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Abstract

We show that the Hilbert scheme, that parameterizes all ideals with the same Hilbert
function over a Clements–Lindström ring W , is connected. More precisely, we prove that
every graded ideal is connected by a sequence of deformations to the lex-plus-powers
ideal with the same Hilbert function. This is an analogue of Hartshorne’s theorem that
Grothendieck’s Hilbert scheme is connected. We also prove a conjecture by Gasharov,
Hibi, and Peeva that the lex ideal attains maximal Betti numbers among all graded
ideals in W with a fixed Hilbert function.

1. Introduction

Throughout the paper, S = k[x1, . . . , xn] is a polynomial ring graded by deg(xi) = 1, for all i,
over an algebraically closed field k of characteristic zero. If U is a finitely generated graded
module over a graded quotient of S, then, for each i ∈ Z, we denote by Ui the graded component
of U in degree i. The Hilbert function ω : i 7→ dimUi measures the size of the graded components.

One of the central results in commutative algebra is Macaulay’s Theorem [Mac27], which
characterizes the possible Hilbert functions of graded ideals in S. The key idea is that for every
graded ideal in S there exists a lex ideal with the same Hilbert function. Lex ideals are special
monomial ideals, defined in a simple combinatorial way: denote by ≺lex the degree-lexicographic
order on the monomials in S with x1 �lex · · · �lex xn. A monomial ideal L in S is lex if the
following property holds: if m ∈ L is a monomial and q >lex m is a monomial of the same degree,
then q ∈ L.

Hilbert functions of graded ideals in an exterior algebra (equivalently, in the quotient ring
S/(x2

1, . . . , x
2
n)) have been extensively studied in combinatorics because they correspond to

f -vectors which count faces of simplicial complexes. Counting faces of simplicial complexes
naturally generalizes to counting in multicomplexes; this leads to considering Clements–
Lindström rings. A Clements–Lindström ring W has the form W = S/(xa1

1 , . . . , x
an
n ) with

a1 6 a2 6 · · ·6 an 6∞ (where x∞i = 0). The Clements–Lindström Theorem [CL69] states that
Macaulay’s Theorem holds over W , that is, for every graded ideal in W there exists a lex ideal
with the same Hilbert function.

Lex ideals play an important role in the study of Hilbert functions over S. The connectedness
of Grothendieck’s Hilbert scheme and the result that lex ideals attain maximal Betti numbers
are two of the nicest results proved using lex ideals. In this paper, we prove analogues of these
results over a Clements–Lindström ring W .
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Grothendieck’s Hilbert scheme, introduced by Grothendieck [Gro60/61], parameterizes
subschemes of Pr with a fixed Hilbert polynomial. The structure of Grothendieck’s Hilbert
scheme is known to be quite complicated. The following result of Hartshorne is the main known
positive structural result.

Theorem 1.1 [Har66]. Grothendieck’s Hilbert scheme, which parameterizes subschemes of Pr

with a fixed Hilbert polynomial, is connected.

A minor modification of its proof establishes the following result.

Theorem 1.2. The Hilbert scheme HS(ω), which parameterizes all graded ideals in S with a
fixed Hilbert function ω, is connected. Every graded ideal in the polynomial ring S is connected
by a sequence of deformations to the lex ideal with the same Hilbert function.

Theorem 1.2 implies Theorem 1.1 since, if L and L′ are two lex ideals with the same Hilbert
polynomial, then L and L′ represent the same point on Grothendieck’s Hilbert scheme (because
Li = L′i for i� 0).

Clements–Lindström rings are a natural class of quotient rings to consider because Macaulay’s
Theorem holds over them. We consider the Hilbert scheme HW (h) that parameterizes all graded
ideals in W with a fixed Hilbert function h. Equivalently, this Hilbert scheme parameterizes
all graded ideals in S containing the powers xa1

1 , . . . , x
an
n and with a fixed Hilbert function. Set

P = (xa1
1 , . . . , x

an
n ); we refer to xa1

1 , . . . , x
an
n as the P -powers. In § 3, we define that a deformation

is a P -deformation if it connects ideals containing the P -powers. The generalization of the notion
of a lex ideal to W is the notion of a lex+P ideal, defined in § 2; the Clements–Lindström Theorem
states that for every graded ideal in S containing P there exists a lex+P ideal in S with the
same Hilbert function. In § 3, we prove the following theorem.

Theorem 1.3. The Hilbert scheme HW (ω), which parameterizes all graded ideals in W with a
fixed Hilbert function ω, is connected. Every graded ideal in the polynomial ring S that contains
the P -powers is connected by a sequence of P -deformations to the lex+P ideal with the same
Hilbert function.

Note that generic changes of coordinates, used by Hartshorne, do not work over W since
they destroy the P -powers. Also, note that the Hilbert scheme HW (ω) is much smaller than the
Hilbert scheme HS(ω) which parameterizes all graded ideals in S with a fixed Hilbert function ω.
In this situation, it is rather surprising that HW (ω) is connected.

We prove Theorem 1.3 as follows. Given an ideal V on the Hilbert scheme HW (ω), we
construct a path from V to the lex ideal on HW (ω). As we mentioned above, a generic change of
coordinates does not work in W because it destroys the P -powers. We overcome this difficulty by
constructing paths onHW (ω) in an entirely different way than Hartshorne’s. Our paths consist of
repeatedly performing the following two steps. Step 1: we construct a path based on the idea
of ‘filling gaps’. This idea was used by Peeva and Stillman in [PS05] over an exterior algebra;
the construction over W is more intricate because the gaps have a more complicated form than
those over an exterior algebra. Step 2: we construct paths using special changes of coordinates.

As a corollary of Theorem 1.2, Macaulay’s Theorem was generalized to Betti numbers by
Bigatti et al. (cf. [Par96]) as follows.

Theorem 1.4. Every lex ideal in S attains maximal Betti numbers among all graded ideals
with the same Hilbert function.
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The above result holds over an exterior algebra as well. Aramova et al. [AHH98] proved that
every lex ideal in an exterior algebra attains maximal Betti numbers among all graded ideals
with the same Hilbert function. It was conjectured by Gasharov, Hibi, and Peeva [GHP02] that
Theorem 1.4 holds over Clements–Lindström rings. In § 4, we prove the conjecture.

Theorem 1.5. Every lex ideal in W attains maximal Betti numbers among all graded ideals
with the same Hilbert function.

Note that Theorem 1.4 is about finite resolutions, while Theorem 1.5 is about infinite ones.
The paths on the Hilbert scheme that we construct in § 3 do not give information on how

the Betti numbers change along the path. In order to prove Theorem 1.5, we construct special
changes of coordinates and use them to build a construction that starting with a monomial ideal
yields a lex-closer ideal with bigger Betti numbers. The construction may not yield a path on
the Hilbert scheme HW (ω) between the two ideals.

2. Preliminaries

Here we recall and introduce several definitions and notation, which will be used in the next
sections.

Throughout this section, all ideals and monomials live in the polynomial ring S. For a
monomial ideal M , we denote by mingens(M) the unique set of minimal monomial generators
of M .

We say that a monomial m ∈ S is P -free if its image in the quotient ring W is non-zero, that
is, for each 1 6 i6 n we have that xai

i does not divide m. If P is generated by the squares of the
variables, then the P -free monomials are called squarefree.

We say that a graded ideal I is an ideal+P if it contains the ideal P . Furthermore, a
monomial+P ideal is a monomial ideal containing P . Such an ideal M has a unique minimal
system of monomial generators that consists of P -free monomials and some of the P -powers;
this system of generators is mingens(M).

We order the variables x1 > · · ·> xn. Order the monomials in each degree lexicographically.
Denote by �lex the degree-lexicographic order on the monomials in S; for simplicity, we call this
order lex. For a monomial m 6= 1, set

max(m) = max{i ∈N | xi/m} and min(m) = min{i ∈N | xi/m},

where xi/m means that the variable xi divides the monomial m.
Lex-plus-powers ideals were introduced by Evans. They are preimages in S of lex ideals

in W . We recall the definitions. A k-vector space E spanned by monomials of the same degree
j is called lex-segment+P if it contains Pj and the following property is satisfied: if m ∈ E is a
P -free monomial and c�lex m is a monomial of deg(c) = j, then c ∈ E. An ideal L⊆ S is called
lex+P if for each j > 0 the vector space Lj is spanned by a lex-segment+P . Clearly, L⊇ P . Note
that the ideal P is lex+P .

Borel ideals in S are very useful tools in the study of Hilbert functions since they arise
as generic initial ideals; cf. [Eis95, ch. 15]. In the spirit of lex-plus-powers ideals, we can define
Borel-plus-powers ideals as follows. An ideal M is called Borel+P if it is generated by monomials,
contains P , and the following property is satisfied: if m is a P -free monomial in M , a variable xi
divides m, and 1 6 j 6 i, then xjm/xi ∈M . Borel-plus-powers ideals do not arise as generic
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initial ideals, because a generic change of the variables destroys the powers of the variables.
Nevertheless, they are helpful tools in the study of Hilbert functions.

Example. Every lex+P ideal is Borel+P . Many Borel+P ideals are not lex+P ; for example, in
k[x1, x2, x3, x4] we have that

(x2
1, x

2
2, x

2
3, x

2
4, x1x2, x1x3, x2x3)

is Borel+(x2
1, x

2
2, x

2
3, x

2
4), but is not lex+(x2

1, x
2
2, x

2
3, x

2
4). The point is that the ideal contains x2x3,

but does not contain the lex-greater monomial x1x4. In such a case, we say that x1x4 is a gap
in the ideal. This illustrates the following definition.

Definition. A P -free monomial m is called a gap in a monomial+P ideal M if m /∈M and M
contains a lex-smaller P -free monomial of the same degree.

Definition. Let M and M ′ be two monomial+P ideals with the same Hilbert function. We
say that M is lex-closer than M ′ if there exists a degree r such that the following conditions are
satisfied.

(1) Mj =M ′j for each j < r.

(2) Let g1, . . . , gp and g′1, . . . , g
′
p′ be the gaps of Mr and M ′r, respectively, ordered

lexicographically in decreasing order. Then g′j �lex gj for the first j for which the jth gaps are
different.

We also recall some definitions related to free resolutions. Let C be a graded ideal in S and
let

F : · · · −→ F2
∂2−−→ F1

∂1−−→ F0

be the minimal graded free resolution of C. Note that F can be considered as a homologically
graded module, and Fi stands for its component of homological degree i. The rank of Fi is called
the ith Betti number of C and is denoted bSi (C). The submodule Im(∂i) = Ker(∂i−1) of Fi−1 is
called the ith syzygy module of C, and its elements are called ith syzygies. In particular, Im(∂1)
is the first syzygy module and its elements are the first syzygies of C.

3. Connectedness of the Hilbert scheme

In this section, we prove Theorem 1.3.

3.1 Reduction to the Borel+P case
Definition 3.1.1. Consider the ring S̃ = S ⊗ k[t]. Let C̃ be an ideal in S̃ such that S̃/C̃ is flat
as a k[t]-module. For α ∈ k, the quotient S̃/C̃ ⊗ (k[t]/(t− α)) is denoted (S̃/C̃)α and is called
the fiber over α. For any α, β ∈ k, we say that the fibers (S̃/C̃)α and (S̃/C̃)β are connected by
a deformation over A1

C . We say that two ideals C and C ′ in S are connected by a sequence of
deformations over A1

k if S/C and S/C ′ are connected by a sequence of deformations over A1
k. For

simplicity, we often say ‘deformation’ instead of ‘deformation over A1
k’. We have a P -deformation

if C̃ ⊇ P ; in this case, C̃α ⊇ P for every α.

The following lemma is well known; cf. [Eis95, ch. 15].

Lemma 3.1.2. Let C be a graded ideal in S that contains the powers P . Fix a monomial order ≺.
The initial ideal in≺C and C are connected by a P -deformation.
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Construction 3.1.3. Fix a 1 6 j 6 n. The jth polarization of a monomial m=
∏
xei
i is

polxj
(m) =m if xj does not divide m, and otherwise

polxj
(m) =

(∏
i6=j

xei
i

)
(xjy1 · · · yej−1),

where the variables yi are new variables. Let M be a monomial ideal in S. Let s be the largest
power of xj occurring in a minimal monomial generator ofM . Set S̄ = k[x1, . . . , xn, y1, . . . , ys−1].
Then, for every monomial m ∈mingens(M), we have polxj

(m) ∈ S̄. The jth polarization of M
is the ideal polxj

M of S̄ generated by the jth polarizations of the minimal monomial generators
of M , that is,

polxj
M = (polxj

(m) |m ∈mingens(M)).

Assume that aj <∞. Let ζ be a fixed primitive ajth root of unity (for example, ζ =
cos(2π/aj) +

√
−1 sin (2π/aj)). Fix an l 6= j and define the automorphism φlj of S̄ by

φlj(xi) = xi for i 6= j,

φlj(xj) = xl − xj ,
φlj(yi) = xl − ζixj + yi for all yi.

Set

M ′′ = (f(x1, . . . , xn, 0, . . . , 0) | f = φlj(polxj
(m)) for m ∈mingens(M))⊂ S̄

and denote by M ′ the ideal in S generated by the same generators.

Lemma 3.1.4. We use the notation in Construction 3.1.3. Let rlex be a revlex monomial order
in S̄ so that the y-variables are smaller than the x-variables. Suppose that M is a monomial
ideal that satisfies the following conditions.

(1) The minimal monomial generators of the ideal inrlexφlj(polxj
M) are monomials in the

polynomial ring S.

(2) The ideals M and (inrlexφlj(polxj
M)) ∩ S have the same Hilbert function.

(3) Both M and M ′′ contain the P -powers.

Then the ideals M and (inrlexφlj(polxj
M)) ∩ S are connected by a sequence of two

P -deformations.

Proof. Note that the ideal M ′ contains the P -powers by (3).
By (1), it follows that M ′′ and φlj(polxj

M) have the same initial ideal with respect to rlex.
Hence,

inrlexM
′ = (inrlexφlj(polxj

M)) ∩ S.
By Lemma 3.1.2, it follows that the ideals M ′ and inrlexM

′ = (inrlexφlj(polxj
M)) ∩ S are

connected by a P -deformation.
On the other hand, consider a lex order lex on S such that xj >lex xl. By construction, it

follows that M ⊆ inlexM
′. By (2), we conclude that M ′ and M have the same Hilbert function.

Hence, M = inlexM
′. Therefore, M and M ′ are connected by a P -deformation by Lemma 3.1.2. 2

Applying Lemma 3.1.4 to the results by Mermin and Murai in [MM11, § 3], we obtain the
following result.
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Proposition 3.1.5. Let Z be a monomial+P ideal which is not Borel+P . There exists a
Borel+P ideal B which is lex-closer than Z and which is connected to Z by a sequence of
P -deformations; in particular, B has the same Hilbert function as Z.

Remark . Mermin and Murai did not state that B is lex-closer than U . However, it follows from
their proof that the construction given in [MM11, § 3] always gives a monomial+P ideal which
is lex-closer than the original ideal.

3.2 Filling gaps in a Borel+P ideal
In the rest of § 3, all ideals and monomials live in the polynomial ring S, and B stands for a
Borel+P ideal that is not lex+P .

Construction 3.2.1. The goal of this construction is to build a binomial ideal N and an initial
ideal Q of it, which we will use later in order to prove Proposition 3.2.2.

If m= xe11 · · · xen
n is a monomial and 1 6 j 6 deg(m) is an integer, we define the jth beginning

of m to be the monomial

beginj(m) = xe11 · · · x
ei−1

i−1 x
µ
i where 1 6 µ6 ei and deg(xe11 · · · x

ei−1

i−1 x
µ
i ) = j.

Set

q = min{h ∈N |Bh is not spanned by a lex-segment+P}.
Furthermore, denote by g̃ the lex-greatest gap in Bq and denote by b̃ the lex-greatest P -free
monomial in Bq that is lex-smaller than g̃. We can write g̃ = dg′ and b̃= db′, where d, g′, b′ are
P -free monomials and either d= 1, or max(d) 6 min(g′) and max(d)<min(b′).

Choose the minimal number l ∈N so that the set of monomials

Cj = {beginj(b̃)u ∈mingens(B) | beginj(b̃)u is a P -free monomial, j > deg(d),
beginj(g̃)u /∈B,
min(u) > max(beginj(g̃)) if u 6= 1}

is not empty. Set C = Cl, and let b= beginl(b̃) and g = beginl(g̃). We form the binomial ideals

T = ({bu− gu | bu ∈ C},mingens(B)\{bu | bu ∈ C}),
N = T + (xah

h | x
ah
h /∈ T, 1 6 h6 n),

where b and g are fixed and u varies. Furthermore, set

Q= inlexN.

We denote by GB(N) the set of generators of N listed in the formulas above; we will prove
in Lemma 3.5.4 that GB(N) is a Gröbner basis of N . This completes Construction 3.2.1.

The main result in this section is the following proposition.

Proposition 3.2.2. Let B be a Borel+P ideal which is not lex+P . The monomial+P ideal Q,
constructed in 3.2.1, is lex-closer than B and is connected to B by a sequence of P -deformations.
In particular, the ideal Q has the same Hilbert function as B.

The proposition is proved in a series of lemmas and constructions.
Notation introduced in a construction or in the statement of a lemma will be used throughout

the rest of the section.
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3.3 The first gap in B

Lemma 3.3.1. The P -free monomials g̃ and b̃, defined in Construction 3.2.1, have the form

g̃ = dxα1
i x

α2
i2
· · · xαs

is
,

b̃= dx
ai+1−1
i+1 x

ai+2−1
i+2 · · · xai+p−1−1

i+p−1 xβi+p,

where the following conditions are satisfied:

◦ d is a P -free monomial and max(d) 6 i if d 6= 1;

◦ 1 6 i < i2 < · · ·< is 6 n;

◦ p> 1;

◦ β, α1, . . . , αs ∈N\0;

◦ β +
∑

16h6p−1 (ah − 1) =
∑

16h6s αh;

◦ β 6 ai+p − 1.

Proof. We can write the monomials g̃ and b̃ in the form

g̃ = dxα1
i x

α2
i2
· · · xαs

is
,

b̃= dxβ1
j1
xβ2
j2
· · · xβr

jr
,

where

β1, . . . , βr, α1, α2, . . . , αs ∈N\0,
i 6= j1,

1 6 i < i2 < · · ·< is 6 n,

1 6 j1 < j2 < · · ·< jr 6 n,

and d is a monomial such that either d= 1, or max(d) 6 i and max(d) 6 j1. The property that
i 6= j1 comes from the fact that we can choose the monomial d to be the maximal monomial so
that the rest of the properties hold (that is, d is the maximal common beginning of the monomials
g̃ and b̃).

Since g̃ �lex b̃, it follows that i < j1. Hence, each of the numbers j1, j2, . . . , js is greater
than or equal to i+ 1. Choose p to be the biggest integer for which the difference

∑
16t6s αh −∑

16f6p−1 (ai+f − 1) is positive. Set

β =
∑

16h6s

αh −
∑

16f6p−1

(ai+f − 1).

As b̃ ∈B is a P -free monomial and the ideal B is Borel+P , it follows that the monomial

m := dx
ai+1−1
i+1 x

ai+2−1
i+2 · · · xai+p−1−1

i+p−1 xβi+p ∈B.

Note that this monomial is P -free since max(d) 6 i < i+ 1. Since m is the lex-greatest P -free
monomial in Bq that is lex-smaller than g̃ and since i 6= j1, we conclude that

b̃= dx
ai+1−1
i+1 x

ai+2−1
i+2 · · · xai+p−1−1

i+p−1 xβi+p,

as desired. 2

Lemma 3.3.2. We have that either max(b̃)<max(g̃), or max(b̃) = max(g̃) and β < αs. In the

latter case, max(b̃/xβi+p)<max(g̃/xβi+p).
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Proof. We have that max(g̃) = is and max(b̃) = i+ p by Lemma 3.3.1. Suppose that the
inequality is 6 i+ p holds. Then is−r 6 i+ p− r for every 0 6 r 6 p− 1.

Suppose that either is < i+ p, or is = i+ p and β > αs. Since b̃ ∈B and B is Borel+P , it
follows that g̃ ∈B because a1 6 · · ·6 an. This is a contradiction, since g̃ is a gap by assumption. 2

Lemma 3.3.3. We have that b̃ ∈mingens(B).

Proof. Suppose that b̃ is not a minimal monomial generator of B. Therefore, b̃ ∈ S1Bq−1. As Bq−1

is spanned by a lex-segment+Pq−1, it follows that S1Bq−1 is spanned by a lex-segment+Pq.
As both g̃ and b̃ are P -free monomials and g̃ �lex b̃, we conclude that g̃ ∈ S1Bq−1. This is a
contradiction, because g̃ is a gap by assumption. 2

Lemma 3.3.4. We have that g̃xh ∈B for every number h <max(g̃).

Proof. If the monomial g̃xh is not P -free, then we are done. Suppose that it is P -free. Let h < is
be a natural number. We have that (g̃/xmax(g̃))xh �lex g̃. Hence, (g̃/xmax(g̃))xh ∈B because g̃ is
the lex-greatest (first) gap in Bq. Therefore, g̃xh ∈B. 2

3.4 A binomial+P ideal
Consider g̃ and b̃ introduced in Construction 3.2.1, and recall the definition of the set of
monomials Cj .

Lemma 3.4.1. There exists a j ∈N such that Cj 6= ∅.

Proof. By Lemma 3.3.3, we have that b̃ ∈ C with u= 1 and beginj(b̃) = b̃. 2

Lemma 3.4.2. If bu ∈ C, then either min(u) > max(g) or u= 1.

Proof. If u 6= 1, then we have that min(u) > max(beginl(g̃)) = max(g) by Construction 3.2.1. 2

Construction 3.4.3. Choose the minimal number l ∈N so that Cl 6= ∅. Recall that C = Cl, and
b= beginl(b̃) and g = beginl(g̃) by 3.2.1. By Lemma 3.3.1, it follows that the lth beginning of b̃
has the form

b= beginl(b̃) = dx
ai+1−1
i+1 x

ai+2−1
i+2 · · · xai+t−1−1

i+t−1 xγi+t
for some 1 6 t6 p and such that either t= p and 1 6 γ 6 β, or t 6= p and 1 6 γ 6 ai+t − 1.
Furthermore, the lth beginning of g̃ has the form

g = beginl(g̃) = dxα1
i x

α2
i2
· · · xνir ,

where 1 6 ν 6 αr. The integers t and r above are defined by the condition that the beginning
monomial should have degree l.

Lemma 3.4.4. If (b/xmax(b))v ∈mingens(B) and min(v) > max(g), then (g/xmax(g))v ∈B.

Proof. We consider two cases for the form of g.
Let g = dxmax(g). By Construction 3.4.3, it follows that b= dxi+1. Hence, in this case

(g/xmax(g))v = dv = (b/xmax(b))v ∈B.
Let g 6= dxmax(g). Suppose that (g/xmax(g))v /∈B. Therefore, (b/xmax(b))v ∈ C. This

contradicts the choice in Construction 3.4.3 that bw ∈ C is such that b= beginl(b̃) has minimal
degree (since one can replace w by v). 2
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Lemma 3.4.5. For each h < q, we have mingens(B)h = mingens(N)h and Bh =Nh.

Proof. The lemma holds because there are no gaps in Bh. 2

Lemma 3.4.6. We have max(b)<max(g).

Proof. We have that max(g) = ir and max(b) = i+ t by Construction 3.4.3. The argument in the
proof of Lemma 3.3.2 yields that max(b) 6 max(g). But max(b) = max(g) contradicts the choice
in Construction 3.4.3 that bw ∈ C is such that b= beginl(b̃) has minimal degree (since one can
replace w by xmax(b)w). 2

Lemma 3.4.7. Recall that GB(N) is the set of generators of N listed in the formulas in
Construction 3.2.1.

(i) If e is a monomial of degree q such that e�lex g̃, then e is divisible by a monomial
in GB(N).

(ii) If gv ∈B is a P -free monomial with min(v) > max(g), then the monomial gv is divisible
by a monomial in GB(N).

(iii) Let bu ∈ C. If h <max(g), then the monomial xhgu is divisible by a monomial in GB(N).

Proof. (i) There are no gaps in Bq that are lex-greater than g̃. Therefore, e ∈Bq. It follows that
there exists a monomial e′ ∈mingens(B) that divides e. If deg(e′)< q, then e′ ∈mingens(N) by
the previous lemma. If deg(e′) = q, then e′ ∈mingens(N) because there are no gaps lex-greater
than e′.

(ii) Suppose that the monomial gv is not divisible by a monomial in GB(N). Since gv ∈B,
we have that gv is divisible by some minimal P -free monomial generator of B. As this generator
is not in GB(N), it has to be an element in the set C. Thus, there exists a u such that bu ∈ C
divides gv. By Lemma 3.4.6, it follows that the monomial b divides g, which is a contradiction.

(iii) Since bu ∈ C, we have that the monomial gu is a gap in B. Therefore, deg(gu) > q. Hence,
deg(xhgu)> q. Write xhgu= xhgu

′u′′, so that deg(xhgu′) = q and max(u′) 6 min(u′′). We have
that xhgu′ �lex g̃. As g̃ is the lex-greatest gap in Bq, we can apply Lemma 3.4.7(i) and conclude
that xhgu′ is divisible by a monomial in GB(N). Hence, xhgu is divisible by a monomial in
GB(N). 2

3.5 Gröbner bases of N

Lemma 3.5.1. Denote by ≺rlex the revlex order with x1 ≺rlex x2 ≺rlex · · · ≺rlex xn. The initial
ideal inrlexN contains B.

Proof. Since g �lex b, we have that gu�lex bu for each bu ∈ C. Therefore, bu�rlex gu for each
bu ∈ C. Therefore, inrlexN ⊇B. 2

Construction 3.5.2. We will need a description of the first syzygies of B. Consider the following
four types of syzygies.

(Syz 1) If xah
h and x

af

f are minimal monomial generators of B, then there exists a first syzygy
corresponding to the relation xah

h x
af

f − x
ah
h x

af

f = 0.

(Syz 2) Given a P -free monomial a ∈mingens(B) and a natural number h <max(a), let c be the
pure-lex-greatest (here, pure-lex is the pure lexicographic monomial order) minimal monomial
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generator (of B) dividing xha. Sometimes we denote this by c= source(xha). Let z be the
monomial such that xha= zc. We have a first syzygy corresponding to the relation xha− zc= 0.
Note that min(z) > max(c).

(Syz 3) Given a P -free monomial a ∈mingens(B) and a natural number h <max(a), such that
xh divides a and xah

h ∈mingens(B), let xfh be the highest power of xh that divides a. Set
z = a/xfh. We have a first syzygy corresponding to the relation xah−f

h a− zxah
h = 0.

(Syz 4) Given a P -free monomial a ∈mingens(B) and a natural number h, such that xh does
not divide a and xah

h ∈mingens(B), we have a first syzygy corresponding to the relation
xah
h a− ax

ah
h = 0.

Lemma 3.5.3. The set of all syzygies of the forms listed in Construction 3.5.2 contains a minimal
system of generators of the first syzygy module of B.

Proof. First we make a remark about the pure powers contained in B. For each 1 6 h6 n,
denote by āh ∈N the minimal power such that xāh

h ∈B. Clearly, āh 6 ah since B contains P . It
is possible that xāh

h ∈ C if āh < ah. Note that in this case xāh
h is a P -free monomial.

The ideal B is a monomial ideal, so Taylor’s resolution provides a possibly non-minimal free
resolution. The first syzygies of B in this resolution correspond to the relations of the form

lcm(m, m′)
m′

m′ − lcm(m, m′)
m

m= 0,

where m, m′ ∈mingens(B). If both m and m′ are not P -free, then these are the syzygies of type
(Syz 1). If one of m and m′ is P -free and the other is not, then these are the syzygies of types
(Syz 3) and (Syz 4). It remains to consider the case when both m and m′ are P -free. We call
such syzygies P -free syzygies, since the multidegree lcm(m, m′) of such a syzygy is P -free.

Denote by B′ the monomial ideal generated by the P -free minimal monomial generators
of B. By [GHP02, Theorem 2.2], the minimal free resolution of B′ is the P -free Eliahou–Kervaire
resolution. Therefore, the syzygies of type (Syz 2) form a minimal set of generators of the first
syzygy module of B′. By [GHP02, Theorem 2.1], it follows that the syzygies of type (Syz 2)
generate all P -free first syzygies of B. 2

Lemma 3.5.4. We have inrlexN =B.

Proof. We will prove that the set GB(N) is a Gröbner basis of the ideal N , defined in
Construction 3.2.1. By [Eis95, Theorem 15.8], it suffices to check that if A, D ∈GB(N) and
σ inrlex(A)− τ inrlex(D) = 0 is a relation yielding a minimal first syzygy of B (where σ and τ
are monomials), then σA− τD can be reduced to zero. By Lemma 3.5.3, it suffices to consider
first syzygies of the four types listed in Construction 3.5.2. The case when both A and D are
monomials is trivial. Suppose that A is a binomial. Then we have that A= bu− gu for some
bu ∈ C. If D is a binomial, then we can write D = bv − gv for some bv ∈ C, and we get case (1)
below. If D is a P -free monomial, then, by Construction 3.5.2 (Syz 2), we can write D = c for
some c ∈GB(N) and we get either case (2) or case (3) below. Let D = xāh

h for some 1 6 h6 n.
Then, by Construction 3.5.2 (Syz 3 and Syz 4), we get cases (4) and (5).

It follows that we have to check that each of the types of elements described below can be
reduced to zero using elements in GB(N). Below, e, c, u, v stand for monomials, and bu, bv ∈ C.
In particular, bu ∈mingens(B) and bv ∈mingens(B). Note that bu, bv ∈ inrlexN .
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The five cases are:

(1) e(bu− gu)− xh(bv − gv), where ebu= xhbv, xh divides bu, h <max(bv), and min(e) >
max(bu);

(2) e(bu− gu)− xhc, where ebu= xhc, c ∈GB(N), xh divides bu, h <max(c), and min(e) >
max(bu); here bu= source(xhc);

(3) xh(bu− gu)− ec, where xhbu= ec, c ∈GB(N), xh divides c, h <max(bu), and min(e) >
max(c); here c= source(xhbu);

(4) xah−f
h (bu− gu)− zxah

h , where h <max(bu) is a natural number such that xh divides bu,
xah
h /∈ C, xfh is the highest power of xh that divides bu, and z = bu/xfh;

(5) xah
h (bu− gu)− buxah

h , where h is a natural number such that xh does not divide bu and
xah
h /∈ C.

We consider each case separately.
(1) Consider the element

e(bu− gu)− xh(bv − gv) =−egu+ xhgv.

Since ebu= xhbv, it follows that eu= xhv. Hence, −egu+ xhgv = 0.
(2) Consider the element

e(bu− gu)− xhc=−egu.
We have to show that the monomial egu is divisible by a monomial in GB(N). Suppose that egu
is P -free; otherwise we are done.

If min(e)<max(g) then, by Lemma 3.4.7(iii), we have that the monomial egu is divisible by
a monomial in GB(N). Suppose that min(e) > max(g).

We consider two cases depending on whether xh divides the monomial u.
First, we suppose that the variable xh divides the monomial u. Set v = (u/xh)e. Note that

min(v) > max(g) because min(e) > max(g) and min(u) > max(g). We have that bv = c ∈GB(N).
Since bv /∈ C and min(v) > max(g), it follows that gv ∈B. By Lemma 3.4.7(ii), we get that the
monomial gv is divisible by a monomial in GB(N). Thus, egu is divisible by a monomial in
GB(N).

Now, we suppose that the variable xh does not divide the monomial u. Therefore, xh divides b.
Set v = ue. We have that (b/xh)v = c ∈mingens(B). Since the variable xh divides b, we have
h6 max(b). As (b/xh)v ∈B and the ideal B is Borel+P , it follows that (b/xmax(b))v ∈B.

By Lemmas 3.4.2 and 3.4.6 we have that min(u) > max(g)>max(b). Hence, max(b) 6 min(v).
Therefore, there exists a (b/xmax(b))v′ ∈mingens(B) such that v′ divides v and min(v′) = min(v).
By Lemma 3.4.4, it follows that (g/xmax(g))v′ ∈B. Hence, gv ∈B. By Lemma 3.4.7(ii), we get
that the monomial gv is divisible by a monomial in GB(N). We conclude that egu is divisible
by a monomial in GB(N).

(3) Consider the element

xh(bu− gu)− ec=−xhgu.
We have to show that the monomial xhgu is divisible by a monomial in GB(N). Suppose that
xhgu is P -free; otherwise we are done.

If we have the inequality h <max(g), then the monomial xhgu is divisible by a monomial in
GB(N) by Lemma 3.4.7(iii). Suppose that h> max(g) holds.
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Since xhbu= ec, we can write c= b̄ūxh, where b̄ divides b and ū divides u. Set v = ūxh.
We have that min(v) > max(g). Suppose that b 6= b̄. Then b̄ūxh = c= source(xhbu) implies that
h6 max(b). By Lemma 3.4.6, we get h <max(g), which is a contradiction. Therefore, b= b̄. Then
bv = c ∈GB(N), so bv /∈ C and bv ∈mingens(B). Hence, gv ∈B, so gvxh ∈B, and then we can
apply Lemma 3.4.7(ii).

(4) Consider the element

xah−f
h (bu− gu)− zxah

h =−xah−f
h gu.

We consider two cases depending on whether the variable xh divides the monomial b.
Suppose that the variable xh divides the monomial b. Then the inequalities h6 max(b)<

max(g) hold by Lemma 3.4.6. Since bu ∈ C, we have that bu ∈mingens(B) and hence xah
h does

not divide the monomial bu. Therefore, the variable xh divides the monomial xah−f
h . We can

write xah−f
h gu= (xah−f

h /xh)(xhgu). By Lemma 3.4.7(iii), it follows that the monomial xhgu is
divisible by a monomial in GB(N). Hence, so is xah−f

h gu.

Suppose that the variable xh does not divide the monomial b. Therefore, xfh divides u. Hence,
xah
h ∈N divides xah−f

h gu.
(5) Note that xah

h ∈mingens(B) implies that xah
h ∈GB(N) by Construction 3.4.3. We have

that the element

xah
h (bu− gu)− buxah

h =−xah
h gu

is divisible by the monomial xah
h ∈GB(N).

The proof is finished, since we have checked all cases. 2

3.6 Proof of Proposition 3.2.2
Recall that Q= inlexN by Construction 3.2.1. The following lemma follows from
Construction 3.2.1.

Lemma 3.6.1. (i) The monomial ideal Q contains P .

(ii) The ideal Q is lex-closer than B.

Lemma 3.6.2. The ideals Q and B are connected by P -deformations and have the same Hilbert
function.

Proof. By Lemma 3.5.4 and Construction 3.2.1, we have that the ideals Q and B are two different
initial ideals of the binomial ideal N , and N ⊇ P . 2

The proof of Proposition 3.2.2 is complete.

3.7 Proof of Theorem 1.3
We are ready to prove Theorem 1.3.

Proof. Let C be a graded ideal and C ⊇ P . Fix a monomial order � in S. The initial ideal
Z = in≺C is a monomial+P ideal and is connected to C by a P -deformation.

Iteration step. If the monomial ideal Z is not Borel+P , apply Proposition 3.1.5 to Z. We obtain
a Borel+P ideal B, which is lex-closer than Z. If B is not lex+P , apply Proposition 3.2.2. We
obtain a new monomial+P ideal, which is lex-closer than B.
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Apply repeatedly the iteration step above. At each step, we obtain an ideal which is lex-closer
than the original monomial ideal. Since there exist only finitely many different monomial+P
ideals with a fixed Hilbert function, it follows that the process terminates after finitely many
steps. Therefore, the last ideal is lex+P .

We remark that the fact that there exist only finitely many different monomial+P ideals
with a fixed Hilbert function is obvious in the case an <∞ when the Clements–Lindström ring
is artinian. If an =∞, then the fact follows from the Clements–Lindström Theorem [CL69] since
the theorem implies the following bound: if L is a lex+P ideal and M is a monomial+P ideal
with the same Hilbert function, then the maximal degree of a generator in mingens(L) is an
upper bound for the degrees of the generators in mingens(M). 2

4. Maximal Betti numbers

In this section, we prove Theorem 1.5.

4.1 Preliminaries

Let V be a graded ideal in W and let

F : · · · −→ F2
∂2−−→ F1

∂1−−→ F0

be the minimal graded free resolution of V over W . This resolution is usually infinite. The rank
of Fi is called the ith Betti number of V (over W ) and is denoted bWi (V ). The Betti numbers
are often encoded in the Poincaré series

∑
i>0 b

W
i (V )ti. In this section, we prove Theorem 1.5

on Betti numbers of lex ideals.

First we introduce special changes of coordinates and polarizations of a Borel+P ideal.

For a subset A⊆ {x1, . . . , xn} and for any monomial m= xe11 · · · xen
n , let the partial

polarization of m with respect to the variables in A be

polA(m) =
( ∏
xj∈A,ej 6=0

(xjyj,1 · · · yj,ej−1)
) ∏
xj 6∈A

x
ej

j ,

where yp,q with p, q ∈N are indeterminates. In Construction 3.1.3 we were using a partial
polarization with respect to one variable (there A= {xj}). Let M be a monomial ideal in S.
Its polarization with respect to A is the monomial ideal polAM generated by the monomials
{polA(u) | u ∈mingens(M)} in the polynomial ring

S̃ = S[yp,q | 1 6 p6 n, 1 6 q 6 t],

where t is a sufficiently large integer. It is well known that M and polAM have the same graded
Betti numbers, and the ideals MS̃ and polAM have the same Hilbert function.

Definition 4.1.1. Denote by M the set of all monomial+P ideals in S. Let N ⊆M. An
S-route ϕ of N is a map ϕ :N →M such that there exist a subset A⊆ {x1, . . . , xn}, a linear
transformation φ over S̃, and a monomial order ≺ on S̃ such that for each ideal I ∈N , the
following conditions are satisfied:

(1) mingens(ϕ(I)) = mingens(in≺φ(polAI));

(2) ϕ(I) is lex-closer than or equal to I.
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We simply say that ϕ is an S-route if N =M. The next proposition plays a crucial role in
the proof of Theorem 1.5.

Proposition 4.1.2. Let I be a Borel+P ideal of S which is not lex+P . For any finite set
N ⊆M with I ∈N , there exists an S-route ϕ of N such that ϕ(I) 6= I.

We will show that it is enough to prove Proposition 4.1.2 in a special case. We will first set
up notation, and then prove that special case in Lemma 4.1.3.

Fix a variable xj (here 1 6 j 6 n). Set

S[x̂j ] = k[xi | i 6= j],
P (x̂j) = ({xai

i | i 6= j})⊂ S[x̂j ].

We have that a monomial ideal L of S[x̂j ] is lex+P (x̂j) if Li is lex-segment+P (x̂j) for every
integer i> 0.

A monomial+P ideal I decomposes (as a k-vector space) into a direct sum I =
⊕

m mI〈m〉,
where the sum runs over all monomials m ∈ k[xj ], and each I〈m〉 is an ideal in the smaller
polynomial ring S[x̂j ] containing P (x̂j). If all the ideals I〈m〉 are lex+P (x̂j) ideals, we say that
I is xj-compressed+P .

We say that a monomial+P ideal I of S is compressed+P if I is xj-compressed+P for every
variable xj . Note that compressed+P ideals are Borel+P if n> 3.

Lemma 4.1.3. Suppose that n> 3. Let I be a compressed+P ideal of S which is not lex+P .
For any finite set N ⊆M with I ∈N , there exists an S-route ϕ of N such that ϕ(I) 6= I.

We first prove Proposition 4.1.2 by using Lemma 4.1.3.

Proof of Proposition 4.1.2. We use induction on n. If n6 2, then Borel+P ideals are lex+P .
Suppose that n> 3. Let I be a monomial+P ideal in S and N a finite subset ofM with I ∈N .
If I is compressed+P , then the statement follows from Lemma 4.1.3.

Suppose that I is not compressed+P . Then there exists a variable xj such that I is
not xj-compressed+P . For any monomial+P ideal M ∈N , consider the decomposition M =⊕

m mM〈m〉, where m ∈ k[xj ] is a monomial and M〈m〉 is a monomial+P (x̂j) ideal. Set N ′ =
{M〈m〉 |M ∈N , m ∈ k[xj ]}. Since M〈xtj〉 ⊆M〈x

t+1
j 〉 for t= 0, 1, 2, . . ., the set {M〈m〉 |m ∈

k[xj ]} is a finite set, and therefore N ′ is a finite set. We claim that, for any S[x̂j ]-route ϕ
of N ′, the map

M =
⊕
m

mM〈m〉 →
⊕
m

mϕ(M〈m〉)

is an S-route of N .

Set S̃[x̂j ] = S[x̂j ][yp,q | p 6= j]⊂ S̃. Then there exist A⊆ {x1, . . . , xn}\{xj}, a linear
transformation φ over the polynomial ring S̃[x̂j ] and a monomial order ≺ on S̃[x̂j ] such that

mingens(ϕ(M〈m〉)) = mingens(in≺φ(polAM〈m〉)),

where polAM〈m〉 is an ideal of S̃[x̂j ]. Consider the linear transformation φ̃ over S̃ defined by

φ̃(xi) = φ(xi) and φ̃(yi,q) = φ(yi,q) if i 6= j,

φ̃(xj) = xj .
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Let ≺′ be a monomial order on S̃ whose restriction to S̃[x̂j ] is the monomial order ≺. Then

in≺′ φ̃(polAM) =
(⊕

m

mϕ(M〈m〉)
)
S̃.

This fact shows that
⊕

m mϕ(M〈m〉) is a monomial+P ideal and the map satisfies property (1)
in Definition 4.1.1 of S-routes. Also, the map satisfies property (2) in Definition 4.1.1, since each
ϕ(M〈m〉) is lex-closer than or equal to M〈m〉.

Since each I〈m〉 is Borel+P (x̂j), the induction hypothesis guarantees the existence of an
S[x̂j ]-route ψ of N ′ such that I〈m〉 6= ψ(I〈m〉) for some monomial m ∈ k[xj ]. Then we have
I 6=

⊕
m mψ(I〈m〉), as desired. 2

Next we will prove Lemma 4.1.3.

If a2 =∞, then lex+P ideals are lex ideals in the usual sense. Indeed, in this special case,
Lemma 4.1.3 follows from the results in [Par96].

We will prove the case a2 <∞ in a series of lemmas and constructions. More precisely, we
will show that if a2 <∞, then, for any compressed+P ideal I in S, there exists an S-route such
that ϕ(I) 6= I (we do not need to assume that N is finite).

4.2 Routes on S

In the rest of this section except for § 4.6, we assume a2 <∞. We introduce routes which will be
used for the proof of Lemma 4.1.3.

Construction 4.2.1. Let ζ = cos(2π/a2) +
√
−1 sin(2π/a2). Thus, ζ is a fixed a2th primitive root

of unity.

Fix an integer 3 6 r 6 n.

Set

c= xr + · · ·+ xn.

Let φ be the linear transformation of S̃ defined by

φ(xj) =


x1 − ζc if j = 1,
x1 − ζxj if 2 6 j 6 r − 1,
xj if j > r

and

φ(yi,j) =



x1 − ζj+1c+ y1,j if i= 1,
x1 − ζ−jx2 + y2,j if i= 2 and 1 6 j 6 a2 − 2,
x1 − ζj+1xi + yi,j if 2< i6 r − 1 and 1 6 j 6 a2 − 2,
x1 − xi + yi,ai−1 if 2 6 i6 r − 1 and j = ai − 1,
xi + yi,j otherwise.

Set mY = ({yi,j | 1 6 i6 n, 1 6 j 6 t})⊂ S̃. We identify S and S̃/mY . For any monomial m=
xe11 · · · xen

n with ej 6 aj for each j, let Φ(m) be the image of φ(pol{x1,...,xr−1}(m)) in the quotient
S̃/mY ' S. Thus,

Φ(xe11 · · · x
en
n ) = Φ(xe11 ) · · · Φ(xen

n )
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and

Φ(xej

j ) =



e1∏
s=1

(x1 − ζsc) if j = 1,

(x1 − ζx2)

[
e2−1∏
s=1

(x1 − ζ−sx2)

]
if j = 2, 0< e2 < a2,

ej∏
s=1

(x1 − ζsxj) if 2< j 6 r − 1, ej < a2,

x
ej−a2+1
j

[
a2−1∏
s=1

(x1 − ζsxj)

]
if 2< j 6 r − 1, a2 6 ej < aj ,

x
ej−a2

j

[
a2∏
s=1

(x1 − ζsxj)

]
if 2 6 j 6 r − 1, ej = aj ,

x
ej

j otherwise.

(4.2.2)

Let I be a monomial+P ideal in S. We denote by Φ(I) the ideal of S generated by {Φ(u) | u ∈
mingens(I)}. Fix a monomial order ≺Y on S′ = k[yi,j | 1 6 i6 n, 1 6 j 6 t]. Let ≺B be the block
monomial order on S̃ defined as follows: for monomials uu′, vv′ ∈ S̃, where u, v ∈ S and u′, v′ ∈ S′,
one has uu′ �B vv′ if u�lex v, or u= v and u′ �Y v′. Since ≺lex is the degree-lexicographic order,
we have that

inlexΦ(I) = in≺Bφ(pol{x1,...,xr−1}I) ∩ S.
We will prove the following result.

Proposition 4.2.3. The map I → inlexΦ(I), constructed above, is an S-route.

First we will prove that inlexΦ(I) is a monomial+P ideal. Set

ρj =



a1∏
s=1

(x1 − ζsc) if j = 1,

x
aj−a2

j (ca2 − xa2
j ) if 2 6 j 6 r − 1,

x
aj

j if j > r.

Note that the initial monomial of ρj is xaj

j for all j.

Lemma 4.2.4. The ideal Φ(P ) is generated by the polynomials ρ1, . . . , ρn. In particular,
inlex Φ(P ) = P .

Proof. Clearly, ρj = Φ(xaj

j ) ∈ Φ(P ) for j = 1, r, r + 1, . . . , n. On the other hand, Φ(xaj

j ) =

x
aj−a2

j (xa2
1 − x

a2
j ) for 2 6 j 6 r − 1. Then the statement follows, since

ρ1

(
a2∏

s=a1+1

(x1 − ζsc)

)
= xa2

1 − c
a2 ∈ Φ(P ). 2

For a set F of P -free monomials of degree d, we consider the k-vector space

V(F) = spank{Φ(u) | u ∈ F} ⊕k Φ(P )d.

1352

https://doi.org/10.1112/S0010437X1100741X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X1100741X


Hilbert schemes and Betti numbers over Clements–Lindström rings

Lemma 4.2.5. Let I be a monomial+P ideal of S and let Fd be the set of P -free monomials of
degree d in I. Then V(Fd)⊆ Φ(I)d.

Proof. Since t is a sufficiently large integer, for any P -free monomial m ∈ Fd, one has that
pol{x1,...,xr−1}(m) ∈ pol{x1,...,xr−1}I, and therefore Φ(m) ∈ Φ(I). Similarly, since pol{x1,...,xr−1}P ⊆
pol{x1,...,xr−1}I, we have the inclusion Φ(P )d ⊆ Φ(I). 2

For a polynomial f(x1, . . . , xn) ∈ S and for a linear form θ ∈ S1, denote

sub(f ; xj = θ) = f(x1, . . . , xj−1, θ, xj+1, . . . , xn).

For an integer ` ∈N and a monomial m= xe11 · · · xen
n with ej 6 aj for j = 1, 2, . . . , n, define

Φ(m : ζ`) = Φ(xe11 : ζ`) · · · Φ(xen
n : ζ`)

and

Φ(xej

j : ζ`) =

{
Φ(xe11 ) if j = 1,
sub(Φ(xej

j ); x1 = ζ`c) if j > 2.

Note that Φ(xej : ζ`) = xej if j > r. The next lemma follows from (4.2.2).

Lemma 4.2.6. For every P -free monomial m ∈ S, we have that inlex(Φ(m : ζ`)) =m for any
` ∈N.

A set L of P -free monomials of degree d is said to be a P -free lex-segment if the k-vector
space spank L ⊕k Pd is lex-segment+P .

Lemma 4.2.7. Let L be a P -free lex-segment set of P -free monomials of degree d. Then, for
every monomial m= xe11 · · · xen

n ∈ L, the following properties hold.

(i) Φ(xe1+1
1 )Sd−e1−1 ⊆ V(L).

(ii) Φ(m : ζe1+1) ∈ V(L).

Proof.

Step 1. First we show that (i) implies (ii). Suppose that (i) holds. By definition,

sub(Φ(xe22 · · · x
en
n ); x1 = ζe1+1c) = Φ(xe22 · · · x

en
n : ζe1+1).

Recall that Φ(xe1+1
1 ) = Φ(xe11 )(x1 − ζe1+1c). Then

Φ(xe11 x
e2
2 · · · x

en
n )− Φ(xe11 x

e2
2 · · · x

en
n : ζe1+1) ∈ Φ(xe1+1

1 )Sd−e1−1.

Since Φ(xe11 · · · xen
n ) ∈ V(L), we have Φ(xe11 · · · xen

n : ζe1+1) ∈ V(L) by (i).

Step 2. We prove (i) by using induction on #L. If #L= 0, then there is nothing to prove.
Suppose that #L> 1. Let u= xe11 · · · xen

n be the lex-smallest element in L. Set L′ = L\{u}.
Since V(L)⊇ V(L′), by the induction hypothesis, it is enough to prove the statement for u. If
u= xd1, then there is nothing to prove. Thus, we may assume that v 6= xd1. Then it is enough to
show that for any monomial w ∈ Sd−e1−1, there exists a polynomial fw ∈ V(L) such that

Φ(xe1+1
1 ) divides fw and inlex

(
fw

Φ(xe1+1
1 )

)
=

inlex(fw)
xe1+1

1

= w. (4.2.8)

We will consider two cases.

Case 1. Suppose that xe1+1
1 w is not a P -free monomial. Then some xat

t divides xe1+1
1 w. The

following polynomials satisfy (4.2.8):
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Φ(xa1
1 )(xe1+1

1 w/xa1
1 ) ∈ Φ(P )d ⊆ V(L), if xa1

1 divides xe1+1
1 w;

Φ(xe1+1
1 )ρt(w/xat

t ) ∈ Φ(P )d ⊆ V(L), if xat
t , where t 6= 1, divides xe1+1

1 w.

Case 2. Suppose that xe1+1
1 w is a P -free monomial. Since xe1+1

1 w �lex u, we have xe1+1
1 w ∈ L′.

Then, by Step 1 (above) and Lemma 4.2.6, it follows that

Φ(xe1+1
1 w : ζe1+2) ∈ V(L′)⊆ V(L)

satisfies (4.2.8). This completes the proof. 2

Corollary 4.2.9. Let L be a P -free lex-segment set of P -free monomials of degree d and let
f1, . . . , ft be a k-basis of Φ(P )d. Then:

(i) inlex V(L) = spank L ⊕k Pd;
(ii) {Φ(u) | u ∈ L} ∪ {f1, . . . , ft} is a set of k-linearly independent polynomials.

Proof. By the construction of V(L) and Lemma 4.2.4, we have that

dimkV(L) 6 #L+ dimkΦ(P )d = #L+ dimkPd,

and the equality holds if and only if (ii) holds. Hence, it is enough to show that inlexV(L)⊇
spank L ⊕k Pd. We have the inclusion inlexV(L)⊇ Pd by Lemma 4.2.4. On the other hand, for
any monomial m= xe11 · · · xen

n ∈ L, it follows from Lemmas 4.2.6 and 4.2.7(ii) that inlexΦ(m :
ζe1+1) =m ∈ inlex V(L). 2

Corollary 4.2.10. Let F be a set of P -free monomials of degree d. Then the following
properties hold:

(i) dimkV(F) = #F + dimk Pd;

(ii) the set of P -free monomials in inlex V(F) is lex-closer than or equal to F .

Proof. (i) Let L be a P -free lex-segment set of P -free monomials of degree d with L ⊇ F ,
and let f1, . . . , ft be a k-basis of Φ(P )d. Corollary 4.2.9(ii) implies that the set {Φ(u) | u ∈
F} ∪ {f1, . . . , ft} is a set of k-linearly independent polynomials. By the construction of V(F),
this fact implies dimkV(F) = #F + dimkPd.

(ii) We use induction on #F . If #F = 0, then there is nothing to prove. Suppose that
#F > 1. Let u be the lex-smallest P -free monomial in F , and let F ′ = F\{u}. Note that, by (i)
and Lemma 4.2.4, the number of P -free monomials in inlex V(F) is equal to #F . Consider the
monomial w ∈ inlex V(F)\inlexV(F ′). It is enough to show that w �lex u. Let

L= {v ∈ Sd | v is a P -free monomial with v �lex u}.

Then w ∈ inlexV(F)⊆ inlex V(L) and, by Corollary 4.2.9, the set of all P -free monomials in
inlexV(L) is L. Since w is a P -free monomial, we have that w �lex u, as desired. 2

Lemma 4.2.11. Let I be a monomial+P ideal of S and let Fd be the set of P -free monomials
in I of degree d. Set J̃ = in≺Bφ(pol{x1,...,xr−1}I) and J = J̃ ∩ S.

(i) Jd = inlexV(Fd).
(ii) The ideals I and J have the same Hilbert function.

(iii) The ideals J̃ and J have the same generators.
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Proof. Since V(Fd)⊆ Φ(I)d and J = inlexΦ(I), it follows from Corollary 4.2.10 that

Hilb(J)(d) > dimkV(Fd) = #Fd + dimkPd = Hilb(I)(d) for all d.

On the other hand, since J̃ ⊇ JS̃, the above inequality implies

Hilb(J̃)(d) > Hilb(JS̃)(d) > Hilb(IS̃)(d) = Hilb(pol{x1,...,xr−1}I)(d) = Hilb(J̃)(d)

for all d> 0. Thus, all of the above Hilbert functions are the same. In particular, Hilb(J̃) =
Hilb(JS̃) and Hilb(J) = Hilb(I). Since J̃ ⊇ JS̃, this proves (ii) and (iii).

Finally, since inlexV(Fd)⊆ Jd and since

dimk(inlex(V(Fd))) = #Fd + dimkPd = dimkId = dimkJd,

it follows that inlex V(Fd) = Jd. 2

We are ready to show Proposition 4.2.3.

Proof of Proposition 4.2.3. It follows from Lemmas 4.2.4 and 4.2.5 that inlexΦ(I) contains P .
Also, since

inlexΦ(I) = in≺Bφ(pol{x1,...,xr−1}I) ∩ S,
properties (1) and (2) in 4.1.1 follow from Corollary 4.2.10(ii) and Lemma 4.2.11(iii). 2

4.3 Proof of Lemma 4.1.3
First we remark the following obvious fact.

Lemma 4.3.1. Let u= xc11 · · · xcnn and v = xe11 · · · xen
n be P -free monomials of the same degree

with u�lex v and v ∈ I. If cj = ej for some j, then u ∈ I.

We will prove Lemma 4.1.3 by using the route defined in Construction 4.2.1. Let I be a
compressed+P ideal which is not lex+P and let q be the smallest integer d such that Id is
not lex-segment+P . Let g be the lex-greatest gap of Iq and α1 = max{j ∈N : xj1 divides g}. Let
g̃ = xα1

1 · · · xαn
n be the lex-smallest P -free monomial of degree q which is divisible by xα1

1 and
b̃= xβ1

1 · · · x
βn
n the lex-greatest P -free monomial in Iq which is lex-smaller than g.

Lemma 4.3.2. We have β1 = α1 − 1 and g̃ 6∈ I.

Proof. Since b̃≺lex g, we have the inequality β1 6 α1. However, β1 6= α1 by Lemma 4.3.1. Then
β1 = α1 − 1, since I is Borel+P . Furthermore, g̃ 6∈ I follows from Lemma 4.3.1. 2

Let Fq be the set of all P -free monomials in Iq. Set

L̃= {u ∈ Sq | u is a P -free monomial with u�lex g̃}

and

G = Fq ∪ L̃.

Lemma 4.3.3. If g̃ ∈ inlexV(G), then inlex V(Fq) 6= Iq.

Proof. Let t= #{u ∈ Fq | u is not divisible by xα1
1 }. By the assumption and Corollary 4.2.9,

inlex V(G) contains all monomials of degree q which are divisible by xα1
1 . Hence,

#{u ∈ inlexV(G) | u is not divisible by xα1
1 }= t− 1.
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As V(Fq)⊆ V(G), we have that

#{u ∈ inlexV(Fq) | u is not divisible by xα1
1 }6 t− 1.

Hence, inlexV(Fq) 6= Iq. 2

Recall that what we need to prove is that there exists an r for which inlexΦ(I) 6= I, where r is
the integer given in Construction 4.2.1. Also, inlexΦ(I)q is equal to inlexV(Fq) by Lemma 4.2.11(i).
By Lemma 4.3.3, it follows that the next lemma completes the proof of Lemma 4.1.3.

Lemma 4.3.4. There exists an 2 6 r 6 n so that g̃ ∈ inlex V(G).

The proof of Lemma 4.3.4 consists of considering two cases: when n= 3 and when n > 3.
These cases are considered in §§ 4.4 and 4.5, respectively.

4.4 Proof of Lemma 4.3.4 when n = 3
Throughout this subsection, we suppose that n= 3 and r = 3. We will show that

g̃ ∈ inlex V(G).

Let g̃ = xα1
1 xα2

2 xα3
3 and b̃= xα1−1

1 xβ2
2 x

β3
3 . Note that g̃ 6∈ G, b̃ ∈ G, α2 < β2, α3 > β3 and c= x3.

Since xα1
1 xα2+1

2 xα3−1
3 ∈ L̃ ⊆ G, by Lemma 4.2.7(i), we have

Φ(xα1+1
1 )Sq−α1−1 ⊆ V(G). (4.4.1)

For t= 0, 1, . . . , β2 − 2, let

ft = Φ(xα1
1 )xβ3

3 (x1 − ζx2)

[
t∏

s=1

(x1 − ζ−sx2)

][
β2−2∏
s=t+1

(ζα1+1x3 − ζ−sx2)

]
.

Lemma 4.4.2. We have ft ∈ V(G) for t= 0, 1, . . . , β2 − 2.

Proof. Since I is Borel+P , the monomial xα1
1 xβ2−1

2 xβ3
3 ∈ L̃. Then, by Lemma 4.2.7(ii), we have

Φ(xα1
1 xβ2−1

2 xβ3
3 : ζα1+1) ∈ V(G). On the other hand, for t= 0, 1, 2 . . . , β2 − 2, one has

sub

(
ft

Φ(xα1
1 )

; x1 = ζα1+1x3

)
= Φ(xβ2−1

2 xβ3
3 : ζα1+1).

Then

ft − Φ(xα1
1 xβ2−1

2 xβ3
3 : ζα1+1) ∈ Φ(xα1

1 )(x1 − ζα1+1x3)Sq−α1−1 = Φ(xα1+1
1 )Sq−α1−1.

Thus, by (4.4.1), we have ft ∈ V(G) for t= 0, 1, . . . , β2 − 2. 2

For t= 0, 1, . . . , β2 − 1, set

ht = Φ(xα1−1
1 )xβ3

3 (x1 − ζx2)

[
t∏

s=1

(x1 − ζ−sx2)

][
β2−2∏
s=t

(ζα1+1x3 − ζ−sx2)

]
.

Lemma 4.4.3. We have ht ∈ V(G) for t= 0, 1, . . . , β2 − 1.

Proof. For t= 1, 2, . . . , β2 − 1, one has

ht − ft−1 = Φ(xα1−1
1 )xβ3

3 (x1 − ζx2)

[
t−1∏
s=1

(x1 − ζ−sx2)

][
β2−2∏
s=t

(ζα1+1x3 − ζ−sx2)

]
× (x1 − ζ−tx2 − x1 + ζα1x3)
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= Φ(xα1−1
1 )xβ3

3 (x1 − ζx2)

[
t−1∏
s=1

(x1 − ζ−sx2)

][
β2−2∏
s=t

(ζα1+1x3 − ζ−sx2)

]
× ζ−1(ζα1+1x3 − ζ−t+1x2)

= ζ−1ht−1.

Since each ft is in V(G) and hβ2−1 = Φ(b̃) ∈ V(G), the above equality implies that ht ∈ V(G) for
t= 0, 1, . . . , β2 − 1. 2

Now, since

(x1 − ζx2) = (x1 − ζα1x3) + (ζα1x3 − ζx2),

it follows that h0 ∈ V(G) can be written in the form

h0 = Φ(xα1
1 )xβ3

3

[
β2−2∏
s=0

(ζα1+1x3 − ζ−sx2)

]
+ f ′, (4.4.4)

where inlex(f ′) = xα1−1
1 xβ2

2 x
β3
3 ≺lex g̃. Let

h̃t = Φ(xα1
1 )xβ3+t+1

3

[
β2−2−t∏
s=1

(ζα1+1x3 − ζ−sx2)

]
for t= 0, 1, . . . , α3 − β3 − 1.

Since inlex(h̃α3−β3−1) = g̃, the next lemma completes the proof of Lemma 4.3.4.

Lemma 4.4.5. There exists a number δ ∈ k\{0} such that δh̃α3−β3−1 + f ′ ∈ V(G).

Proof. For t= 0, 1, . . . , α3 − β3 − 1, we have xα1
1 xβ2−1−t

2 xβ3+t
3 �lex g̃, and therefore xα1

1 xβ2−1−t
2

xβ3+t
3 ∈ L̃. Thus, by Lemma 4.2.7(ii), we get Φ(xα1

1 xβ2−1−t
2 xβ3+t

3 : ζα1+1) ∈ V(G) for t=
0, 1, . . . , α3 − β3 − 1. Then we have

ζα1(ζ − 1)h̃0 + f ′ ∈ V(G)

by using 4.4.4 and the following computation:

Φ(xα1
1 )xβ3

3

[
β2−2∏
s=0

(ζα1+1x3 − ζ−sx2)

]
− ζ−1Φ(xα1

1 xβ2−1
2 xβ3

3 : ζα1+1)

= Φ(xα1
1 )xβ3

3

[
β2−2∏
s=1

(ζα1+1x3 − ζ−sx2)

]
{ζα1+1x3 − x2 − ζ−1(ζα1+1x3 − ζx2)}

= ζα1(ζ − 1)h̃0.

If α3 − β3 − 1 = 0, then this completes the proof.
If α3 − β3 − 1> 0, then the statement follows from the next computation. For

t= 0, 1, . . . , α3 − β3 − 2, we get

h̃t − ζ−β2+1+tΦ3(xα1
1 x

β2−1−(t+1)
2 xβ3+t+1

3 : ζα1+1)

= Φ(xα1
1 )xβ3+t+1

3

[
β2−2−(t+1)∏

s=1

(ζα1+1x3 − ζ−sx2)

]
× {ζα1+1x3 − ζ−β2+2+tx2 − ζ−β2+1+t(ζα1+1x3 − ζx2)}

= ζα1+1(1− ζt+1−β2)h̃t+1.
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Note that ζt+1−β2 6= 1 since 1− β2 6 t+ 1− β2 6 α3 − β3 − β2 − 1 =−α2 − 2 and since −a2 <
1− β2 6−α2 − 2< 0. 2

4.5 Proof of Lemma 4.3.4 when n > 4
In this subsection, we consider the case n> 4.

By the definition of g̃ and b̃, the monomials g̃ and b̃ can be written in the form

g̃ = xα1
1 x

αp
p x

ap+1−1
p+1 · · · xan−1

n with 2 6 p6 n and αp > 0

and

b̃= xα1−1
1 xa2−1

2 · · · xa`−1−1
`−1 xβ`

` with 2 6 `6 n and β` < a` − 1.

For convenience, we will write b̃= xα1−1
1 xβ2

2 · · · x
βn
n .

Lemma 4.5.1. (i) p> 3.

(ii) The monomial b̃ satisfies one of the following conditions:

(1) b̃= xα1−1
1 xβ2

2 · · · x
βp
p and 0 6 βp < αp;

(2) b̃= xα1−1
1 xβ2

2 · · · x
βp
p x

βp+1

p+1 , βp > αp and 0 6 βp+1 < ap+1 − 1.

Proof. Statement (ii) easily follows from Lemma 4.3.1. Suppose that p= 2. Then g̃ =
xα1

1 xα2
2 xa3−1

3 · · · xan−1
n . Since n> 4, we get degg̃ > α1 − 1 + a2 − 1 + a3 − 1. Therefore, b̃ is

divisible by xα1−1
1 xa2−1

2 xa3−1
3 . In particular, β3 = a3 − 1. By Lemma 4.3.1, it follows that g̃ ∈ I,

which is a contradiction. 2

Let

r =

{
p if b̃ is a monomial of the form (1),
p+ 1 if b̃ is a monomial of the form (2).

Our goal is to prove g̃ ∈ inlexV(G).

Lemma 4.5.2. (i) Φ(xα1
1 x

αp+1
p : ζα1+1)Sq−α1−αp−1 ⊆ V(G) and Φ(xα1

1 xj : ζα1+1)Sq−α1−1 ⊆ V(G)
for j = 1, 2, . . . , p− 1.

(ii) Φ(xα1
1 x2)Sq−α1−1 ⊆ V(G).

Proof. (i) Let uj = xα1
1 xj for j = 1, 2, . . . , p− 1 and up = xα1

1 x
αp+1
p . Let dj = deguj . Since

(g̃x2/xn) ∈ L̃ and L̃ is P -free lex-segment, it follows from Lemma 4.2.7(i) that

Φ(u1 : ζα1+1)Sq−α1−1 = Φ(xα1+1
1 )Sq−α1−1 ⊆ V(G).

Fix a 2 6 j 6 p. In the same way as in the proof of Lemma 4.2.7, it is enough to show that, for
every monomial w ∈ Sq−dj

, there exists a polynomial fw ∈ V(G) such that

Φ(uj : ζα1+1) divides fw and
inlex(fw)

uj
= w. (4.5.3)

We will consider two cases.

Case 1. Suppose that ujw is not a P -free monomial. Then one of the following polynomials
satisfies (4.5.3):

(a) ρ1Φ(uj/xα1
1 : ζα1+1)(wxα1

1 /xa1
1 ) ∈ Φ(P )q, where xa1

1 divides ujw;

(b) Φ(xα1
1 )ρj(ujw/xα1

1 x
aj

j ) ∈ Φ(P )q, where xaj

j divides ujw;
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(c) ρtΦ(uj : ζα1+1)(w/xat
t ) ∈ Φ(P )q, where xat

t divides ujw and t 6= 1, j.

Note that Φ(uj : ζα1+1) divides the polynomial (b), since

ρj = x
aj−a2

j {(ζα1+1c)a2 − xaj

j }= x
aj−a2

j

[
a2∏
s=1

(ζα1+1c− ζsxj)

]
.

Case 2. Suppose that ujw = xe11 · · · xen
n is a P -free monomial. If e1 > α1, then since (i) holds for

j = 1, we get that

Φ(ujx1 : ζα1+1)

(
w

x1

)
∈ Φ(xα1+1

1 )Sq−α1−1 ⊆ V(G)

satisfies (4.5.3). Suppose e1 = α1. Then ujw ∈ L̃, since ujw �lex g̃. Then it follows from
Lemmas 4.2.6 and 4.2.7 that Φ(ujw : ζα1+1) ∈ V(G) satisfies (4.5.3). We have proved (i).

(ii) Since p> 3, we have the inclusions Φ(xα1
1 x2 : ζα1+1)Sq−α1−1 ⊆ V(G) and Φ(xα1+1

1 )
Sq−α1−1 ⊆ V(G). The statement follows since Φ(xα1

1 x2) = Φ(xα1
1 x2 : ζα1+1) + Φ(xα1+1

1 ). 2

Lemma 4.5.4. There exists a polynomial f ′ such that inlex(f ′) = b̃ and

Φ(xα1
1 )Φ(xβp

p · · · xβn
n : ζα1)cβ2+···+βp−1−1 + f ′ ∈ V(G).

Proof. Let

Γ =
Φ(xβ2

2 · · · x
βn
n : ζα1)

(ζα1c− x2)
.

Since

sub

(
Φ(b̃)

Φ(xα1−1
1 x2)

; x1 = ζα1c

)
= Γ,

it follows that

Φ(b̃)− Φ(xα1−1
1 x2)Γ ∈ Φ(xα1−1

1 x2)(x1 − ζα1c)Sq−α1−1 = Φ(xα1
1 x2)Sq−α1−1.

Then Φ(xα1−1
1 x2)Γ ∈ V(G) by Lemma 4.5.2(ii). As

Φ(xα1−1
1 x2) = Φ(xα1

1 ) + Φ(xα1−1
1 x2 : ζα1),

we have
Φ(xα1

1 )Γ + Φ(xα1−1
1 x2 : ζα1)Γ ∈ V(G). (4.5.5)

Let
ft = Φ(xα1

1 )Φ(xβt
t · · · xβn

n : ζα1)cβ2+···+βt−1−1 for t= 3, 4, . . . , p.
Note that

Φ(xα1
1 xj : ζα1+1) = ζ(ζα1c− xj)Φ(xα1

1 ) for j = 2, . . . , p− 1.
By (4.2.2), there exists a number δ2 ∈ k\{0} such that

sub(Γ; x2 = ζα1c) = δ2c
β2−1Φ(xβ3

3 · · · x
βn
n : ζα1).

Then, by Lemma 4.5.2(i), we obtain

Φ(xα1
1 )Γ− δ2f3 ∈ Φ(xα1

1 x2 : ζα1+1)Sq−α1−1 ⊆ V(G). (4.5.6)

Similarly, for t= 3, 4, . . . , p− 1, it follows from (4.2.2) that there exists a number δt ∈ k\{0}
such that

sub(Φ(xβt
t · · · xβn

n : ζα1); xt = ζα1c) = δtc
βtΦ(xβt+1

t+1 · · · x
βn
n : ζα1).
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Therefore,

ft − δtft+1 ∈ Φ(xα1
1 xt : ζα1+1)Sq−α1−1 ⊆ V(G) for t= 3, 4, . . . , p− 1. (4.5.7)

Now (4.5.5), (4.5.6) and (4.5.7) imply that

(δ2 · · · δp−1)fp + Φ(xα1−1
1 x2 : ζα1)Γ ∈ V(G).

The lemma follows, since (δ2 · · · δp−1) ∈ k\{0} and

inlex(Φ(xα1−1
1 x2 : ζα1)Γ) = xα1−1

1 xβ2
2 · · · x

βn
n = b̃. 2

Lemma 4.5.8. There exists a polynomial h such that inlex(h)≺lex g̃ and

Φ(xα1
1 x

αr−1

r−1 : ζα1+1)xβr
r c

q−α1−αr−1−βr + h ∈ V(G),

where αr−1 = 0 if r = p.

Proof. Recall that, for all `, e ∈N, Φ(xej : ζ`) = xej if j > r. If b̃ is a monomial of the form (1), then
the statement is exactly Lemma 4.5.4. Suppose b̃ is a monomial of the form (2). By Lemma 4.5.4,
there exists a polynomial f ′ with inlex(f ′) = b̃ such that

Φ(xα1
1 )Φ(xβp

p : ζα1)xβp+1

p+1 c
q−α1−βp−βp+1 + f ′ ∈ V(G). (4.5.9)

Note that 0< αp < βp. Let

τ =
Φ(xαp+1

p : ζα1+1)
(ζα1+1c− ζxp)

.

We will need the following claim.

Claim 4.5.10. (i) τ divides Φ(xβp
p : ζα1).

(ii) There exist a number δ ∈ k\{0} and f ′′ ∈ S such that inlex(f ′′) = x
αp−1
p xp+1 and

τ = δΦ(xαp
p : ζα1+1) + f ′′.

We will prove the above claim. Using

ζα1+1c− ζj+1xp = ζ(ζα1c− ζjxp),

statement (i) follows from a straightforward computation. We will show (ii). Let

τ ′ =
Φ(xαp

p : ζα1+1)
(ζα1+1c− ζxp)

.

Then τ can be written either in the form τ = (ζα1+1c− ζαp+1xp)τ ′ or in the form τ = xpτ
′. Recall

that r = p+ 1. In the former case,

τ = ζαp{(ζα1+1c− ζxp)− ζα1+1c+ ζα1−αp+1c}τ ′

= ζαpΦ(xαp
p : ζα1+1) + ζα1+1(1− ζαp)cτ ′

satisfies the desired conditions. In the latter case,

τ =−ζ−1{(ζα1+1c− ζxp)− ζα1+1c}τ ′ =−ζ−1Φ(xαp
p : ζα1+1) + ζα1cτ ′

satisfies the desired conditions. The proof of the claim is complete.
It follows from (4.2.2) that there exists a number γ ∈ k\{0} such that

sub

(
Φ(xβp

p : ζα1)
τ

; xp = ζα1c

)
= γcβp−αp .
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Then, by Claim 4.5.10(i), the polynomial Φ(xα1
1 ){Φ(xβp

p : ζα1)− γτcβp−αp} is divisible by

Φ(xα1
1 )τ(xp − ζα1c) =−ζ−1Φ(xα1

1 x
αp+1
p : ζα1+1).

By Lemma 4.5.2(i), we obtain

Φ(xα1
1 )xβp+1

p+1 c
q−α1−βp−βp+1{Φ(xβp

p : ζα1)− γτcβp−αp} ∈ V(G).

Hence, by (4.5.9),

γΦ(xα1
1 )xβp+1

p+1 c
q−α1−αp−βp+1τ + f ′ ∈ V(G).

Furthermore, by Claim 4.5.10(ii), there exists a f ′′ with inlex(f ′′) = x
αp−1
p xp+1 such that

γΦ(xα1
1 x

αp
p : ζα1+1)xβp+1

p+1 c
q−α1−αp−βp+1 + f ′ + γΦ(xα1

1 )xβp+1
p+1 cq−α1−αp−βp+1f ′′ (4.5.11)

is contained in V(G). Since r = p+ 1 and

inlex(Φ(xα1
1 )xβp+1

p+1 c
q−α1−αp−βp+1f ′′) = xα1

1 x
αp−1
p x

q−α1−αp+1
p+1 ≺lex g̃,

the polynomial (4.5.11) satisfies the desired conditions. 2

Lemma 4.5.12. For every monomial w ∈ k[xr, . . . , xn] of degree q − α1 − αr−1 with
xα1

1 x
αr−1

r−1 w 6= g̃, we have that

Φ(xα1
1 x

αr−1

r−1 : ζα1+1)w ∈ V(G).

Proof. If xα1
1 x

αr−1

r−1 w is not a P -free monomial, then some xat
t with t> r divides w. Then

Φ(xα1
1 x

αr−1

r−1 : ζα1+1)w ∈ V(G) is clear, since xat
t ∈ Φ(P ) if t> r. Suppose that xα1

1 x
αr−1

r−1 w is a
P -free monomial. Then xα1

1 x
αr−1

r−1 w ∈ L̃, since it is lex-greater than g̃. Thus, by Lemma 4.2.7(ii),
we have

Φ(xα1
1 x

αr−1

r−1 w : ζα1+1) = Φ(xα1
1 x

αr−1

r−1 : ζα1+1)w ∈ V(L̃)⊆ V(G),
as desired. 2

Now we are in the position to prove Lemma 4.3.4. Recall that c= xr + · · ·+ xn. By
Lemma 4.5.8, there exists a polynomial h such that inlex(h)≺lex g̃ and

Φ(xα1
1 x

αr−1

r−1 : ζα1+1)xβr
r c

q−α1−αr−1−βr + h ∈ V(G).

It follows from Lemma 4.5.1(ii) and the definition of r that the monomial xα1
1 x

αr−1

r−1 x
βr
r divides g̃

and (g̃/xα1
1 x

αr−1

r−1 ) ∈ k[xr, . . . , xn]. This fact implies that xβr
r cq−α1−αr−1−βr can be written in the

form

xβr
r c

q−α1−αr−1−βr = xβr
r (xr + · · ·+ xn)q−α1−αr−1−βr = δ

(
g̃

xα1
1 x

αr−1

r−1

)
+ h̃,

where δ ∈ k\{0} and where h̃ is a k-linear combination of monomials of k[xr, . . . , xn] which is
not (g̃/xα1

1 x
αr−1

r−1 ). Furthermore, since Lemma 4.5.12 implies that

Φ(xα1
1 x

αr−1

r−1 : ζα1+1)h̃ ∈ V(G),

it follows that

Φ(xα1
1 x

αr−1

r−1 : ζα1−1)

(
g̃

xα1
1 x

αr−1

r−1

)
+ h ∈ V(G).

The initial monomial of the above polynomial is g̃. 2

1361

https://doi.org/10.1112/S0010437X1100741X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X1100741X


S. Murai and I. Peeva

4.6 Proof of Theorem 1.5
First we recall the definition of consecutive cancellation, which we will use. Given a sequence of
numbers {ci,j}, we obtain a new sequence by a cancellation as follows: fix a j, and choose i and i′

so that one of the numbers is odd and the other is even; then replace ci,j by ci,j − 1, and replace
ci′,j by ci′,j − 1. We have a consecutive cancellation when i′ = i+ 1. The term ‘consecutive’ is
justified by the fact that we consider cancellations in Betti numbers of consecutive homological
degrees. The following result was proved in [Pee04]: if C is a graded ideal in S and L is the lex
ideal with the same Hilbert function, then the graded Betti numbers bSi,j(S/C) can be obtained
from the graded Betti numbers bSi,j(S/L) by a sequence of consecutive cancellations. In that
case, a consecutive cancellation comes from removing a trivial short exact complex from a non-
minimal free resolution; so, the sequence of consecutive cancellations in Betti numbers comes
from minimizing a non-minimal free resolution. In general (for example, in the situation of
Theorem 4.6.5 below), it has not been studied how consecutive cancellations in Betti numbers
affect the differential.

In order to prove Theorem 1.5, we need the following lemmas; the former lemma is well
known.

Lemma 4.6.1. Let I be a monomial+P ideal in S and A⊆ {x1, . . . , xn}. Let I ′ = polAI and
P ′ = polAP . We have equalities of Betti numbers

b
S̃/P ′

ij (S̃/I ′) = b
S/P
ij (S/I) for all i, j > 0.

Lemma 4.6.2 [GHP08, Proposition 2.6]. Let A be a homogeneous ideal in S and let B ⊇A be
another homogeneous ideal in S. Let ≺ be a monomial order in S. The graded Betti numbers of
S/in≺(B) over the quotient ring S/in≺(A) are greater than or equal to those of S/B over the ring
S/A. Furthermore, the graded Betti numbers of S/B can be obtained from those of S/in≺(B)
by a sequence of consecutive cancellations.

Applying the above two lemmas, we obtain the following result.

Lemma 4.6.3. Let I and J be monomial+P ideals of S. Suppose that there exist an A⊆
{x1, . . . , xn}, a linear transformation φ over S̃ and a monomial order ≺ on S̃ such that
mingens(J) = mingens(in≺φ(polAI)) and in≺φ(polAP ) = PS̃. Then

b
S/P
ij (S/I) 6 b

S/P
ij (S/J) for all i, j > 0.

Furthermore, the Betti numbers b
S/P
ij (S/I) can be obtained from the Betti numbers b

S/P
ij (S/J)

by a sequence of consecutive cancellations.

Proof. By Lemma 4.6.1, we get

b
S/P
ij (S/I) = b

S̃/polAP
ij (S̃/polAI) = b

S̃/φ(polAP )
ij (S̃/φ(polAI))

for all i, j > 0. Then we apply Lemma 4.6.2 and get

b
S̃/φ(polAP )
ij (S̃/φ(polAI)) 6 b

S̃/in≺φ(polAP )
ij (S̃/in≺ φ(polAI))

= b
S̃/(PS̃)
ij (S̃/(JS̃))

= b
S/P
ij (S/J)

for all i, j > 0. Also, the second statement follows from Lemma 4.6.2, since the inequality only
appears in the first line of the above computation. 2
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Lemma 4.6.4. Let I be a monomial+P ideal of S which is not lex+P . Then there exists a
monomial+P ideal J of S which has the following properties:

(i) J has the same Hilbert function as I;

(ii) J is lex-closer than I;

(iii) b
S/P
ij (S/I) 6 b

S/P
ij (S/J) for all i, j > 0;

(iv) the Betti numbers b
S/P
ij (S/I) can be obtained from the Betti numbers b

S/P
ij (S/J) by a

sequence of consecutive cancellations.

Proof. If I is not Borel+P , apply Lemma 4.6.3 to the construction in [MM11, § 3]. On the other
hand, if I is Borel+P , then the statement follows from Proposition 4.1.2 and Lemma 4.6.3. 2

We are ready to prove Theorem 1.5 and its refined version in Theorem 4.6.5.

Theorem 4.6.5. If V is a graded ideal in W and L is the lex ideal with the same Hilbert
function, then the graded Betti numbers bWi,j(W/V ) can be obtained from the graded Betti

numbers bWi,j(W/L) by a sequence of consecutive cancellations.

Proof. Let I be a graded ideal in S and I ⊇ P . Let L be the lex+P ideal having the same Hilbert
function as I. It is enough to compare the Betti numbers bS/Pij (S/I) and bS/Pij (S/L). Clearly, the
initial ideal of I (with respect to any monomial order) contains P . Thus, by Lemma 4.6.2, we
may assume that I is a monomial ideal.

Iteration step. If the monomial ideal I is not lex+P , by Lemma 4.6.4, there exists a monomial+P
ideal J satisfying conditions (i), (ii), (iii) and (iv) of Lemma 4.6.4. Replace I by J .

Apply repeatedly the iteration step above. At each step, we obtain a monomial+P ideal
which is lex-closer than the original monomial ideal. Since there exist only finitely many different
monomial+P ideals with a fixed Hilbert function, it follows that the process terminates after
finitely many steps. Therefore, the last ideal is lex+P . 2
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IV: Les schémas de Hilbert, Semin. Bourbaki 13 (1960–61), #221.

1363

https://doi.org/10.1112/S0010437X1100741X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X1100741X


S. Murai and I. Peeva

Har66 R. Hartshorne, Connectedness of the Hilbert scheme, Publ. Math. Inst. Hautes Études Sci. 29
(1966), 5–48.

Mac27 F. Macaulay, Some properties of enumeration in the theory of modular systems, Proc. Lond.
Math. Soc. 26 (1927), 531–555.

MM11 J. Mermin and S. Murai, The lex-plus-powers conjecture holds for pure powers, Adv. Math.
226 (2011), 3511–3539.

Par96 K. Pardue, Deformation classes of graded modules and maximal Betti numbers, Illinois J.
Math. 40 (1996), 564–585.

Pee04 I. Peeva, Consecutive cancellations in Betti numbers, Proc. Amer. Math. Soc. 132 (2004),
3503–3507.

PS05 I. Peeva and M. Stillman, Connectedness of Hilbert schemes, J. Algebraic Geom. 14 (2005),
193–211.

Satoshi Murai murai@yamaguchi-u.ac.jp
Department of Mathematical Science, Faculty of Science, Yamaguchi University,
1677-1 Yoshida, Yamaguchi 753-8512, Japan

Irena Peeva
Department of Mathematics, Cornell University, Ithaca, NY 14853, USA

1364

https://doi.org/10.1112/S0010437X1100741X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X1100741X

	1 Introduction
	2 Preliminaries
	3 Connectedness of the Hilbert scheme
	3.1 Reduction to the Borel+P case
	3.2 Filling gaps in a Borel+P ideal
	3.3 The first gap in B
	3.4 A binomial+P ideal
	3.5 Gröbner bases of N
	3.6 Proof of Proposition 3.2.2
	3.7 Proof of Theorem 1.3

	4 Maximal Betti numbers
	4.1 Preliminaries
	4.2 Routes on S
	4.3 Proof of Lemma 4.1.3
	4.4 Proof of Lemma 4.3.4 when n=3
	4.5 Proof of Lemma 4.3.4 when n=> 4
	4.6 Proof of Theorem 1.5

	Acknowledgements
	References



