). The Betti numbers
are often encoded in the Poincaré series ), bV (V)t'. In this section, we prove Theorem 1.5
on Betti numbers of lex ideals.

First we introduce special changes of coordinates and polarizations of a Borel+P ideal.

For a subset AC{zy,...,x,} and for any monomial m =uz{'-- 2%, let the partial
polarization of m with respect to the variables in A be

polA(m) = ( H (l’yy],l te yj,ej—l)) H $§j7
l’jGA,@j#O CEJQ.A

where y,, with p, ¢ € N are indeterminates. In Construction 3.1.3 we were using a partial
polarization with respect to one variable (there A= {z;}). Let M be a monomial ideal in S.
Its polarization with respect to A is the monomial ideal pol 4M generated by the monomials
{pol 4(u) | v € mingens(M)} in the polynomial ring

S=Slypq | 1<p<n, 1<q< ],

where ¢ is a sufficiently large integer. It is well known that M and pol 4M have the same graded
Betti numbers, and the ideals M.S and pol 4 M have the same Hilbert function.

DEFINITION 4.1.1. Denote by M the set of all monomial+P ideals in S. Let N C M. An
S-route p of N is a map ¢ : N'— M such that there exist a subset A C {x1,...,x,}, a linear

transformation ¢ over S, and a monomial order < on S such that for each ideal I € N, the
following conditions are satisfied:

(1) mingens(¢(/)) = mingens(in<¢(polyl));
(2) ¢(I) is lex-closer than or equal to I.
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We simply say that ¢ is an S-route if N'= M. The next proposition plays a crucial role in
the proof of Theorem 1.5.

ProproOSITION 4.1.2. Let I be a Borel+P ideal of S which is not lex+P. For any finite set
N C M with I € N, there exists an S-route ¢ of N such that ¢(I) # 1.

We will show that it is enough to prove Proposition 4.1.2 in a special case. We will first set
up notation, and then prove that special case in Lemma 4.1.3.

Fix a variable z; (here 1 < j <n). Set

S[2;] = klai | i # ],

P(z;) = ({a" [ i #}) € Sla;).
We have that a monomial ideal L of S[Z;] is lex+P(&;) if L; is lex-segment+P(Z;) for every
integer ¢ > 0.

A monomial+P ideal I decomposes (as a k-vector space) into a direct sum I = @,, mI(m),
where the sum runs over all monomials m € k[z;], and each I(m) is an ideal in the smaller
polynomial ring S[Z;] containing P(Z;). If all the ideals I(m) are lex+P(Z;) ideals, we say that
I is xj-compressed+P.

We say that a monomial+P ideal I of S is compressed+P if I is z;-compressed+P for every
variable x;. Note that compressed+P ideals are Borel+P if n > 3.

LEMMA 4.1.3. Suppose that n > 3. Let I be a compressed+P ideal of S which is not lex+P.
For any finite set N C M with I € N, there exists an S-route ¢ of N such that ¢(I)# 1.

We first prove Proposition 4.1.2 by using Lemma 4.1.3.

Proof of Proposition 4.1.2. We use induction on n. If n <2, then Borel4+P ideals are lex+P.
Suppose that n > 3. Let I be a monomial+P ideal in S and N a finite subset of M with I € V.
If I is compressed+ P, then the statement follows from Lemma 4.1.3.

Suppose that I is not compressed+P. Then there exists a variable x; such that I is
not xj-compressed+P. For any monomial+P ideal M € N, consider the decomposition M =
P,,, mM(m), where m € k[z;] is a monomial and M (m) is a monomial+P(%;) ideal. Set N’ =
{M(m) | M e N,m € klz;]}. Since M(z%) C M(x§+1> for t=0,1,2,..., the set {M(m)|me
klz;]} is a finite set, and therefore N7 is a finite set. We claim that, for any S[Z;]-route ¢
of N/, the map

M =P mM(m) — @ me(M(m))

is an S-route of N.

Set  S[ij] = S[#;][ypq | p# 7] C S. Then there exist AC{z1,...,z,}\{z;}, a linear
transformation ¢ over the polynomial ring S[Z;] and a monomial order < on S[Z;] such that

mingens(p(M (m))) = mingens(in (pol M (m)),
where pol 4 M (m) is an ideal of S[Z;]. Consider the linear transformation ¢ over S defined by

o(z;) = dp(z;) and  ¢(yiq) = d(yiq) if i3],

o(z5) = ;.
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Let <’ be a monomial order on S whose restriction to S[#;] is the monomial order <. Then

in. ¢ (pol M) = <@ mp(M >S

This fact shows that €,, my(M (m)) is a monomial+P ideal and the map satisfies property (1)
in Definition 4.1.1 of S-routes. Also, the map satisfies property (2) in Definition 4.1.1, since each
©(M({m)) is lex-closer than or equal to M (m).

Since each I(m) is Borel4+P(Z;), the induction hypothesis guarantees the existence of an
S[z;]-route ¢ of N7 such that I(m) # 1(I(m)) for some monomial m € k[z;]. Then we have
I#@,, my(I{m)), as desired. O

Next we will prove Lemma 4.1.3.

If as = oo, then lex+P ideals are lex ideals in the usual sense. Indeed, in this special case,
Lemma 4.1.3 follows from the results in [Par96].

We will prove the case a2 < 0o in a series of lemmas and constructions. More precisely, we
will show that if as < oo, then, for any compressed+P ideal I in S, there exists an S-route such
that ¢(I) # I (we do not need to assume that A is finite).

4.2 Routes on S
In the rest of this section except for §4.6, we assume as < co. We introduce routes which will be

used for the proof of Lemma 4.1.3.

Construction 4.2.1. Let ¢ = cos(2m/az) + +/—1sin(27/az). Thus,  is a fixed agth primitive root
of unity.

Fix an integer 3 < r < n.
Set
c=xpr+ -+ Tp.

Let ¢ be the linear transformation of S defined by

—(c ifj=1,
P(zj)=qz1—Cr; f2<j<r—1,
iL'j ifj)?"

and

— ety ifi=1,

—( a4y, fi=2and1<j<ar—2,
d(yij) =< o1 — o +y; if2<i<r—1land1<j<as—2,
1 — %+ Yiag—1 f2<i<r—1landj=a;—1,

i + Yij otherwise.

Set my = ({y;; |1 <i<n,1<j<t})CS. We identify S and S/my. For any monomial m =
afil - xfr with ej < a; for each j, let ®(m) be the image of ¢(poly,, . ., _,1(m)) in the quotient
S/my ~ S. Thus,

Pt - apr) =D(aft) - - - ()

n
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and
¢ €1
[T —¢0) if j=1,
s=1
ea—1
(1‘1 —ng)[H(xl —C_S$2)] ifj:2,0<€2 < ag,
s=1
€j
‘ (x1 — C°zy) if2<j<r—1,e <an,
O(z}) = 3131 (4.2.2)
as—1
mj'j_a2+1[H(x1—Csxj)] if2<j<r—1,a2<ej <ay,
s=1
az
m?i_@ [H(ajlgsx])] if2<j<r—1,e =aj,
s=1
z otherwise.

j
Let I be a monomial+P ideal in S. We denote by ®(I) the ideal of S generated by {®(u) | u €
mingens(/)}. Fix a monomial order <y on S’ =kly; j | 1 <i<n,1<j<t]. Let <p be the block
monomial order on S defined as follows: for monomials uu/, vv’ € S, where u, v € S and v/, v € S/,
one has uu’ =g vv’ if u =165 v, or u=v and v’ =y v'. Since <y is the degree-lexicographic order,
we have that
inlqu)(I) = in<B¢(p01{x1,...,xr_1}I) ns.

We will prove the following result.

PROPOSITION 4.2.3. The map I — inje®(I), constructed above, is an S-route.

First we will prove that inje,®(7) is a monomial+ P ideal. Set

al

[ - o) if j =1,

s=1

Pj a;—a . .
a0 —af?) if2<j<r—1,

x?j if j>r.

Note that the initial monomial of p; is x?j for all j.

LEMMA 4.2.4. The ideal ®(P) is generated by the polynomials pi,...,p,. In particular,
inex ®(P) = P.

Proof. Clearly, p; = @(w?j) € d(P) for j=1,r,r+1,...,n. On the other hand, q)(x;j) =

P (22— 23?) for 2 < j <r — 1. Then the statement follows, since

j
p1< H (x1 — C%)) =z7* — " € O(P). O

s=ai1+1
For a set F of P-free monomials of degree d, we consider the k-vector space

V(F) =span,{®(u) | u € F} & D(P)q4.
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LEMMA 4.2.5. Let I be a monomial+ P ideal of S and let F; be the set of P-free monomials of
degree d in I. Then V(Fy) C ®(I)4.

Proof. Since t is a sufficiently large integer, for any P-free monomial m € F;, one has that
pol{zhm’mril}(m) €polyy, . o .31, and therefore ®(m) € ®(I). Similarly, since poley, 2 3P C

pol, .31, we have the inclusion ®(P)q C ®(I). O
For a polynomial f(x1,...,z,) € S and for a linear form 6 € Sy, denote
sub(f;x;=0)= f(z1,...,2j-1,0,Tj41, ..., Tp).
For an integer £ € N and a monomial m = 7' - - - 5 with e; <a; for j =1,2,...,n, define

®(m: () =(2f (") - @y : ()

O 1 ') = {‘1’(3«“?) | ifj=1,

and

I sub((I)(a:e.])‘ =) ifj>2
Note that ®(z§ (H = z§ if j > r. The next lemma follows from (4.2.2).

LEMMA 4.2.6. For every P-free monomial m € S, we have that inje,(®(m: %)) =m for any
e N.

A set L of P-free monomials of degree d is said to be a P-free lex-segment if the k-vector
space spany, £ @y Py is lex-segment+P.

LEMMA 4.2.7. Let L be a P-free lex-segment set of P-free monomials of degree d. Then, for
every monomial m = z{' - - - z&» € L, the following properties hold.

(1) @@ ) Sie;1 S V(L)

(i) ®(m: ¢t e V(L).
Proof.
Step 1. First we show that (i) implies (ii). Suppose that (i) holds. By definition,

sub(®(x5? - - - xi"); 1 = ¢rtle) = D(z5? - apr ¢ty
Recall that ® (29 T!) = &(2$) (21 — ¢©1F'¢). Then
O(2f e - ap) = @2 e - a (M) € (e ) Sumey 1

Since ®(z§! - - - 2&) € V(L), we have ®(z{' - - - a2 : (A1) € V(L) by (i).

Step 2. We prove (i) by using induction on #L. If #L£ =0, then there is nothing to prove.
Suppose that #L£ > 1. Let u=2a{" ---x& be the lex-smallest element in £. Set £ = L\{u}.
Since V(ﬁ) 2O V(L), by the induction hypothes1s it is enough to prove the statement for w. If
u = z¢, then there is nothing to prove. Thus, we may assume that v # 2¢. Then it is enough to
show that for any monomial w € Sy_.,_1, there exists a polynomial f,, € V(L) such that

e1+1 o . fw o inlex(fw) o
O (') divides f,, and mlex(@(m?“)) = e w. (4.2.8)
We will consider two cases.

e1+1

Case 1. Suppose that z{'" w is not a P-free monomial. Then some zj* divides :C?Hw. The

following polynomials satlsfy (4.2.8):
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O (x§) (25w /25) € B(P)y C V(L), if 25 divides 25 Tw;
() ps(w/x) € B(P)g CV(L), if 2, where t # 1, divides 2.

Case 2. Suppose that z¢'"!w is a P-free monomial. Since 2" 1w 1oy u, we have ¢ w € £/,
Then, by Step 1 (above) and Lemma 4.2.6, it follows that

(8w : ¢ T2 e V(L) S V(L)
satisfies (4.2.8). This completes the proof. O

COROLLARY 4.2.9. Let L be a P-free lex-segment set of P-free monomials of degree d and let
fi,..., ft be a k-basis of ®(P)y. Then:

(i) injex V(L) = spany, £ @y, Py;
(ii) {P(u) |ue LYU{fi,..., ft} is a set of k-linearly independent polynomials.

Proof. By the construction of V(£) and Lemma 4.2.4, we have that

and the equality holds if and only if (ii) holds. Hence, it is enough to show that ine V(L) 2
spany, £ @ Py. We have the inclusion inex V(L) 2 P; by Lemma 4.2.4. On the other hand, for
any monomial m =z{' - -zt € L, it follows from Lemmas 4.2.6 and 4.2.7(ii) that inje,®(m :
¢at) =m € ingex V(L). 0

COROLLARY 4.2.10. Let F be a set of P-free monomials of degree d. Then the following
properties hold:
(i) dimpV(F) = #F + dimy, Py;

(ii) the set of P-free monomials in injex V(F) is lex-closer than or equal to F.

Proof. (i) Let £ be a P-free lex-segment set of P-free monomials of degree d with £2D F,
and let fi,..., f: be a k-basis of ®(P),. Corollary 4.2.9(ii) implies that the set {®(u)|u €
FryU{f1,..., ft} is a set of k-linearly independent polynomials. By the construction of V(F),
this fact implies dimgV(F) = #F + dimg P;.

(i) We use induction on #F. If #F =0, then there is nothing to prove. Suppose that
#F > 1. Let u be the lex-smallest P-free monomial in F, and let 7' = F\{u}. Note that, by (i)
and Lemma 4.2.4, the number of P-free monomials in inj, V(F) is equal to #F. Consider the
monomial w € injeyx V(F)\ingex V(F'). It is enough to show that w =)y u. Let

L={veS;|visa P-free monomial with v =jex u}.
Then w € injex V(F) Cinex V(L) and, by Corollary 4.2.9, the set of all P-free monomials in

inex V(L) is L. Since w is a P-free monomial, we have that w =jex u, as desired. O

LEMMA 4.2.11. Let .{ be a monomial+ P ideal of S and {et F4 be the set of P-free monomials
in I of degree d. Set J =in<,¢(poly,, . 1) and J=JNS.

(i) Jg=imexV(Fq).
(ii) The ideals I and J have the same Hilbert function.

(iit) The ideals J and J have the same generators.
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Proof. Since V(Fy) C ®(I)4 and J = injex® (1), it follows from Corollary 4.2.10 that
Hilb(J)(d) > dimiV(Fy) = #Fq + dimy Py = Hilb(I)(d) for all d.
On the other hand, since JDJS , the above inequality implies
Hilb(.J)(d) > Hilb(JS)(d) > Hilb(15)(d) = Hilb(poly,, ., 1I)(d) =Hilb(.J)(d)

for all d > 0. Thus, all of the above Hilbert functions are the same. In particular, Hilb(J) =
Hilb(JS) and Hilb(J) = Hilb(I). Since J D JS, this proves (ii) and (iii).

Finally, since injex V(F4) C Jy and since
dimk(inleX(V(}'d))) = #Fq+ dimg P; = dimg I = dimg Jy,
it follows that injex V(Fy) = Jg. O

We are ready to show Proposition 4.2.3.

Proof of Proposition 4.2.3. It follows from Lemmas 4.2.4 and 4.2.5 that inex®(/) contains P.
Also, since

inex®(I) =inzzd(polyy, o 3 I) NS,
properties (1) and (2) in 4.1.1 follow from Corollary 4.2.10(ii) and Lemma 4.2.11(iii). O

4.3 Proof of Lemma 4.1.3

First we remark the following obvious fact.

LEMMA 4.3.1. Let u=x{" --- 25 and v=1x7" - -- 25" be P-free monomials of the same degree

with u =1ex v and v € I. If ¢; = e; for some j, then u € I.

We will prove Lemma 4.1.3 by using the route defined in Construction 4.2.1. Let I be a
compressed+ P ideal which is not lex+P and let ¢ be the smallest integer d such that Iy is
not lex-segment+P. Let g be the lex-greatest gap of I, and oy = max{j € N : z} divides g}. Let

g=x{" - 20" be the lex-smallest P-free monomial of degree ¢ which is divisible by z7" and
b= xf Lo xﬁ” the lex-greatest P-free monomial in I, which is lex-smaller than g.

LEMMA 4.3.2. We have f1=«a1 —1 and g & 1.

Proof. Since b <jex g, we have the inequality 31 < o1. However, 81 # a1 by Lemma 4.3.1. Then
(1 =a1 — 1, since I is Borel+P. Furthermore, § ¢ I follows from Lemma 4.3.1. a

Let F, be the set of all P-free monomials in I;. Set

L={u€cS,|uisa P-free monomial with u >=ex §}
and
G=F,UL.
LEMMA 4.3.3. If § € imexV(G), then injex V(Fy) # 1.

Proof. Let t =#{u € F; | u is not divisible by z{*}. By the assumption and Corollary 4.2.9,
injex V(G) contains all monomials of degree ¢ which are divisible by z{". Hence,

#{u € injexV(G) | v is not divisible by z{'} =¢ — 1.
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As V(F,) CV(G), we have that
#{u € injexV(Fy) | u is not divisible by 7"} <t — 1.
Hence, inexV(F,) # 1, O

Recall that what we need to prove is that there exists an r for which injex®(I) # I, where r is
the integer given in Construction 4.2.1. Also, injex® (1), is equal to injexV(Fy) by Lemma 4.2.11(i).
By Lemma 4.3.3, it follows that the next lemma completes the proof of Lemma 4.1.3.

LEMMA 4.3.4. There exists an 2 < r < n so that § € injex V(G).

The proof of Lemma 4.3.4 consists of considering two cases: when n =3 and when n > 3.
These cases are considered in §§4.4 and 4.5, respectively.

4.4 Proof of Lemma 4.3.4 when n = 3
Throughout this subsection, we suppose that n =3 and r = 3. We will show that

g € injey V(Q)

Let g = x‘flxg‘zxg?’ and b= 21" lw’gz:c3 Note that § € G, be G, aa < (2, az > 3 and ¢ = x3.
Since 2252 25?1 € £ C G, by Lemma 4.2.7(i), we have

(x9S, a0y 1 SV(G). (4.4.1)
Fort=0,1,...,032 — 2, let
t Ba—2
fo = (252 (21 — Ca2) [H(:El - C_sl‘z)] [ H (¢ s — (Tag) |

s=1 s=t+1
LEMMA 4.4.2. We have fy € V(G) fort=0,1,..., 32 — 2.

Proof. Since I is Borel+P, the monomial x7" 52 ! BS € L. Then, by Lemma 4.2.7(ii), we have
O (2" xgz ! 53 : ¢t € Y(G). On the other hand, for t=0,1,2...,089 — 2, one has

ft a1+1 1 ﬂ a1+1
sub (@(w‘fl);xl = (1tiy, ‘I)(.TU22 3oty
Then

fo— (a2 el ¢ ) € @@ ) (w1 — ¢ 3)Symar o1 = B(aP ) Sy -1
Thus, by (4.4.1), we have fy € V(G) for t=0,1,..., 32 — 2. O

Fort=0,1,...,08: — 1, set
B2—2

hy = ®(x]'™ 1) 3(x1 — (o) [H x1—C” xg)] [H(Ca1+1x3C_sx2)].

s=t

LEMMA 4.4.3. We have hy € V(G) fort=0,1,..., 06 — 1.

Proof. For t =1,2,..., 082 — 1, one has

-1 Bo—2
— fr1 = @) (21 — Ca) [H(:m - C_Swz)] [H (¢ Hlag — C‘sz)]

s=1 s=t

X (x1 — CTleg — g + (M)
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t—1 B2—2
= @2 )2l (21 — () [H(ml - C_sxz)] I € s — ¢oa)
s=1 s=t
% C_l(ca1+1x3 _ C_t+1x2)
=( thy.
Since each f; is in V(G) and hg, 1 = ®(b) € V(G), the above equality implies that h, € V(G) for
t=0,1,...,0: — 1. O

Now, since
(21 = () = (21 — (M'wg) + ((“'ag — (a2),
it follows that ho € V(G) can be written in the form

B2—2
ho = ®(a")z4? [ I €t s = ¢ owa) | + £, (4.4.4)
s=0
where inje (f') = xf‘l_lxg%g?’ <lex g. Let
Bo—2—t
hy = q)(x?l)ngHH [ H (¢cortlgs — (_Ssvg)] fort=0,1,...,a3 — (@3 — 1.
s=1

Since injex(hag—pgs—1) = g, the next lemma completes the proof of Lemma 4.3.4.
LEMMA 4.4.5. There exists a number § € k\{0} such that 6ha, 5, 1 + f € V(G).

Proof. For t=0,1,...,a3 — (33 — 1, we have x({”xgrl_ta:gﬁt —lex J, and therefore x?%n?rl_t

x§3+t € L. Thus, by Lemma 4.2.7(ii), we get @(w?la:grl_ta:/gﬁt ¢t eV(G) for t=
0,1,...,a3 — B3 — 1. Then we have
¢*H(¢ — Dho + [ € V(G)

by using 4.4.4 and the following computation:

B2—2
()’ [ | S csm] — (T a ¢
s=0

B2—2
= ® (25" )2y’ [ IT ¢ ey - CS$2)] {¢  ay — w9 — (1 (CM H  ag — Caa)}

s=1
= ("(¢ = Dho.
If ag — B3 — 1 =0, then this completes the proof.

If a3—pP3—1>0, then the statement follows from the next computation. For
t=0,1,...,a3 — 03 — 2, we get

hy — ¢ Gy (20 ﬂrlf(t+1)$§3+t+1 . cortl)

1 Lo
B2—2—(t+1)
=¢<x$l>x§3*”1[ 11 <ca1+1x3—<—8x2>]
s=1
x (O Hgy — (TP g, (TP (contla (o))
= (L = PP By
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Note that ¢t+1— ﬁ27£1smcel—ﬂ2 t+1—pPo<ag— 03— Py —1=—as — 2 and since —as <
1—fs<—a2—2<0. O

4.5 Proof of Lemma 4.3.4 when n > 4
In this subsection, we consider the case n > 4.
By the definition of § and b, the monomials § and b can be written in the form

1 _ :
g=aPap T ap Tt with 2<p<nand ;>0

and
B—xf“ 1 x5?" L. x?zll ! 6’“’ with 2< ¢ <n and G, <a; — 1.

For convenience, we will write b= 1:?1 1 ﬁ 2. xg”

LeEmMA 4.5.1. (i) p > 3.
(ii) The monomial b satisfies one of the following conditions:
(1) b=at! *62--' ’8” and 0 < B, < ap;

(2) b=a{! 52 . .,”ng gfll, Bp > ayp and 0 < Bpy1 < app1 — 1.

Proof. Statement (ii) easily follows from Lemma 4.3.1. Suppose that p=2. Then ¢§=

o]t ay? s Lo ge Since n >4, we get degg > a1 —1+as — 1+ a3z — 1. Therefore, b is
divisible by x]*~ lxg“’ 1 3_1. In particular, 83 = as — 1. By Lemma 4.3.1, it follows that g € I,
which is a contradiction. O
Let
_ if b is a monomial of the form (1),
~ |p+1 ifbisamonomial of the form (2).

Our goal is to prove g € inex V(G).
LEMMA 4.5.2. (i) ®(2$ap? " : ¢ )8, 0y —ay—1 CV(G) and (25 a; : ¢S, o1 CV(G)
forj=1,2,...,p— 1.
(if) ®(27"22)Sg—a;-1 S V(G)-
Proof. (i) Let wj=a{"z; for j=1,2,...,p—1 and wu, =z :BZP-H. Let d;j =degu;. Since
(§za/n) € L and L is P-free lex-segment, it follows from Lemma 4.2.7(i) that
P (uy : CalJrl)Sq—m—l = (p(x(lnﬂ)sq—m—l cV(9).

Fix a 2 < j < p. In the same way as in the proof of Lemma 4.2.7, it is enough to show that, for
every monomial w € S;_q4,, there exists a polynomial f,, € V(G) such that

®(u; : ¢** ) divides f,, and Miex (fu) =w. (4.5.3)

Uy
We will consider two cases.

Case 1. Suppose that ujw is not a P-free monomial. Then one of the following polynomials
satisfies (4.5.3):

(a) p1®(u;/zft : ¢ (wat /z(t) € ®(P),, where 2§ divides ujw
(b) ®(z1")p;(ujw/zT! aj) € ®(P)4, where xjj divides u;w
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(¢) pe®(uj: ) (w/zft) € ®(P),, where z§* divides ujw and t # 1, j.
Note that ®(u; : (***1) divides the polynomial (b), since
as
ﬁU:x?lmKC”H@@—x?}zm?thI@m+%—C%ﬂl
s=1

Case 2. Suppose that ujw =" - - - 25" is a P-free monomial. If e; > o, then since (i) holds for
7 =1, we get that

I

D(ugry (1) (“’) € B(2511)Sy-0,-1 C V(G)

satisfies (4.5.3). Suppose e; =a;. Then wjw e L, since Ujw >lex g- Then it follows from
Lemmas 4.2.6 and 4.2.7 that ®(ujw : (**T1) € V(G) satisfies (4.5.3). We have proved (i).

(i) Since p >3, we have the inclusions ®(z%' @y :¢*1)S, o,—1 CV(G) and ®(z5*")
Sy—a1—1 C V(G). The statement follows since ®(28x9) = ®(x{ g : (1) + B2, O

LEMMA 4.5.4. There exists a polynomial f' such that injex(f') = b and
@(xfl)é(argp . xﬁ" : Co‘l)cﬁ"’Jr"'Jrﬁp‘lf1 + f ev(g).
Proof. Let
B o)
(Ce — z9)

(b
sub %)1; 1 =C%c| =T,
(2" 22)
it follows that

D(b) — Oz ) € B(a aa) (21 — C¢)Syay -1 = P(252) Sy 0y 1.
Then ®(z"29)T € V(G) by Lemma 4.5.2(ii). As
(2] awg) = B(a) + B(af g 1 (M),

Since

we have
D20 + B2 my : (UL € V(G). (4.5.5)
Let
fr = 0@ D2 - b o)t Pl for =34, p.
Note that

O(x(wj: ¢ = ¢((Me —x)P(2ft) forj=2,...,p— 1.
By (4.2.2), there exists a number ds € k\{0} such that
sub([; 29 = (*c) = 52052_1<I>(:1:g3 . xﬁ” (¢,
Then, by Lemma 4.5.2(i), we obtain
(2P — bafs € B2 w2 : ¢ M) Sy—ar—1 CV(G). (4.5.6)

Similarly, for t =3,4,...,p—1, it follows from (4.2.2) that there exists a number ¢&; € k\{0}
such that

sub(®(zy" - - - wfn s () = (Ohe) = 5P D () -l o),

1359

https://doi.org/10.1112/50010437X1100741X Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X1100741X

S. MURAI AND I. PEEvVA

Therefore,
fr — Oufir1 € ®(xPay : ¢S,y —1 CV(G) fort=3,4,...,p—1. (4.5.7)
Now (4.5.5), (4.5.6) and (4.5.7) imply that
(02 Op—1) fo + (2] laa : (T € V(G).
The lemma follows, since (2 - - - 6,—1) € k\{0} and

e (D(21 g (T = e - =, O

LEMMA 4.5.8. There exists a polynomial h such that injex(h) <jex § and
@(x?lxaiil : Ca1+1)xfrcqfara7»f1*ﬂr +he V(g),

T

where a,,_1 =0 if r =p.

Proof. Recall that, for all £, e € N, ®(z5 : = ziifj > If b is a monomial of the form (1), then

the statement is exactly Lemma 4.5.4. Suppose b is a monomial of the form (2). By Lemma 4.5.4,
there exists a polynomial f’ with inje(f’) = b such that

() B(ay” : (M), T g € V(G). (4.5.9)

Note that 0 < a; < 8. Let
Bap” " ¢t

- (<a1+1cicxp) :

We will need the following claim.
CrLAM 4.5.10. (i) 7 divides <I>($§p 1 C).
(ii) There exist a number § € k\{0} and f” € S such that ine(f") = xgp_lxpﬂ and
T=6® (" () + [
We will prove the above claim. Using
Crtle— (g, = ((¢*e — (ay),
statement (i) follows from a straightforward computation. We will show (ii). Let

f_ Pl
a (¢ortte — Cap)
Then 7 can be written either in the form 7 = (¢ T'c¢ — ¢**1z,)7’ or in the form 7 = z,7". Recall
that r = p + 1. In the former case,

7= ¢{(¢" e = (mp) — (M e (T e}
= (oD - (M) 4 (L (on)er’
satisfies the desired conditions. In the latter case,
7= =T e = o) — (el = (B (a s () 4 (e
satisfies the desired conditions. The proof of the claim is complete.
It follows from (4.2.2) that there exists a number € k\{0} such that

B
(b P . (o5}
sub ((:cp ) T = Calc> = fycﬁpfo"’.

T
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Then, by Claim 4.5.10(i), the polynomial @(x?l){fb(xgp 1 ¢1) — v~} s divisible by
(af)7(ap — () = —¢THB(afap T (),
By Lemma 4.5.2(i), we obtain
(a3 T B (M) —yreh T} € V(G).
Hence, by (4.5.9),
YR (af ) T e V(G).
Furthermore, by Claim 4.5.10(ii), there exists a f” with inpe(f”) = a:ffpflxpﬂ such that

P I g @) T (45.00)

is contained in V(G). Since r =p + 1 and

. Bp+1 a1 —a " a1 op—1 g—ai—ap+1 ~
injex (P (x7* )a:p+1 cl— 1= Bp“f ) =] :cp Ty <lex G

YO (2 " ¢

the polynomial (4.5.11) satisfies the desired conditions. O

LEMMA 4.5.12. For every monomial w € k[x,,...,x,] of degree q— a3 — a,—1 with

(2" 'w # §, we have that

@(w?le:‘ll : C“1+1)w eV(G).

Proof. If w xffi‘llw is not a P-free monomial then some zf* with t >r divides w. Then
@(x‘flerll ¢t Hw € V(G) is clear, since z{* € ®(P) if t >r. Suppose that x{'z. 'w is a

P-free monomial. Then x§ 'z, " 'w € L, since it is lex-greater than §. Thus, by Lemma 4.2.7(ii),
we have

® (25 a7 w () = @2 (T hw € V(L) S V(9),
as desired. )

Now we are in the position to prove Lemma 4.3.4. Recall that c=z, +- -4+ x,. By
Lemma 4.5.8, there exists a polynomial h such that injex(h) <jex § and

Ozttt gl amamar =l L e Y(Q).

’f‘

It follows from Lemma 4.5.1(ii) and the definition of r that the monomial 2§z " llazfr divides g

and (§/2{"x"1") € k[y, . . ., ). This fact implies that ;" =1~ -1=0r can be written in the
form

x?rd}—m—arq—ﬁr _ xrﬁr (-Tr 4ot xn)q—a1—o¢r—1—ﬁr -5 - gar_1 T iL,
Ty Tpq

where 0 € k\{0} and where & is a k-linear combination of monomials of k[z,, ..., z,] which is
not (§/z{x;"7"). Furthermore, since Lemma 4.5.12 implies that

Oz (TR e V(G),
it follows that

@(m‘f‘lx?‘:—ll :€a1_1)<a1§¢m> +heV(G).

Ty Tp_q
The initial monomial of the above polynomial is g. O

1361

https://doi.org/10.1112/50010437X1100741X Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X1100741X

S. MURAI AND I. PEEvVA

4.6 Proof of Theorem 1.5
First we recall the definition of consecutive cancellation, which we will use. Given a sequence of
numbers {¢; j }, we obtain a new sequence by a cancellation as follows: fix a j, and choose i and 7’
so that one of the numbers is odd and the other is even; then replace ¢; ; by ¢; ; — 1, and replace
¢y j by ¢y j —1. We have a consecutive cancellation when i’ =i+ 1. The term ‘consecutive’ is
justified by the fact that we consider cancellations in Betti numbers of consecutive homological
degrees. The following result was proved in [Pee04]: if C' is a graded ideal in S and L is the lex
ideal with the same Hilbert function, then the graded Betti numbers bf ;(5/C) can be obtained
from the graded Betti numbers bfj(S /L) by a sequence of consecutive cancellations. In that
case, a consecutive cancellation comes from removing a trivial short exact complex from a non-
minimal free resolution; so, the sequence of consecutive cancellations in Betti numbers comes
from minimizing a non-minimal free resolution. In general (for example, in the situation of
Theorem 4.6.5 below), it has not been studied how consecutive cancellations in Betti numbers
affect the differential.

In order to prove Theorem 1.5, we need the following lemmas; the former lemma is well
known.

LEMMA 4.6.1. Let I be a monomial+P ideal in S and AC {x1,...,x,}. Let I' =pol 41 and
P’ =pol 4 P. We have equalities of Betti numbers

bfj/Pl(g/I/) = b;gj/P(S/I) for all i, j > 0.

LEMMA 4.6.2 [GHPO0S8, Proposition 2.6]. Let A be a homogeneous ideal in S and let B D A be
another homogeneous ideal in S. Let < be a monomial order in S. The graded Betti numbers of
S/in<(B) over the quotient ring S/in4(A) are greater than or equal to those of S/B over the ring
S/A. Furthermore, the graded Betti numbers of S/B can be obtained from those of S/in.(B)
by a sequence of consecutive cancellations.

Applying the above two lemmas, we obtain the following result.

LEMMA 4.6.3. Let I and J be monomial+P ideals of S. Suppose that there exist an AC
{z1,...,x,}, a linear transformation ¢ over S and a monomial order < on S such that
mingens(.JJ) = mingens(in<¢(pol 4I)) and ins¢p(pol 4 P) = PS. Then

S/p S/P .
b7 (S/I)<b;/7(S)J) foralli, j>0.

Furthermore, the Betti numbers be/P(S/I) can be obtained from the Betti numbers bfj/P(S/J)
by a sequence of consecutive cancellations.

Proof. By Lemma 4.6.1, we get
S/po P S o ~
0/ T (S/1) = b3/PP A (8 fpol o T) = b/ “P4T) (S (pol 4 1)
for all ¢, j > 0. Then we apply Lemma 4.6.2 and get
bi/¢(P01_AP) (S/(ﬁ(pOIAI)) < bg/in.<<b(polAP)(S,/in_< ¢(p01AI))

S/(PS) /& G
= b/ "(§/(9))
S/P
= 57/7(5/)
for all 4, 7 > 0. Also, the second statement follows from Lemma 4.6.2, since the inequality only
appears in the first line of the above computation. O
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LEMMA 4.6.4. Let I be a monomial+P ideal of S which is not lex+P. Then there exists a
monomial+ P ideal J of S which has the following properties:

(i) J has the same Hilbert function as I;

(ii) J is lex-closer than I;

(iii) b5/ (S/1) <077 (8/J) for all i, j > 0;

ij
(iv) the Betti numbers bfj/P(S/I) can be obtained from the Betti numbers bfj/P(S/J) by a
sequence of consecutive cancellations.

Proof. If I is not Borel+P, apply Lemma 4.6.3 to the construction in [MM11, § 3]. On the other
hand, if I is Borel4 P, then the statement follows from Proposition 4.1.2 and Lemma 4.6.3. O

We are ready to prove Theorem 1.5 and its refined version in Theorem 4.6.5.

THEOREM 4.6.5. If V is a graded ideal in W and L is the lex ideal with the same Hilbert
function, then the graded Betti numbers bf‘;(W/ V) can be obtained from the graded Betti

numbers b%(W/ L) by a sequence of consecutive cancellations.

Proof. Let I be a graded ideal in S and I O P. Let L be the lex+ P ideal having the same Hilbert
function as I. It is enough to compare the Betti numbers b;s;/ P(S /I) and bfj/ P(S /L). Clearly, the
initial ideal of I (with respect to any monomial order) contains P. Thus, by Lemma 4.6.2, we
may assume that I is a monomial ideal.

Iteration step. If the monomial ideal I is not lex+ P, by Lemma 4.6.4, there exists a monomial+P
ideal J satisfying conditions (i), (ii), (iii) and (iv) of Lemma 4.6.4. Replace I by J.

Apply repeatedly the iteration step above. At each step, we obtain a monomial+P ideal
which is lex-closer than the original monomial ideal. Since there exist only finitely many different
monomial+P ideals with a fixed Hilbert function, it follows that the process terminates after
finitely many steps. Therefore, the last ideal is lex+P. O
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