ON FUNCTIONS OF BOUNDED ω-VARIATION, II

P. C. BHAKTA
(Received 1 December 1964)

1. Introduction

Let $\omega(x)$ be a non-decreasing function defined in the interval $[a, b]$. We extend the definition to all x by taking $\omega(x)=\omega(a)$ for $x<a$ and $\omega(x)=\omega(b)$ for $x>b$. R. L. Jeffery [2] has denoted by \mathscr{U} the class of functions $F(x)$ defined as follows:

If S denotes the set of points of $[a, b]$ at which $\omega(x)$ is continuous, then $F(x)$ is defined, and continuous over S, at all points of S. At any point of discontinuity x_{0} of $\omega(x)$, it is supposed that $F(x)$ tends to a limit as x tends to $x_{0}+$ and to x_{0} - over the points of S. These limits will be denoted by $F\left(x_{0}+\right)$ and $F\left(x_{0}-\right)$. Also for $x<a$, it is assumed that $F(x)=F(a+)$ and for $x>b, F(x)=F(b-) . F(x)$ may or may not be defined at points of discontinuity of $\omega(x)$.

Jeffery also has introduced the following
Definition. A function $F(x)$ defined on $[a, b]$ and in \mathscr{U} is absolutely continuous relative to $\omega, A C-\omega$, if for $\varepsilon>0$ there exists $\delta>0$ such that for any set of non-overlapping intervals $\left(x_{i}, x_{i}^{\prime}\right)$ on $[a, b]$ with $\sum\left\{\omega\left(x_{i}^{\prime}+\right)\right.$ $\left.-\omega\left(x_{i}-\right)\right\}<\delta$ the relation $\sum\left|F\left(x_{i}^{\prime}+\right)-F\left(x_{i}-\right)\right|<\varepsilon$ is satisfied.

We observe that the above condition for a function to be $A C-\omega$ can be broken up into two parts which, when taken together, become equivalent to that of $A C-\omega$.

Let $a \leqq x_{1}<x_{1}^{\prime} \leqq x_{2}<x_{2}^{\prime} \leqq \cdots \leqq x_{n}<x_{n}^{\prime} \leqq b$ be any subdivision of [a, b]. Following Kennedy [3], we say that the intervals $\left(x_{1}, x_{1}^{\prime}\right),\left(x_{2}, x_{2}^{\prime}\right)$, $\cdots,\left(x_{n}, x_{n}^{\prime}\right)$ form an elementary system I in $[a, b]$ which we denote by I : $\left(x_{i}, x_{i}^{\prime}\right), i=1,2,3, \cdots, n$. Let

$$
\sigma I=\sum_{i=1}^{n}\left\{F\left(x_{i}^{\prime}+\right)-F\left(x_{i}-\right)\right\}, \quad I_{\omega}=\sum_{i=1}^{n}\left\{\omega\left(x_{i}^{\prime}+\right)-\omega\left(x_{i}-\right)\right\} .
$$

Definition. A function $F(x)$ defined on $[a, b]$ and belonging to the class \mathscr{U} is said to be absolutely continuous above relative to $\omega, A C-\omega$ above, if for $\varepsilon>0$ there exists $\delta>0$ such that for any elementary system I in $[a, b]$ with $I_{\omega}<\delta$ the relation $\sigma I<\varepsilon$ holds. It is said to be absolutely continuous below relative to $\omega, A C-\omega$ below, if the relation $\sigma I>-\varepsilon$ holds whenever $I_{\omega}<\delta$.

This definition is analogous to the definition in [3] for functions absolutely continuous above and below. Assuming that $\omega(x)$ is not constant in $[a, b]$, let

$$
\omega(a)=y_{0}<y_{1}<y_{2}<\cdots<y_{n}=\omega(b)
$$

be any subdivision of $[\omega(a), \omega(b)]$ where $y_{i} \in \omega(E), E=[a, b]$. For any y_{i} there is an $x_{i} \in E$ for which $y_{i}=\omega\left(x_{i}\right)$. If for any y_{i} there exist more than one x_{i} such that $\omega\left(x_{i}\right)=y_{i}$, we shall take any one x_{i}. We say that the points $x_{0}, x_{1}, x_{2}, \cdots x_{n}$ form a subdivision of [a,b] relative to ω or are an ω subdivision of $[a, b]$. We have introduced in [1] the following

Definition. Let $F(x)$ be defined on $[a, b]$ and be in class \mathscr{U}. The least upper bound of

$$
V=\sum_{i=1}^{n}\left|F\left(x_{i}+\right)-F\left(x_{i-1}-\right)\right|
$$

for all possible ω-subdivisions $x_{0}, x_{1}, \cdots, x_{n}$ of $[a, b]$ is called the total ω-variation of $F(x)$ and is denoted by $V_{\omega}(F ; a, b)$. If $V_{\omega}(F ; a, b)<\infty$ then $F(x)$ is said to be of bounded variation relative to ω on $[a, b]$.

In [1] we have shown that any function $F(x)$ which is $A C-\omega$ on $[a, b]$ must be $B V-\omega$ on $[a, b]$.

Here we observe that the same result can be proved under weaker conditions on $F(x)$. It is possible to show that if $F(x)$ is $A C-\omega$ above (or below) on $[a, b]$ then it is $B V-\omega$ on $[a, b]$. To prove this, we require some preliminary results for which some further definitions are needed.

Definition. Let $F(x)$ be defined in $[a, b]$ and belong to the class \mathscr{U}, and let $I:\left(x_{i}, x_{i}^{\prime}\right), i=1,2, \cdots, n$ be any elementary system in [a,b]. The l.u.b. and g.1.b. of the aggregate $\{\sigma I\}$ of sums σI for all possible elementary systems I in $[a, b]$ are called respectively the positive and negative variation of $F(x)$ in $[a, b]$, and are denoted by $V^{+}(F ; a, b)$ and $V^{-}(F ; a, b)$. It is clear that

$$
V^{+}(F ; a, b) \geqq 0 \quad \text { and } \quad V^{-}(F ; a, b) \leqq 0
$$

Throughout the paper we shall consider only those functions $F(x)$ of the class \mathscr{U} for which $F(x+)$ and $F(x-), x \in E-S$, are finite.

2. Preliminary lemmas

Lemma 1. Let $a<c<b$. If $V^{+}(F ; a, c)$ and $V^{+}(F ; c, b)$ are finite, then so is $V+(F ; a, b)$; further if $F(c-)=F(c+)$ then

$$
V^{+}(F ; a, b)=V^{+}(F ; a, c)+V^{+}(F ; c, b) .
$$

Proof. Let $I:\left(x_{i}, x_{i}^{\prime}\right), i=1,2, \cdots, n$ be any elementary system in $[a, b]$. We consider the following cases.
(a) If $x_{n}^{\prime} \leqq c, I$ becomes an elementary system in $[a, c]$ and so

$$
\begin{equation*}
\sigma I \leqq V^{+}(F ; a, c) \tag{1}
\end{equation*}
$$

(b) If $x_{1} \geqq c, I$ is an elementary system in $[c, b]$, so

$$
\begin{equation*}
\sigma I \leqq V^{+}(F ; c, b) \tag{2}
\end{equation*}
$$

(c) If $x_{m}^{\prime} \leqq c \leqq x_{m+1}, m<n, I$ can be exhibited as the sum of two elementary systems, I_{1} in $[a, c]$ and I_{2} in $[c, b]$ and so,

$$
\begin{equation*}
\sigma I=\sigma I_{1}+\sigma I_{2} \leqq V^{+}(F ; a, c)+V^{+}(F ; c, b) \tag{3}
\end{equation*}
$$

(d) If $x_{m}<c<x_{m}^{\prime}, m \leqq n$, then the intervals $\left(x_{1}, x_{1}^{\prime}\right),\left(x_{2}, x_{2}^{\prime}\right), \cdots$, $\left(x_{m-1}, x_{m-1}^{\prime}\right),\left(x_{m}, c\right)$ and $\left(c, x_{m}^{\prime}\right),\left(x_{m+1}, x_{m+1}^{\prime}\right), \cdots\left(x_{n}, x_{n}^{\prime}\right)$ form elementary systems I_{1} and I_{2} in $[a, c]$ and $[c, b]$ respectively. Since

$$
\begin{aligned}
F\left(x_{m}^{\prime}+\right)-F\left(x_{m}-\right)= & \left\{F\left(x_{m}^{\prime}+\right)-F(c-)\right\} \\
& +\{F(c-)-F(c+)\}+\left\{F(c+)-F\left(x_{m}-\right)\right\}
\end{aligned}
$$

we have

$$
\begin{align*}
\sigma I & =\sigma I_{1}+\sigma I_{2}+\{F(c-)-F(c+)\} \\
& \leqq V^{+}(F ; a, c)+V^{+}(F ; c, b)+K \tag{4}
\end{align*}
$$

where

$$
K=|F(c-)-F(c+)|
$$

Hence from (1), (2), (3), (4) it follows that, in any case

$$
\begin{equation*}
\sigma I \leqq V^{+}(F ; a, c)+V^{+}(F ; c, b)+K \tag{5}
\end{equation*}
$$

Since (5) is true for any elementary system in $[a, b]$ we have

$$
\begin{equation*}
V^{+}(F ; a, b) \leqq V^{+}(F ; a, c)+V^{+}(F ; c, b)+K \tag{6}
\end{equation*}
$$

This proves the first part.
Now suppose that $F(c-)=F(c+)$. Then from (6)

$$
\begin{equation*}
V^{+}(F ; a, b) \leqq V^{+}(F ; a, c)+V^{+}(F ; c, b) \tag{7}
\end{equation*}
$$

Let I_{1} be any elementary system in $[a, c]$ and I_{2} be that in $[c, b] . I_{1}$ and I_{2} together form an elementary system I in $[a, b]$. So

$$
\sigma I_{1}+\sigma I_{2}=\sigma I \leqq V^{+}(F ; a, b)
$$

This implies that

$$
\begin{equation*}
V^{+}(F ; a, c)+V^{+}(F ; c, b) \leqq V^{+}(F ; a, b) \tag{8}
\end{equation*}
$$

Combining (7) and (8) we obtain

$$
V^{+}(F ; a, b)=V^{+}(F ; a, c)+V^{+}(F ; c, b)
$$

Proceeding in the same manner as in Lemma 1 we may prove

Lemma 2. Let $a<c<b$. If $V^{-}(F ; a, c)$ and $V^{-}(F ; c, b)$ are finite, then so is $V^{-}(F ; a, b)$; further if $F(c-)=F(c+)$ then $V^{-}(F ; a, b)=$ $V^{-}(F ; a, c)+V^{-}(F ; c, b)$.

Lemma 3. Let $x_{1}, x_{2}, x_{3}, \cdots$ be the set of those points in $[a, b]$ for which $F\left(x_{i}+\right) \neq F\left(x_{i}-\right)$. If $V^{+}(F ; a, b)\left\{\right.$ or $\left.V^{-}(F ; a, b)\right\}$ is tinite, then the series $\sum_{i}\left|F\left(x_{i}+\right)-F\left(x_{i}-\right)\right|$ is convergent.

Proof. We suppose that $V^{+}(F ; a, b)$ is finite. The proof in the other case is analogous. Let ξ_{1}, ξ_{2}, \cdots be the subset of x_{1}, x_{2}, \cdots where $F\left(\xi_{i}+\right)-F\left(\xi_{i}-\right)>0$. Let n be any positive integer. We arrange ξ_{1}, ξ_{2}, \cdots, ξ_{n} in ascending order and rename them, if necessary, by $\xi_{1}^{\prime}, \xi_{2}^{\prime}, \cdots$, ξ_{n}^{\prime}. It is clear that $\xi_{1}^{\prime}>a$ and $\xi_{n}^{\prime}<b$. We now choose the points $\alpha_{i}, \alpha_{i}^{\prime}$, $\alpha_{i}<\xi_{i}^{\prime}<\alpha_{i}^{\prime}, \quad i=2,3, \cdots, \quad n-1 \quad$ in $\left(\left(\xi_{i-1}^{\prime}+\xi_{i}^{\prime}\right) / 2,\left(\xi_{i}^{\prime}+\xi_{i+1}^{\prime}\right) / 2\right) \cap S$; $\alpha_{1}, \alpha_{1}^{\prime}, \alpha_{1}<\xi_{1}^{\prime}<\alpha_{1}^{\prime}$ in $\left(\left(a+\xi_{1}^{\prime}\right) / 2,\left(\xi_{1}^{\prime}+\xi_{2}^{\prime}\right) / 2\right) \cap S$ and $\alpha_{n}, \alpha_{n}^{\prime}, \alpha_{n}<\xi_{n}^{\prime}<\alpha_{n}^{\prime}$ in $\left(\left(\xi_{n-1}^{\prime}+\xi_{n}^{\prime}\right) / 2,\left(\xi_{n}^{\prime}+b\right) / 2\right) \cap S$ such that for arbitrary $\varepsilon>0$,

$$
F\left(\xi_{i}^{\prime}+\right)-F\left(\xi_{i}^{\prime}-\right)<F\left(\alpha_{i}^{\prime}\right)-F\left(\alpha_{i}\right)+\varepsilon / 2^{i+1}, \quad i=1,2, \cdots, n
$$

The intervals $\left(\alpha_{i}, \alpha_{i}^{\prime}\right), i=1,2, \cdots, n$ form an elementary system I_{1} in $[a, b]$ and so $\sigma I_{1} \leqq V^{+}(F ; a, b)$. Therefore

$$
\begin{aligned}
\sum_{i=1}^{n}\left\{F\left(\xi_{i}+\right)-F\left(\xi_{i}-\right)\right\} & =\sum_{i=1}^{n}\left\{F\left(\xi_{i}^{\prime}+\right)-F\left(\xi_{i}^{\prime}-\right)\right\} \\
& \leqq \sigma I_{1}+\varepsilon \leqq V^{+}(F ; a, b)+\varepsilon
\end{aligned}
$$

Since n may be any positive integer, it follows that the series $\sum_{i}\left\{F\left(\xi_{i}+\right)-F\left(\xi_{i}-\right)\right\}$ is convergent.

Next, let $\eta_{1}, \eta_{2}, \cdots$ be the subset of x_{1}, x_{2}, \cdots where $F\left(\eta_{i}+\right)$ -$F\left(\eta_{i}-\right)<0$. For an arbitrary positive integer n, we can choose, as above, an elementary system $I_{2}:\left(\beta_{i}, \beta_{i}^{\prime}\right), i=1,2, \cdots, n$ with $\beta_{i}, \beta_{i}^{\prime} \in S$ and $\beta_{1}>a, \beta_{n}^{\prime}<b$ such that

$$
\sum_{i=1}^{n}\left\{F\left(\eta_{i}+\right)-F\left(\eta_{i}-\right)\right\}>\sigma I_{2}-\varepsilon
$$

Let J denote the elementary system complementary to I_{2}. Then $\sigma I_{2}+\sigma J=$ $F(b-)-F(a+)$. So,

$$
\sigma I_{2}=F(b-)-F(a+)-\sigma J \geqq F(b-)-F(a+)-V^{+}(F ; a, b)
$$

Hence

$$
\sum_{i=1}^{n}\left\{F\left(\eta_{i}+\right)-F\left(\eta_{i}-\right)\right\} \geqq F(b-)-F(a+)-V^{+}(F ; a, b)-\varepsilon
$$

Since n is any positive integer and since $\sum\left\{F\left(\eta_{i}+\right)-F\left(\eta_{i}-\right)\right\} \leqq 0$, the
series $\sum_{i}\left\{F\left(\eta_{i}+\right)-F\left(\eta_{i}-\right)\right\}$ therefore converges. The lemma now follows from the fact that

$$
\sum_{i}\left|F\left(x_{i}+\right)-F\left(x_{i}-\right)\right|=\sum_{i}\left\{F\left(\xi_{i}+\right)-F\left(\xi_{i}-\right)\right\}-\sum_{i}\left\{F\left(\eta_{i}+\right)-F\left(\eta_{i}-\right)\right\} .
$$

Lemma 4. If $V^{+}(F ; a, b)$ is finite then so is $V^{-}(F ; a, b)$ and vice versa.
Proof. Suppose that $V^{+}(F ; a, b)$ is finite. Let $I:\left(x_{i}, x_{i}^{\prime}\right), i=1$, $2, \cdots, n$ be any elementary system in $[a, b]$. Then we have

$$
\sigma I=\left\{F\left(x_{n}^{\prime}+\right)-F\left(x_{1}-\right)\right\}-\sum_{i=1}^{n-1}\left\{F\left(x_{i+1}-\right)-F\left(x_{i}^{\prime}+\right)\right\} .
$$

Let $x_{1}>a$ and $x_{n}^{\prime}<b$. Writing $a=x_{0}, b=x_{n+1}$ we have

$$
\sigma I=F(b-)-F(a+)-\sum_{i=0}^{n}\left\{F\left(x_{i+1}-\right)-F\left(x_{i}^{\prime}+\right)\right\} .
$$

We divide the set of integers $i=0,1,2, \cdots, n$ into two parts A and B such that $i \in A$ if $x_{i+1}=x_{i}^{\prime}$ and $i \in B$ if $x_{i+1}>x_{i}^{\prime}$. Then

$$
\begin{aligned}
\sigma I & =F(b-)-F(a+)+\sum_{i \in A}\left\{F\left(x_{i}^{\prime}+\right)-F\left(x_{i}^{\prime}-\right)\right\}-\sum_{i \in B}\left\{F\left(x_{i+1}-\right)-F\left(x_{i}^{\prime}+\right)\right\} \\
& =F(b-)-F(a+)+\sum_{1}-\sum_{2} .
\end{aligned}
$$

Let ξ_{1}, ξ_{2}, \cdots be the set of points in $[a, b]$ where $F\left(\xi_{i}+\right) \neq F\left(\xi_{i}-\right)$. Then by lemma 3,

$$
\begin{equation*}
\sum_{i}\left|F\left(\xi_{i}+\right)-F\left(\xi_{i}-\right)\right|=K \tag{9}
\end{equation*}
$$

is finite. For $i \in B$ and arbitrary $\varepsilon>0$, we choose the points $\alpha_{i}, \alpha_{i}^{\prime}\left(>\alpha_{i}\right)$ in $\left(x_{i}^{\prime}, x_{i+1}\right) \cap S$ such that

$$
F\left(x_{i+1}-\right)-F\left(x_{i}^{\prime}+\right)<F\left(\alpha_{i}^{\prime}\right)-F\left(\alpha_{i}\right)+\varepsilon / 2^{i+1} .
$$

The intervals $\left(\alpha_{i}, \alpha_{i}^{\prime}\right), i \in B$ form an elementary system I_{1} in $[a, b]$. So we have

$$
\left\{\Sigma_{2}<\sigma I_{1}+\varepsilon \leqq V^{+}(F ; a, b)+\varepsilon .\right.
$$

Also utilising (9)

$$
\Sigma_{1} \geqq-\sum_{i \in A}\left|F\left(x_{i}^{\prime}+\right)-F\left(x_{i}^{\prime}-\right)\right| \geqq-K
$$

Hence

$$
\sigma I \geqq F(b-)-F(a+)-V^{+}(F ; a, b)-\varepsilon-K .
$$

If $a=x_{1}, x_{n}^{\prime}=b$ or $a=x_{1}, x_{n}^{\prime}<b$ or $a<x_{1}, x_{n}^{\prime}=b$ then it can be similarly shown that $\sigma I \geqq G$, a fixed constant independent of I. Since $V^{-}(F ; a, b) \leqq 0$, it follows that $V^{-}(F ; a, b)$ is finite.

In a similar way it may be shown that if $V^{-}(F ; a, b)$ is finite then $V^{+}(F ; a, b)$ is also finite. This proves the lemma.

3. Theorems and Corollaries

Theorem 1. If $F(x)$ is defined in $[a, b]$ and belongs to the class \mathscr{U}, then $V_{\omega}(F ; a, b) \leqq V^{+}(F ; a, b)-V^{-}(F ; a, b)$.

Proof. If $V^{+}(F ; a, b)$ is infinite, then clearly the theorem holds. Suppose, therefore, that $V^{+}(F ; a, b)$ is finite. By lemma 4, $V^{-}(F ; a, b)$ is then finite.

Let $a \leqq x_{0}<x_{1}<x_{2}<\cdots<x_{n} \leqq b$ be any ω-subdivision of $[a, b]$. We divide the set of integers $1,2,3, \cdots, n$ into two parts P and N such that $F\left(x_{i}+\right)-F\left(x_{i-1}-\right) \geqq 0$ for $i \in P$ and $F\left(x_{i}+\right)-F\left(x_{i-1}-\right)<0$ for $i \in N$. The intervals $\left(x_{i-1}, x_{i}\right), i \in P$ and $\left(x_{i-1}, x_{i}\right), i \in N$ form two elementary systems I_{1} and I_{2} in $[a, b]$. So

$$
\begin{aligned}
V & =\sum_{i=1}^{n}\left|F\left(x_{i}+\right)-F\left(x_{i-1}-\right)\right|=\sigma I_{1}-\sigma I_{2} . \\
& \leqq V^{+}(F ; a, b)-V^{-}(F ; a, b) .
\end{aligned}
$$

Since the above inequality is true for any ω-subdivision of $[a, b]$, the theorem follows.

The following example shows that the equality sign need not hold in the relation

$$
V_{\omega}(F ; a, b) \leqq V^{+}(F ; a, b)-V^{-}(F ; a, b)
$$

Example. Let

$$
\omega(x)=\begin{array}{lll}
0 & \text { for } & 0 \leqq x \leqq \frac{1}{2} \\
1 & \text { for } & \frac{1}{2}<x \leqq 1
\end{array}
$$

and

$$
F(x)=\begin{aligned}
& 4 x \text { for } \quad 0 \leqq x \leqq \frac{1}{2} \\
& 3-2 x \text { for } \\
& \frac{1}{2}<x \leqq 1
\end{aligned}
$$

Then clearly $F(x)$ belongs to the class \mathscr{W}, and

$$
V^{+}\left(F ; 0, \frac{1}{2}\right)=2, V^{+}\left(F ; \frac{1}{2}, 1\right)=0, V^{-}\left(F ; 0, \frac{1}{2}\right)=0, V^{-}\left(F ; \frac{1}{2}, 1\right)=-1
$$

Using lemma 1 and lemma 2, we obtain

$$
V^{+}(F ; 0,1)=2, V^{-}(F ; 0,1)=-1
$$

Any ω-subdivision of $[0,1]$ consists of only two points x_{0}, x_{1}, where $0 \leqq x_{0} \leqq \frac{1}{2}, \frac{1}{2}<x_{1} \leqq 1$. Hence $V=\left|F\left(x_{1}+\right)-F\left(x_{0}-\right)\right|=\left|F\left(x_{1}\right)-F\left(x_{0}\right)\right|$. Since $0 \leqq F\left(x_{0}\right) \leqq 2$ and $1 \leqq F\left(x_{1}\right)<2$ we deduce that

$$
V_{\omega}(F ; 0,1)=2<V^{+}(F ; 0,1)-V^{-}(F ; 0,1)
$$

Theorem 2. If $F(x)$ is $A C-\omega$ above on $[a, b]$ and $\omega(x)$ is constant in $(\alpha, \beta) \subset[a, b]$, then $F(x)$ is non-increasing in (α, β).

Proof. From the definition of $F(x)$, it follows that $F(x)$ is continuous in (α, β). Let $\varepsilon>0$ be arbitrary. Since $F(x)$ is $A C-\omega$ above on [$a, b]$, there exists a positive number δ such that for every elementary system $I:\left(x_{i}, x_{i}^{\prime}\right)$ in $[a, b]$ we have $\sum_{i}\left\{F\left(x_{i}^{\prime}+\right)-F\left(x_{i}-\right)\right\}<\varepsilon$ whenever $\sum_{i}\left\{\omega\left(x_{i}^{\prime}+\right)-\omega\left(x_{i}-\right)\right\}<\delta$. Let x_{1} and $x_{2}\left(>x_{1}\right)$ be any two points in (α, β). Then $\left\{\omega\left(x_{2}+\right)-\omega\left(x_{1}-\right)\right\}<\delta$, and it follows that $F\left(x_{2}\right)-F\left(x_{1}\right)<\varepsilon$. Since $\varepsilon>0$ is arbitrary, it follows that $F\left(x_{2}\right) \leqq F\left(x_{1}\right)$ which proves the theorem.

Corollary. If $F(x)$ is $A C-\omega$ on $[a, b]$ and $\omega(x)$ is constant in $(\alpha, \beta) \subset$ $[a, b]$, then $F(x)$ is constant in (α, β).

Theorem 3. If $F(x)$ is $A C-\omega$ above on $[a, b]$, then $F(x)$ is $B V-\omega$ on $[a, b]$.

Proof. Since $F(x)$ is $A C-\omega$ above on $[a, b]$ there exists a number $\delta>0$ such that for every elementary system I in $[a, b]$ we have

$$
\begin{equation*}
\sigma I<1 \text { whenever } I_{\omega}<\delta \tag{10}
\end{equation*}
$$

We consider the following cases.
(I). The saltus of $\omega(x)$ at every point of $[a, b]$ is less than $\frac{1}{2} \delta$.

In this case $[a, b]$ can be divided into a finite number of subintervals

$$
\left[c_{0}, c_{1}\right],\left[c_{1}, c_{2}\right], \cdots\left[c_{N-1}, c_{N}\right]\left(a=c_{0}<c_{1}<\cdots<c_{N}=b\right)
$$

such that

$$
\begin{equation*}
\left\{\omega\left(c_{r}+\right)-\omega\left(c_{r-1}-\right)\right\}<\frac{1}{2} \delta, \quad r=1,2, \cdots, N \tag{11}
\end{equation*}
$$

Let $I:\left(x_{i}, x_{i}^{\prime}\right), i=1,2, \cdots, n$ be any elementary system in $\left[c_{r-1}, c_{r}\right]$. Then by (11), $I_{\omega}<\delta$ and so by (10), $\sigma I<1$. This implies that

$$
V^{+}\left(F ; c_{r-1}, c_{r}\right) \leqq 1, \quad \gamma=1,2, \cdots, N
$$

By lemma 1, it follows, therefore, that $V^{+}(F ; a, b)$ is finite.
(II). There exist points in $[a, b]$ at which the saltus of $\omega(x)$ is $\geqq \frac{1}{2} \delta$.

It is known [4] that these points are finite in number. Let them be $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{m}$ such that $\alpha_{1}<\alpha_{2}<\cdots<\alpha_{m} . \operatorname{In}\left[\alpha_{r-1}, \alpha_{r}\right]$ we choose points $\alpha, \beta(>\alpha)$ of S such that

$$
\begin{equation*}
\omega(\alpha)-\omega\left(\alpha_{r-1}+\right)<\frac{1}{2} \delta \quad \text { and } \quad \omega\left(\alpha_{r}-\right)-\omega(\beta)<\frac{1}{2} \delta \tag{12}
\end{equation*}
$$

At each point in $[\alpha, \beta]$ the saltus of $\omega(x)$ is less than $\frac{1}{2} \delta$. So, by Case (I), $V^{+}(F ; \alpha, \beta)$ is finite.

Let $I^{\prime}:\left(x_{i}, x_{i}^{\prime}\right), i=1,2, \cdots, n$ be any elementary system in $\left[\alpha_{r-1}, \alpha\right]$. If $\alpha_{r-1}<x_{1}$ then by (12), $I_{\omega}^{\prime}<\delta$ and so by (10), $\sigma I^{\prime}<1$.

If $\alpha_{r-1}=x_{1}$ we choose a point ξ in $\left(\alpha_{r-1}, x_{1}^{\prime}\right) \cap S$ such that

$$
\left|F(\xi)-F\left(\alpha_{r-1}+\right)\right|<1
$$

The intervals $\left(\xi, x_{1}^{\prime}\right),\left(x_{2}, x_{2}^{\prime}\right), \cdots,\left(x_{n}, x_{n}^{\prime}\right)$ form an elementary system $I^{\prime \prime}$ in $\left[\alpha_{r-1}, \alpha\right]$. By (12), $I_{\omega}^{\prime \prime}<\delta$ and so $\sigma I^{\prime \prime}<1$. Now

$$
\begin{aligned}
\boldsymbol{\sigma} I^{\prime} & =\left\{F\left(x_{1}^{\prime}+\right)-F\left(x_{1}-\right)\right\}+\sum_{i=2}^{n}\left\{F\left(x_{i}^{\prime}+\right)-F\left(x_{i}-\right)\right\} \\
& =\left\{F\left(\alpha_{r-1}+\right)-F\left(\alpha_{r-1}-\right)\right\}+\left\{F(\xi)-F\left(\alpha_{r-1}+\right)\right\}+\sigma I^{\prime \prime} \\
& <2+K, \quad \text { where } K=\left|F\left(\alpha_{r-1}+\right)-F\left(\alpha_{r-1}-\right)\right| .
\end{aligned}
$$

So, in any case $\sigma I^{\prime}<2+K$. Since this is true for every elementary system I^{\prime} in $\left[\alpha_{r-1}, \alpha\right]$, it follows that $V^{+}\left(F ; \alpha_{r-1}, \alpha\right)$ is finite. Similarly it can be shown that $V^{+}\left(F ; \beta, \alpha_{r}\right)$ is finite and consequently by lemma 1, it follows that $V^{+}(F ; a, b)$ is finite. The proof of the theorem is, therefore, complete because by lemma $4, V^{-}(F ; a, b)$ is finite and so by theorem $1, F(x)$ is $B V-\omega$ on $[a, b]$.

Finally the author is thankful to Dr. B. K. Lahiri for his kind help and suggestions in the preparation of this paper.

References

[1] Bhakta, P. C., On functions of bounded ω-variation. Communicated to 'Rivista di Matematica della Universita Parma' for publication.
[2] Jeffery, R. L., Generalised integrals with respect to functions of bounded variation, Can. J. Math. 10 (1958) 617-628.
[3] Kennedy, M. D., Upper and lower Lebesgue integrals, Proc. Lond. Math. Soc. (2) 32 (1930-31), 21-50.
[4] Natanson, I. P., Theory of functions of a real variable (New York, 1955), p. 205.
Department of Mathematics
The University of Burdwan
Burdwan, West Bengal, India

