ON FUNCTIONS OF BOUNDED ω -VARIATION, II

P. C. BHAKTA

(Received 1 December 1964)

1. Introduction

Let $\omega(x)$ be a non-decreasing function defined in the interval [a, b]. We extend the definition to all x by taking $\omega(x) = \omega(a)$ for x < a and $\omega(x) = \omega(b)$ for x > b. R. L. Jeffery [2] has denoted by \mathscr{U} the class of functions F(x) defined as follows:

If S denotes the set of points of [a, b] at which $\omega(x)$ is continuous, then F(x) is defined, and continuous over S, at all points of S. At any point of discontinuity x_0 of $\omega(x)$, it is supposed that F(x) tends to a limit as x tends to x_0+ and to x_0- over the points of S. These limits will be denoted by $F(x_0+)$ and $F(x_0-)$. Also for x < a, it is assumed that F(x) = F(a+) and for x > b, F(x) = F(b-). F(x) may or may not be defined at points of discontinuity of $\omega(x)$.

Jeffery also has introduced the following

Definition. A function F(x) defined on [a, b] and in \mathscr{U} is absolutely continuous relative to ω , $AC-\omega$, if for $\varepsilon > 0$ there exists $\delta > 0$ such that for any set of non-overlapping intervals (x_i, x'_i) on [a, b] with $\sum \{\omega(x'_i+) - \omega(x_i-)\} < \delta$ the relation $\sum |F(x'_i+)-F(x_i-)| < \varepsilon$ is satisfied.

We observe that the above condition for a function to be $AC-\omega$ can be broken up into two parts which, when taken together, become equivalent to that of $AC-\omega$.

Let $a \leq x_1 < x'_1 \leq x_2 < x'_2 \leq \cdots \leq x_n < x'_n \leq b$ be any subdivision of [a, b]. Following Kennedy [3], we say that the intervals (x_1, x'_1) , (x_2, x'_2) , \cdots , (x_n, x'_n) form an elementary system I in [a, b] which we denote by I: $(x_i, x'_i), i = 1, 2, 3, \cdots, n$. Let

$$\sigma I = \sum_{i=1}^{n} \{F(x'_{i}+) - F(x_{i}-)\}, \quad I_{\omega} = \sum_{i=1}^{n} \{\omega(x'_{i}+) - \omega(x_{i}-)\}.$$

Definition. A function F(x) defined on [a, b] and belonging to the class \mathscr{U} is said to be absolutely continuous above relative to ω , $AC-\omega$ above, if for $\varepsilon > 0$ there exists $\delta > 0$ such that for any elementary system I in [a, b] with $I_{\omega} < \delta$ the relation $\sigma I < \varepsilon$ holds. It is said to be absolutely continuous below relative to ω , $AC-\omega$ below, if the relation $\sigma I > -\varepsilon$ holds whenever $I_{\omega} < \delta$.

380

This definition is analogous to the definition in [3] for functions absolutely continuous above and below. Assuming that $\omega(x)$ is not constant in [a, b], let

$$\omega(a) = y_0 < y_1 < y_2 < \cdots < y_n = \omega(b)$$

be any subdivision of $[\omega(a), \omega(b)]$ where $y_i \in \omega(E)$, E = [a, b]. For any y_i there is an $x_i \in E$ for which $y_i = \omega(x_i)$. If for any y_i there exist more than one x_i such that $\omega(x_i) = y_i$, we shall take any one x_i . We say that the points $x_0, x_1, x_2, \dots x_n$ form a subdivision of [a, b] relative to ω or are an ω -subdivision of [a, b]. We have introduced in [1] the following

Definition. Let F(x) be defined on [a, b] and be in class \mathscr{U} . The least upper bound of n

$$V = \sum_{i=1}^{n} |F(x_i+) - F(x_{i-1}-)|$$

for all possible ω -subdivisions x_0, x_1, \dots, x_n of [a, b] is called the total ω -variation of F(x) and is denoted by $V_{\omega}(F; a, b)$. If $V_{\omega}(F; a, b) < \infty$ then F(x) is said to be of bounded variation relative to ω on [a, b].

In [1] we have shown that any function F(x) which is $AC-\omega$ on [a, b] must be $BV-\omega$ on [a, b].

Here we observe that the same result can be proved under weaker conditions on F(x). It is possible to show that if F(x) is $AC - \omega$ above (or below) on [a, b] then it is $BV - \omega$ on [a, b]. To prove this, we require some preliminary results for which some further definitions are needed.

Definition. Let F(x) be defined in [a, b] and belong to the class \mathscr{U} , and let $I: (x_i, x'_i), i = 1, 2, \dots, n$ be any elementary system in [a, b]. The l.u.b. and g.l.b. of the aggregate $\{\sigma I\}$ of sums σI for all possible elementary systems I in [a, b] are called respectively the positive and negative variation of F(x) in [a, b], and are denoted by $V^+(F; a, b)$ and $V^-(F; a, b)$. It is clear that

$$V^+(F; a, b) \ge 0$$
 and $V^-(F; a, b) \le 0$.

Throughout the paper we shall consider only those functions F(x) of the class \mathscr{U} for which F(x+) and F(x-), $x \in E-S$, are finite.

2. Preliminary lemmas

LEMMA 1. Let a < c < b. If $V^+(F; a, c)$ and $V^+(F; c, b)$ are finite, then so is $V^+(F; a, b)$; further if F(c-) = F(c+) then

$$V^+(F; a, b) = V^+(F; a, c) + V^+(F; c, b)$$

PROOF. Let $I: (x_i, x'_i), i = 1, 2, \dots, n$ be any elementary system in [a, b]. We consider the following cases.

(a) If $x'_n \leq c$, I becomes an elementary system in [a, c] and so

(1)
$$\sigma I \leq V^+(F; a, c)$$

(b) If $x_1 \ge c$, I is an elementary system in [c, b], so

(2)
$$\sigma I \leq V^+(F; c, b).$$

(c) If $x'_m \leq c \leq x_{m+1}$, m < n, I can be exhibited as the sum of two elementary systems, I_1 in [a, c] and I_2 in [c, b] and so,

(3)
$$\sigma I = \sigma I_1 + \sigma I_2 \leq V^+(F; a, c) + V^+(F; c, b).$$

(d) If $x_m < c < x'_m$, $m \leq n$, then the intervals (x_1, x'_1) , (x_2, x'_2) , \cdots , (x_{m-1}, x'_{m-1}) , (x_m, c) and (c, x'_m) , (x_{m+1}, x'_{m+1}) , \cdots (x_n, x'_n) form elementary systems I_1 and I_2 in [a, c] and [c, b] respectively. Since

$$F(x'_{m}+)-F(x_{m}-) = \{F(x'_{m}+)-F(c-)\} + \{F(c-)-F(c+)\} + \{F(c+)-F(x_{m}-)\}$$

we have

(4)
$$\sigma I = \sigma I_1 + \sigma I_2 + \{F(c-) - F(c+)\} \\ \leq V^+(F; a, c) + V^+(F; c, b) + K$$

where

$$K = |F(c-) - F(c+)|.$$

Hence from (1), (2), (3), (4) it follows that, in any case

(5)
$$\sigma I \leq V^+(F; a, c) + V^+(F; c, b) + K.$$

Since (5) is true for any elementary system in [a, b] we have

(6)
$$V^+(F; a, b) \leq V^+(F; a, c) + V^+(F; c, b) + K$$

This proves the first part.

Now suppose that
$$F(c-) = F(c+)$$
. Then from (6)

(7)
$$V^+(F; a, b) \leq V^+(F; a, c) + V^+(F; c, b)$$

Let I_1 be any elementary system in [a, c] and I_2 be that in [c, b]. I_1 and I_2 together form an elementary system I in [a, b]. So

$$\sigma I_1 + \sigma I_2 = \sigma I \leq V^+(F; a, b).$$

This implies that

(8)
$$V^+(F; a, c) + V^+(F; c, b) \leq V^+(F; a, b)$$

Combining (7) and (8) we obtain

$$V^+(F; a, b) = V^+(F; a, c) + V^+(F; c, b).$$

Proceeding in the same manner as in Lemma 1 we may prove

382

LEMMA 2. Let a < c < b. If $V^-(F; a, c)$ and $V^-(F; c, b)$ are finite, then so is $V^-(F; a, b)$; further if F(c-) = F(c+) then $V^-(F; a, b) = V^-(F; a, c) + V^-(F; c, b)$.

LEMMA 3. Let x_1, x_2, x_3, \cdots be the set of those points in [a, b] for which $F(x_i+) \neq F(x_i-)$. If $V^+(F; a, b)$ {or $V^-(F; a, b)$ } is finite, then the series $\sum_i |F(x_i+)-F(x_i-)|$ is convergent.

PROOF. We suppose that $V^+(F; a, b)$ is finite. The proof in the other case is analogous. Let ξ_1, ξ_2, \cdots be the subset of x_1, x_2, \cdots where $F(\xi_i+)-F(\xi_i-) > 0$. Let *n* be any positive integer. We arrange $\xi_1, \xi_2, \cdots, \xi_n$ in ascending order and rename them, if necessary, by $\xi'_1, \xi'_2, \cdots, \xi'_n$. It is clear that $\xi'_1 > a$ and $\xi'_n < b$. We now choose the points $\alpha_i, \alpha'_i, \alpha_i < \xi'_i < \alpha'_i, i = 2, 3, \cdots, n-1$ in $((\xi'_{i-1} + \xi'_i)/2, (\xi'_i + \xi'_{i+1})/2) \cap S; \alpha_1, \alpha'_1, \alpha_1 < \xi'_1 < \alpha'_1$ in $((a+\xi'_1)/2, (\xi'_1+\xi'_2)/2) \cap S$ and $\alpha_n, \alpha'_n, \alpha_n < \xi'_n < \alpha'_n$ in $((\xi'_{n-1}+\xi'_n)/2, (\xi'_n+b)/2) \cap S$ such that for arbitrary $\varepsilon > 0$,

$$F(\xi'_i+)-F(\xi'_i-) < F(\alpha'_i)-F(\alpha_i)+\varepsilon/2^{i+1}, \quad i=1, 2, \cdots, n.$$

The intervals (α_i, α'_i) , $i = 1, 2, \dots, n$ form an elementary system I_1 in [a, b] and so $\sigma I_1 \leq V^+(F; a, b)$. Therefore

$$\sum_{i=1}^{n} \{F(\xi_{i}+)-F(\xi_{i}-)\} = \sum_{i=1}^{n} \{F(\xi_{i}'+)-F(\xi_{i}'-)\}$$

$$\leq \sigma I_{1}+\varepsilon \leq V^{+}(F; a, b)+\varepsilon.$$

Since *n* may be any positive integer, it follows that the series $\sum_{i} \{F(\xi_i+)-F(\xi_i-)\}$ is convergent.

Next, let η_1, η_2, \cdots be the subset of x_1, x_2, \cdots where $F(\eta_i+) - F(\eta_i-) < 0$. For an arbitrary positive integer *n*, we can choose, as above, an elementary system $I_2: (\beta_i, \beta'_i), i = 1, 2, \cdots, n$ with $\beta_i, \beta'_i \in S$ and $\beta_1 > a, \beta'_n < b$ such that

$$\sum_{i=1}^{n} \{F(\eta_i+)-F(\eta_i-)\} > \sigma I_2 - \varepsilon.$$

Let J denote the elementary system complementary to I_2 . Then $\sigma I_2 + \sigma J = F(b-) - F(a+)$. So,

$$\sigma I_2 = F(b-)-F(a+)-\sigma J \ge F(b-)-F(a+)-V^+(F;a,b).$$

Hence

$$\sum_{i=1}^{n} \{F(\eta_{i}+)-F(\eta_{i}-)\} \ge F(b-)-F(a+)-V^{+}(F; a, b)-\varepsilon.$$

Since *n* is any positive integer and since $\sum \{F(\eta_i+)-F(\eta_i-)\} \leq 0$, the

series $\sum_{i} \{F(\eta_i +) - F(\eta_i -)\}$ therefore converges. The lemma now follows from the fact that

$$\sum_{i} |F(x_{i}+)-F(x_{i}-)| = \sum_{i} \{F(\xi_{i}+)-F(\xi_{i}-)\} - \sum_{i} \{F(\eta_{i}+)-F(\eta_{i}-)\}$$

LEMMA 4. If $V^+(F; a, b)$ is finite then so is $V^-(F; a, b)$ and vice versa.

PROOF. Suppose that $V^+(F; a, b)$ is finite. Let $I: (x_i, x'_i), i = 1, 2, \dots, n$ be any elementary system in [a, b]. Then we have

$$\sigma I = \{F(x'_n+)-F(x_1-)\} - \sum_{i=1}^{n-1} \{F(x_{i+1}-)-F(x'_i+)\}.$$

Let $x_1 > a$ and $x'_n < b$. Writing $a = x_0$, $b = x_{n+1}$ we have

$$\sigma I = F(b-) - F(a+) - \sum_{i=0}^{n} \{F(x_{i+1}-) - F(x'_i+)\}$$

We divide the set of integers $i = 0, 1, 2, \dots, n$ into two parts A and B such that $i \in A$ if $x_{i+1} = x'_i$ and $i \in B$ if $x_{i+1} > x'_i$. Then

$$\sigma I = F(b-) - F(a+) + \sum_{i \in A} \{F(x'_i+) - F(x'_i-)\} - \sum_{i \in B} \{F(x_{i+1}-) - F(x'_i+)\}$$

= $F(b-) - F(a+) + \sum_{1} - \sum_{2}$.

Let ξ_1, ξ_2, \cdots be the set of points in [a, b] where $F(\xi_i+) \neq F(\xi_i-)$. Then by lemma 3,

(9)
$$\sum_{i} |F(\xi_{i}+)-F(\xi_{i}-)| = K$$

is finite. For $i \in B$ and arbitrary $\varepsilon > 0$, we choose the points $\alpha_i, \alpha'_i (> \alpha_i)$ in $(x'_i, x_{i+1}) \cap S$ such that

$$F(x_{i+1}-)-F(x_i'+) < F(\alpha_i)-F(\alpha_i)+\varepsilon/2^{i+1}.$$

The intervals (α_i, α'_i) , $i \in B$ form an elementary system I_1 in [a, b]. So we have

$$\sum_{2} < \sigma I_{1} + \varepsilon \leq V^{+}(F; a, b) + \varepsilon.$$

Also utilising (9)

$$\sum_{1} \geq -\sum_{i \in A} |F(x'_i+)-F(x'_i-)| \geq -K.$$

Hence

$$\sigma I \geq F(b-)-F(a+)-V^+(F;a,b)-\varepsilon-K$$

If $a = x_1, x'_n = b$ or $a = x_1, x'_n < b$ or $a < x_1, x'_n = b$ then it can be similarly shown that $\sigma I \ge G$, a fixed constant independent of *I*. Since $V^-(F; a, b) \le 0$, it follows that $V^-(F; a, b)$ is finite.

In a similar way it may be shown that if $V^-(F; a, b)$ is finite then $V^+(F; a, b)$ is also finite. This proves the lemma.

3. Theorems and Corollaries

THEOREM 1. If F(x) is defined in [a, b] and belongs to the class \mathcal{U} , then $V_{\omega}(F; a, b) \leq V^+(F; a, b) - V^-(F; a, b)$.

PROOF. If $V^+(F; a, b)$ is infinite, then clearly the theorem holds. Suppose, therefore, that $V^+(F; a, b)$ is finite. By lemma 4, $V^-(F; a, b)$ is then finite.

Let $a \leq x_0 < x_1 < x_2 < \cdots < x_n \leq b$ be any ω -subdivision of [a, b]. We divide the set of integers 1, 2, 3, \cdots , *n* into two parts *P* and *N* such that $F(x_i+)-F(x_{i-1}-) \geq 0$ for $i \in P$ and $F(x_i+)-F(x_{i-1}-) < 0$ for $i \in N$. The intervals (x_{i-1}, x_i) , $i \in P$ and (x_{i-1}, x_i) , $i \in N$ form two elementary systems I_1 and I_2 in [a, b]. So

$$V = \sum_{i=1}^{n} |F(x_i+) - F(x_{i-1}-)| = \sigma I_1 - \sigma I_2.$$

$$\leq V^+(F; a, b) - V^-(F; a, b).$$

Since the above inequality is true for any ω -subdivision of [a, b], the theorem follows.

The following example shows that the equality sign need not hold in the relation

$$V_{\omega}(F; a, b) \leq V^{+}(F; a, b) - V^{-}(F; a, b).$$

Example. Let

$$\omega(x) = \begin{array}{ccc} 0 & \text{for} & 0 \leq x \leq \frac{1}{2}, \\ 1 & \text{for} & \frac{1}{2} < x \leq 1 \end{array}$$

and

$$F(x) = \frac{4x \text{ for } 0 \le x \le \frac{1}{2},}{3 - 2x \text{ for } \frac{1}{2} < x \le 1.}$$

Then clearly F(x) belongs to the class \mathcal{U} , and

$$V^+(F; 0, \frac{1}{2}) = 2, V^+(F; \frac{1}{2}, 1) = 0, V^-(F; 0, \frac{1}{2}) = 0, V^-(F; \frac{1}{2}, 1) = -1.$$

Using lemma 1 and lemma 2, we obtain

$$V^+(F; 0, 1) = 2, V^-(F; 0, 1) = -1.$$

Any ω -subdivision of [0, 1] consists of only two points x_0, x_1 , where $0 \leq x_0 \leq \frac{1}{2}, \frac{1}{2} < x_1 \leq 1$. Hence $V = |F(x_1+)-F(x_0-)| = |F(x_1)-F(x_0)|$. Since $0 \leq F(x_0) \leq 2$ and $1 \leq F(x_1) < 2$ we deduce that

$$V_{\omega}(F; 0, 1) = 2 < V^{+}(F; 0, 1) - V^{-}(F; 0, 1).$$

THEOREM 2. If F(x) is $AC-\omega$ above on [a, b] and $\omega(x)$ is constant in $(\alpha, \beta) \subset [a, b]$, then F(x) is non-increasing in (α, β) .

P. C. Bhakta

PROOF. From the definition of F(x), it follows that F(x) is continuous in (α, β) . Let $\varepsilon > 0$ be arbitrary. Since F(x) is $AC - \omega$ above on [a, b], there exists a positive number δ such that for every elementary system $I: (x_i, x'_i)$ in [a, b] we have $\sum_i \{F(x'_i+)-F(x_i-)\} < \varepsilon$ whenever $\sum_i \{\omega(x'_i+)-\omega(x_i-)\} < \delta$. Let x_1 and $x_2(>x_1)$ be any two points in (α, β) . Then $\{\omega(x_2+)-\omega(x_1-)\} < \delta$, and it follows that $F(x_2)-F(x_1) < \varepsilon$. Since $\varepsilon > 0$ is arbitrary, it follows that $F(x_2) \leq F(x_1)$ which proves the theorem.

COROLLARY. If F(x) is $AC - \omega$ on [a, b] and $\omega(x)$ is constant in $(\alpha, \beta) \subset [a, b]$, then F(x) is constant in (α, β) .

THEOREM 3. If F(x) is $AC-\omega$ above on [a, b], then F(x) is $BV-\omega$ on [a, b].

PROOF. Since F(x) is $AC-\omega$ above on [a, b] there exists a number $\delta > 0$ such that for every elementary system I in [a, b] we have

(10)
$$\sigma I < 1$$
 whenever $I_{\omega} < \delta$.

We consider the following cases.

(I). The saltus of $\omega(x)$ at every point of [a, b] is less than $\frac{1}{2}\delta$.

In this case [a, b] can be divided into a finite number of subintervals

$$[c_0, c_1], [c_1, c_2], \cdots [c_{N-1}, c_N] \ (a = c_0 < c_1 < \cdots < c_N = b)$$

such that

(11)
$$\{\omega(c_r+)-\omega(c_{r-1}-)\}<\frac{1}{2}\delta, \qquad r=1, 2, \cdots, N.$$

Let $I: (x_i, x'_i), i = 1, 2, \dots, n$ be any elementary system in $[c_{r-1}, c_r]$. Then by (11), $I_{\omega} < \delta$ and so by (10), $\sigma I < 1$. This implies that

$$V^+(F; c_{r-1}, c_r) \leq 1, \qquad r = 1, 2, \cdots, N.$$

By lemma 1, it follows, therefore, that $V^+(F; a, b)$ is finite.

(II). There exist points in [a, b] at which the saltus of $\omega(x)$ is $\geq \frac{1}{2}\delta$.

It is known [4] that these points are finite in number. Let them be $\alpha_1, \alpha_2, \dots, \alpha_m$ such that $\alpha_1 < \alpha_2 < \dots < \alpha_m$. In $[\alpha_{r-1}, \alpha_r]$ we choose points $\alpha, \beta(>\alpha)$ of S such that

(12)
$$\omega(\alpha) - \omega(\alpha_{r-1}+) < \frac{1}{2}\delta$$
 and $\omega(\alpha_r-) - \omega(\beta) < \frac{1}{2}\delta$.

At each point in $[\alpha, \beta]$ the saltus of $\omega(x)$ is less than $\frac{1}{2}\delta$. So, by Case (I), $V^+(F; \alpha, \beta)$ is finite.

Let $I': (x_i, x'_i), i = 1, 2, \dots, n$ be any elementary system in $[\alpha_{r-1}, \alpha]$. If $\alpha_{r-1} < x_1$ then by (12), $I'_{\omega} < \delta$ and so by (10), $\sigma I' < 1$. If $\alpha_{r-1} = x_1$ we choose a point ξ in $(\alpha_{r-1}, x_1') \cap S$ such that

$$|F(\xi)-F(\alpha_{r-1}+)|<1.$$

The intervals $(\xi, x'_1), (x_2, x'_2), \dots, (x_n, x'_n)$ form an elementary system I'' in $[\alpha_{r-1}, \alpha]$. By (12), $I''_{\omega} < \delta$ and so $\sigma I'' < 1$. Now

$$\sigma I' = \{F(x_1'+) - F(x_1-)\} + \sum_{i=2}^{n} \{F(x_i'+) - F(x_i-)\}$$

= $\{F(\alpha_{r-1}+) - F(\alpha_{r-1}-)\} + \{F(\xi) - F(\alpha_{r-1}+)\} + \sigma I''$
< 2+K, where $K = |F(\alpha_{r-1}+) - F(\alpha_{r-1}-)|.$

So, in any case $\sigma I' < 2+K$. Since this is true for every elementary system I'in $[\alpha_{r-1}, \alpha]$, it follows that $V^+(F; \alpha_{r-1}, \alpha)$ is finite. Similarly it can be shown that $V^+(F; \beta, \alpha_r)$ is finite and consequently by lemma 1, it follows that $V^+(F; a, b)$ is finite. The proof of the theorem is, therefore, complete because by lemma 4, $V^-(F; a, b)$ is finite and so by theorem 1, F(x) is $BV-\omega$ on [a, b].

Finally the author is thankful to Dr. B. K. Lahiri for his kind help and suggestions in the preparation of this paper.

References

- [1] Bhakta, P. C., On functions of bounded ω -variation. Communicated to 'Rivista di Matematica della Universita Parma' for publication.
- [2] Jeffery, R. L., Generalised integrals with respect to functions of bounded variation, Can. J. Math. 10 (1958) 617-628.
- [3] Kennedy, M. D., Upper and lower Lebesgue integrals, Proc. Lond. Math. Soc. (2) 32 (1930-31), 21-50.
- [4] Natanson, I. P., Theory of functions of a real variable (New York, 1955), p. 205.

Department of Mathematics The University of Burdwan Burdwan, West Bengal, India

[8]