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1. Introduction

Let w(z) be a non-decreasing function defined in the interval [a, b].
We extend the definition to all # by taking w(x) = w(a) for x < a and
w{x) = w(b) for x > b. R. L. Jeffery [2] has denoted by # the class of func-
tions F(x) defined as follows:

If S denotes the set of points of [a, b] at which w(x) is continuous, then
F(z) is defined, and continuous over S, at all points of S. At any point of
discontinuity z, of w(x), it is supposed that F(z) tends to a limit as = tends.
to z,+ and to xy,— over the points of S. These limits will be denoted by
F(zg+) and F(z,—). Also for z < a, it is assumed that F(z) = F(a--) and
for x > b, F(z) = F(b—). F(x) may or may not be defined at points of
discontinuity of w(x).

Jeffery also has introduced the following

Definstion. A function F(z) defined on [a, b] and in # is absolutely
continuous relative to @, AC—w, if for ¢ > 0 there exists § > 0 such that
for any set of non-overlapping intervals (z,, ;) on [a, b] with S{w(z;+)
—w(z,—)} < é the relation Y |F(x;+)—F(z,—)| < ¢ is satisfied.

We observe that the above condition for a function to be AC—w can
be broken up into two parts which, when taken together, become equivalent
to that of AC—w.

Letasa, <z Sxa<2;, <--- <2z, <, <b be any subdivision
of [a, b]. Following Kennedy [3], we say that the intervals (x,, z;), (%, %3).
-+, (z,, z,) form an elementary system I in [a, 5] which we denote by I:
(%, 2),1=1,2,8,---,n Let

of = S {FEA)~Fe-)} 1= 3 @)~

Definition. A function F (z) defined on [a, b] and belonging to the class
% is said to be absolutely continuous above relative to w, AC—w above,
if for £ > 0 there exists § > 0 such that for any elementary system I in
fa, 8] with I, < é the relation ¢ < ¢ holds. It is said to be absolutely
continuous below relative to w, AC—w below, if the relation ol > —e
holds whenever I, < 6.

380

https://doi.org/10.1017/51446788700027804 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700027804

i2) On functions of bounded w-variation, II 381

This definition is analogous to the definition in [3] for functions
absolutely continuous above and below. Assuming that w(x) is not constant
in [a, b], let

w@) =y <y <Y< <Y, = o)

be any subdivision of [w(a), w(b)] where y, € w(E), E = [a, b]. For any y,
there is an 2, € E for which y, = w(2,). If for any y, there exist more than
one z; such that w(z,) = y,, we shall take any one x,. We say that the points
Zy, &y, T, -+ -, form a subdivision of [&, &] relative to w or are an w-
subdivision of [4, b]. We have introduced in [1] the following

Definition. Let F(x) be defined on [a, b] and be in class %. The least
upper bound of "
V= ZIF(xi+)—"F(xi—l—)l

for all possible w-subdivisions z,, #,, -+, z, of [a, b] is called the total
w-variation of F(z) and is denoted by V,(F; a, b). If V(F; a, b) < oo then
F(z) is said to be of bounded variation relative to w on [a, b].

In [1] we have shown that any function F(z) which is AC—w on
[a, &] must be BV —w on [a, &].

Here we observe that the same result can be proved under weaker
conditions on F{z). It is possible to show that if F(z) is AC—wo above (or
below) on [a, 8] then it is BV —w on [a, b]. To prove this, we require some
preliminary results for which some further definitions are needed.

Definition. Let F(z) be defined in [a, 4] and belong to the class %, and
let I: (x,,x;), i=1,2, -, n be any elementary system in [a, b]. The l.u.b.
and g.Lb. of the aggregate {o]} of sums oI for all possible elementary systems
I in [a, b] are called respectively the positive and negative variation of
F(z) in [a, b], and are denoted by V+(F; a, b) and V—(F; a, b). It is clear
that
V+(F;a,0) 20 and V-(F;a,b) 0.

Throughout the paper we shall consider only those functions F(r)
of the class # for which F(z+) and F{z—), 2 € E—S, are finite.

2. Preliminary lemmas
Lemma 1. Leta < ¢ < b. If V(F; a, c) and V*(F;c, b) are finile, then
s0 is V*(F; a, b); further if F(c—) = F(c+) then
VH(F;a,b) =V*+(F;a,c)+V*+(F;c,b).
PRrOOF. Let I: (z,, %), =1,2,---,n be any elementary system in

[a,b). We consider the following cases.
(a) If z, < ¢, I becomes an elementary system in {4, ¢] and so
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1) ol < V+(F;a,c).
(b) If =, = ¢, I is an elementary system in [c, 8], so
2) ol S V+(F;c¢,b).
(c) If z,, < ¢ £ %y, m < m, I can be exhibited as the sum of two
elementary systems, I, in [a,¢] and I, in [¢, 4] and so,
(3) ol = gl +ol, S V+(F; a,c)+VHF;c,b).

(d) If z,, < c <z, m <mn, then the intervals (z,,2;), (%s,23), ",
(®mz> Trg1)s @m,€) and (¢, Zh), Ema1s> Tmpr), ** * (@, 2,) form elementary
systems I, and I, in [a, ¢] and [c, b] respectively. Since

F(@yt)—F(n—) = {F(gn+)—F(c—)}
+ {Fe—)—F (e} + {Fle4)—Flen—)}

we have

@ ol = oI, +oly-H{F(c—)—F(c+)}
S V+(F;a,c)+V+(F;¢c b)+K

where

K = |F(e—)—F(c+)l.
Hence from (1), (2), {8), (4) it follows that, in any case
63) ol < V*+(F;a,c)+V+(F;c, b)+K.
Since (5) is true for any elementary system in [a, b] we have
(6) V+(F; a, b) < VH(F;a,c)+V+H(F; ¢, b)+K.

This proves the first part.
Now suppose that F(c—) = F(c+). Then from (6)

(7 V+(F;a,b) S VHF;a,c)+VHF;c, b).

Let I, be any elementary system in [4, ¢] and I, be that in [¢, b]. I, and I,
together form an elementary system I in [a, 8]. So

oI, +ol, = oI <V+(F;a,b).
This implies that

(8) VH(F; a,c)+V+(F;c,b) < V*(F; a,b).
Combining (7) and (8) we obtain
V+(F; a, b) = V+(F; a, c)+V+(F; ¢, b).

Proceeding in the same manner as in Lemma 1 we may prove
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LEMMA 2. Let a<<c<<b. If V-(F;a,c) and V-(F;c¢, b) are finite,
then so is V—(F;a,b); further if F{c—) = F(c+) then V—(F;a,b) =
V—(F; a,c)+V—(F;c,b).

LEMMA 3. Let z;, x,, &3, * - + be the set of those points in [a, b] for which
F(z,+) # F(z,—). If V+(F;a,b) {or V-(F; a, b)} is finite, then the series
S F(xy+)—F(x,—)| is convergent.

Proor. We suppose that V+(F; a, b) is finite. The proof in the other
case is analogous. Let &, &,, -+ be the subset of z;,x,, -+ where
F(¢,+)—F(£,—) > 0. Let n be any positive integer. We arrange £,
&, -+, £, in ascending order and rename them, if necessary, by &, &, - -,
&,. It is clear that & > a and &, < b. We now choose the points a;, a;,
B<E <o, i=23, n—l i ((E+E)2 E+Ea)2) nS;
a7, 0 < & < af in ((a+£)/2, (E+ED/2) NS and a,, o, 4 < & < 2,
in ((£én_1+&0)/2, (6,+8)/2) 0 S such that for arbitrary & > 0,

F(&+)—F(&—) < F(e))—F () +¢/2%, i=1,2,++-,n.

The intervals («;,a;), i =1,2,---,# form an elementary system I, in
[a, 8] and so oI, < V+(F; a, b). Therefore

S (P -FE—)} = S {FEH) - FE-)
<ol,+e EVH(F;a,b)+e.

Since # may be any positive integer, it follows that the series.
S {F(&+)—F(&—)} is convergent.

Next, let 7, 7%,, -+ be the subset of z,,z,,--- where F(y,+)—
F(n,—) < 0. For an arbitrary positive integer #, we can choose, as above,
an elementary system I,: (8,,f8:),i=1,2,---,n with B,,8;€S and
By > a, B, < b such that

g{F(ﬂi'{")—F("]i—)} > g l,—e.

Let J denote the elementary system complementary to I,. Then ol,+0] =
F(b—)—F(a+). So,

oI, = F(b—)—F(a+)—o] = F(o—)—F(a+)—V*(F;a,b).

Hence
él{F(”‘“_F(’?f—)} = F(b—)—F(a+)—V+(F; a, b)—e.

Since # is any positive integer and since I {F(y,+)—F(p,—)} < 0, the
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series 3 {F(n;+)—F(n,—)} therefore converges. The lemma now follows
from the fact that

2‘ |F(zt)—F(z—) = E FEA)—F(E—)) - 2‘: {F(n+)—F(n—)}

LEMMA 4. If V+(F; a, b) is finite then so is V—(F; a, b) and vice versa.
PrOOF. Suppose that V+(F;a,b) is finite. Let I: (z;, %)), ¢ =1,
2, -+, n be any elementary system in [&, b]. Then we have

n-1

ol = {F(x;-{—)——-F(xl——-)}—- gl{F(‘”nl_)_F(x:"*“)}-
Let z, > a and x, < b. Writing a = #z,, b = x,,, we have
ol = F(b—)—F(a+)— go{F(xi+1‘“)"F(‘”:'+)}-

We divide the set of integers 7 = 0, 1, 2, - - -, n into two parts 4 and B such
that e 4 if x,,, = 2, and 7 e B if x,,;, > «;. Then

of = Fo—)~Fla+)+ 3 (Fait) = F@E—)}— 3 {Ftan—) ~F )}
= F(o—)—F(a+)+3— 3.

Let &, &, « - - be the set of points in [a, b] where F(&,+-) # F(§,—).
Then by lemma 3,

(©) SIFEA)—FE~) =K

is finite. For i € B and arbitrary ¢ > 0, we choose the points «,, a;(> a,) in
(x;, ;1) N S such that

F(z,y;—)—F(z;4) < F(a))—F(e;) +5/2°4.

The intervals (a,, a;), ¢ € B form an elementary system I, in [, b]. So we
have
i22 < al,te EVH(F; a, b)+e.
Also utilising (9)
32 - 3 IFEH) —F@Ei-) 2 —K.
Hence
ol =z F(b—)—F(a+)—V*(F;a, b)—e—K.

Ifa =22, =bora=u=,,2, < bora <z, z, = b then it can be similarly
shown that ¢ = G, a fixed constant independent of I. Since V- (F; a, b) < 0,
it follows that V—(F; a, b} is finite.

In a similar way it may be shown that if V—(F; a, b) is finite then
V+(F; a, b) is also finite. This proves the lemma.
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3. Theorems and Corollaries

THEOREM 1. If F(x) is defined in [a, b] and belongs to the class %, then
V,(F;a,b) SVHF;a b)—V-(F;a,b).

Proor. If V+(F;a,b) is infinite, then clearly the theorem holds.
Suppose, therefore, that V+(F; a, b) is finite. By lemma 4, V-(F; a, b)
is then finite.

Let 2 Sy <2y <y, <+-- <2, = b be any w-subdivision of [a, b].
We divide the set of integers 1, 2, 3, - - -, # into two parts P and N such that
F(z,4-)—F(x;,—) =0 for e P and F(x,+)—F(x,.;—) <0 for ieN.
The intervals (x,_,,%;), e P and (z,,,%,;),? €N form two elementary
systems I; and I, in [a, b]. So :

V = 3 F@t)— =)l = ofy—ols.

S VH(F;a,b)—V-(F;a,b).

Since the above inequality is true for any w-subdivision of [a, b], the
theorem follows.

The following example shows that the equality sign need not hold in
the relation
V (F;a,b) < VHF;a b—V~(F;a,b).

Example. Let
0 for 0<z=<1%,

Xr) =
© () 1 for <zl

and
4z for 0z <1,

F =
@ 3—2z for <<l

Then clearly F(z) belongs to the class %, and
VHF;0,%2) =2, VH+(F;$,1) =0, V-(F;0,3) =0, V-(F;%,1)= —1.
Using lemma 1 and lemma 2, we obtain
V+(F;0,1) =2, V-(F;0,1) = —1.

Any w-subdivision of [0, 1] consists of only two points z,, ®,, where
0 <z, <3} 4 <z =<1 Hence V = |Fa,+)—F(zo—)| = IF (@) —F ().
Since 0 < F(z,) <2 and 1 = F(z,) < 2 we deduce that

Vo (F;0,1) =2 < V+(F;0,1)~V~(F;0,1).

THEOREM 2. If F(x) is AC—w above on [a, b] and w(x) is constant in
(x, B) C [a, b], then F(x) is non-increasing in (x, p).
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Proor. From the definition of F(x), it follows that F(z) is continuous
in («, B). Let £ > 0 be arbitrary. Since F(x) is AC—w above on [a, b],
there exists a positive number & such that for every elementary system
I:(z;,2;) in [a,b] we have Y {F(x;+)—F(z;—)} <e whenever
Sdo(x;+)—w(z,—)} < 6. Let z, and x,(> z,) be any two points in («, 8).
Then {w(r,+)—w(x,—)} <4, and it follows that F(x,)—F(x,) <e.
Since ¢ > 0 is arbitrary, it follows that F(z,) =< F(z,) which proves the
theorem.

COROLLARY. I} F(x) is AC—w on [a, b] and w(x) is constant in («, ) C
[a, b], then F(x) is constant in («, f).

THEOREM 3. If F(x) is AC—w above on [a, b], then F(x) is BV —w on
[a, B].

ProoF. Since F(z) is AC—w above on [a, b] there exists a number
& > 0 such that for every elementary system I in [a, b] we have

(10) ol <1 whenever I, <.
We consider the following cases.

(I). The saltus of w(x) at every point of [a, b] is less than 14.
In this case [a, b] can be divided into a finite number of subintervals

[oseals [ens€o)s - [en-nsen]l (@ =y <6, <" < ey =)

such that

(11) {ole,+)—ol,1—)} < 34, r=12---,N.

Let I: (x;,x;), i=1,2,--:,n be any elementary system in [c¢,_,, c,].

Then by (11), I, << § and so by (10), ol < 1. This implies that
VH(F;c_y,¢) =1, yr=12---,N.

By lemma 1, it follows, therefore, that V+(F; a, b) is finite.

(I1). There exist points in [a, b] at which the saltus of w(z) is =34.

It is known [4] that these points are finite in number. Let them be
®yy %y, ** 5 O, such that e < oy < -+ < «,,. In [«,_;, «,] we choose points
a, B(> «) of S such that
(12) o@)—w(,_+) <30 and w(e—)—w(b) < 36.

At each point in [«, 8] the saltus of w() is less than 4. So, by Case (I),
V+(F; «, B) is finite.

Let I': (z,,2;),i=1,2,-++, n be any elementary system in [«,_;, ].
If «,, < =, then by (12), I, < é and so by (10), ¢’ < 1.
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If a,_, = z, we choose a point & in (x,_,, z;) n S such that
|F(§)—F (@, +)l < L

The intervals (&, ), (%3, %3), ** *, (%,,%,) form an elementary system
I"in [«,_,, «]. By (12),I,) < é and so ¢I” < 1. Now

o' = {Fla+)~Flm—)}+ 3 (i) —F-)

= {F(ep1+)—F (o= )}H{F (6) = F (t0a+)}H-0l”
< 24K, where K = |F(a,_y+)—F(x,_1—)|

So, in any case ¢’ < 2+-K. Since this is true for every elementary system I’
in [e,_;, «], it follows that V+(F; «,_,, «) is finite. Similarly it can be shown
that V+(F; B, «,) is finite and consequently by lemma 1, it follows that
V+(F; a,b) is finite. The proof of the theorem is, therefore, complete because
by lemma 4, V-(F; a, b} is finite and so by theorem 1, F(z) is BV —w
on [a, b].

Finally the author is thankful to Dr. B. K. Lahiri for his kind help and
suggestions in the preparation of this paper.
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