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1. Introduction

Let a)(x) be a non-decreasing function defined in the interval (a, &].
We extend the definition to all x by taking co(x) = co(a) for x < a and
(u(x) = co(b) for x > b. R. L. Jeffery [2] has denoted by °tt the class of func-
tions F(x) defined as follows:

If S denotes the set of points of [a, b] at which co(x) is continuous, then
F(x) is defined, and continuous over S, at all points of S. At any point of
discontinuity x0 of a>(x), it is supposed that F(x) tends to a limit as x tends
to a;0+ and to x0— over the points of S. These limits will be denoted by
F(xo-{-} and F(x0—). Also for x < a, it is assumed that F{x) — F(a-\-) and
for x > b, F(x) = F(b—). F(x) may or may not be defined at points of
discontinuity of co(x).

Jeffery also has introduced the following

Definition. A function F(x) defined on [a, b] and in °U is absolutely
continuous relative to co, A C—co, if for s > 0 there exists d > 0 such that
for any set of non-overlapping intervals (x^x'f) on [a, b] with 2{tt)(xi+)
—co(Xf—)} < d the relation 2 \P(x'iJr)~F(xt—)\ < e is satisfied.

We observe that the above condition for a function to be AC—co can
be broken up into two parts which, when taken together, become equivalent
to that of AC—w.

Let a :g! xt < x[ ^ x2 < x'2 rgj • • • 5S xn < x'n ̂  b be any subdivision
of [a, 6]. Following Kennedy [3], we say that the intervals {xlt x^), (x2, x'2)r

• • •, (xn, x'n) form an elementary system / in [a, b] which we denote by / :
(xi,x'f),i = 1,2,3, • • - ,« . Let

al = 2 {F(x't+)-F(xt-)}. 7. = 2 {«,(*;+)-«,(*,-)}.
i=l 1=1

Definition. A function F(a;) defined on [a, J] and belonging to the class
% is said to be absolutely continuous above relative to co, AC—co above,
if for s > 0 there exists d > 0 such that for any elementary system / in
[a, b] with Ia < d the relation al < s holds. It is said to be absolutely
continuous below relative to co, AC—co below, if the relation al > —e
holds whenever Iu < d.
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This definition is analogous to the definition in [3] for functions
absolutely continuous above and below. Assuming that m(z) is not constant
in [a, b], let

w(a) = 2/0 < yx < y2 < • • • < yn = co(b)

be any subdivision of [<o(a), <o(b)] where y( e <o(E), E — [a, b]. For any yt

there is an xt e E for which yt = eo(a:,). If for any yf there exist more than
one x{ such that o>{xt) — yit we shall take any one xt. We say that the points
x0, xlt x2, • • • xn form a subdivision of [a, b] relative to <a or are an co-
subdivision of [a, b]. We have introduced in [1] the following

Definition. Let F(x) be defined on [a, b] and be in class Ql. The least
upper bound of „

for all possible w-subdivisions x0, xt, • • •, xn of [a,b] is called the total
w-variation of F(x) and is denoted by Va(F; a, b). If Va(F; a, b) < oo then
F(x) is said to be of bounded variation relative to w on [«,&]•

In [1] we have shown that any function F(x) which is AC — <o on
[a, b] must be BV—w on [a, b].

Here we observe that the same result can be proved under weaker
conditions on F(x). It is possible to show that if F(x) is AC—to above (or
below) on [a, b] then it is BV—ot on [a, b]. To prove this, we require some
preliminary results for which some further definitions are needed.

Definition. Let F(x) be defined in [a, b] and belong to the class °k, and
let / : (Xf.x'i), i — 1, 2, • • •, n be any elementary system in [a, b]. The l.u.b.
and g.l.b. of the aggregate {al} of sums al for all possible elementary systems
/ in [a, b] are called respectively the positive and negative variation of
F(x) in [a, b], and are denoted by V+(F; a, b) and V~(F; a, b). It is clear
that

V+(F; a,b)^O and V~(F; a, b) £ 0.

Throughout the paper we shall consider only those functions F(x)
of the class % for which F(x+) and F(x—), x e E—S, are finite.

2. Preliminary lemmas

LEMMA 1. Let a < c <b. If V+(F; a, c) and V+(F; c, b) are finite, then
so is V+(F;a,b); further if F(c—) = F(c+) then

V+(F; a, b) = V+(F; a, c)+V+(F; c, b).

PROOF. Let I: (xt, x't), i = 1, 2, • • •, n be any elementary system in
[a, b]. We consider the following cases.

(a) If x'n ^ c, I becomes an elementary system in [a, c] and so

https://doi.org/10.1017/S1446788700027804 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700027804


382 P. C. Bhakta [3]

(1) ol g V+(F; a, c).

(b) If xx ̂  c, I is an elementary system in [c, b], so

(2) al ̂  V+(F; c, b).

(c) If x'm ̂  c :S «m+1> m < n, I can be exhibited as the sum of two
elementary systems, 7X in [a, c] and / 2

 m [c> ^] an(^ so«

(3) o-Z = er/i+a^ ^ V+(F; a, c)+V+(F; c, b).

(d) If xm< c <x'm, m ^n, then the intervals (*,, x[), (x2, x'2), • • •,
(a'm-i.^m-i). (xm.c) and (c.x'J, (x^.x^), • • • (xn,x'n) form elementary
systems It and I2 in [a, c] and [c, 6] respectively. Since

F(x'm+)-F(xm-) =

we have

^ F+(F; a, c)+V+(F; c, b)+K
where

K=\F(c-)-F{c+)\.

Hence from (1), (2), (3), (4) it follows that, in any case

(5) al £V+(F;a,c)+V+(F;c,b)+K.

Since (5) is true for any elementary system in [a, b] we have

(6) V+(F; a, b) g V+(F; a, c)+V+(F; c, b)+K.

This proves the first part.
Now suppose that F(c—) = F(c+). Then from (6)

(7) V+(F; a, b) ^ V+(F; a, c)+V+(F; c, b).

Let I1 be any elementary system in [a, c] and / 2 be that in [c, b~\. / x and / 2

together form an elementary system / in [a, b]. So

al1+al2 = al ̂  V+(F; a, b).
This implies that

(8) V+(F; a, c)+V+(F; c, b) =g V+(F; a, b).

Combining (7) and (8) we obtain

F+(F; a, b) = V+(F; a, c)+V+(F; c, b).

Proceeding in the same manner as in Lemma 1 we may prove
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LEMMA 2. Let a < c < b. If V~{F;a, c) and V~(F; c, b) are finite,
then so is V-(F;a,b); further if F(c—) = F(c+) then V-{F;a,b) =
V-(F;a,c)+V-(F;c,b).

LEMMA 3. Let xlt x%, xs, • • • be the set of those points in [a, b] for which
F(xi+) # F(Xt-). If V+(F; a, b) {or V~{F; a, b)} is finite, then the series
^,i\F(xt-\-) — F(x{—)| is convergent.

PROOF. We suppose that V+(F; a, b) is finite. The proof in the other
case is analogous. Let Si.St,'" be the subset of xltx2,--- where
F (£<+) —F(£t—) > 0. Let n be any positive integer. We arrange | 1 (

f2, • • •, £n in ascending order and rename them, if necessary, by f̂ , fg»'''»
£'„. It is clear that g[ > a and £'„ < b. We now choose the points at, a,',.
a, < I) < a;, i = 2, 3, • • •, n-\ in ((£_, + f^/2, (f, + £^)/2) n S;
«i. «I. «i < fi < «i >n ((«+£)/2, (fi+fi)/2) n S and a., < , an < fn < x'n
in ( ( d + f i ) / 2 . (&+&)/2) n S such that for arbitrary 6 > 0,

- F ( « ; - ) < F(a't)-F(a,.)+£/2'+i, » = 1, 2, • • •, n.

The intervals (oCj-, a )̂, t = 1, 2, • • •, n form an elementary system It in
[a, b] and so cr/j gs ^ + (F; a, 6). Therefore

Since M may be any positive integer, it follows that the series
l,{F(St+)-F(St-)} is convergent.

Next, let rj1,t]2, • • • be the subset of xt, xz, • • • where F(i]i+) —
F(Vi~) < °- F°r a n arbitrary positive integer n, we can choose, as above,
an elementary system 72 : (/?,-, /SJ), i = 1,2, • • -,n with /?,-, /3; € S and
ft > « , # , < 6 such that

Let / denote the elementary system complementary to J2. Then aI2-\-aJ =
F(ft-)-F(a+). So,

al2 = F(b-)-F(a+)-aJ ^ F(6-)-i7(a+)-F+(F; a, b).
Hence

?<+)-^fa,-)} ^ F(6-)-F(a+)-r+(F; a, d)-e.

Since n is any positive integer and since ^,{F{r)i-\-) — F(rji—)} £S 0, the
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series 2,{-F(>7,+)~-F(??i~)} therefore converges. The lemma now follows
from the fact that

2 \F(xt+)-F(xt-)\ = 2 {F(f,+)-F(|,-)}- 2 {F(Vi+)-F(Vi-)}.
i i i

LEMMA 4. / / V+{F; a, b) is finite then so is V~(F; a, b) and vice versa.

PROOF. Suppose that V+{F; a, b) is finite. Let / : (a;,-, x't), i = 1,
2, • • •, n be any elementary system in [a, b~\. Then we have

al = {F(x'n+)-F(x1-)}-
n-£{F(xi+1-)-F(x'(+)}.

» = 1

Let x1 > a and x'n < b. Writing a = x0, b = xn+l we have

al = JF(6-)_ i

We divide the set of integers t = 0, 1, 2, • • •, n into two parts A and 5 such
that i e A if xi+l = #] and » e B if a;1+1 > x\. Then

^ { } ^ {
isA ieB

Let ^ j , f2, • • • be the set of points in [a, 6] where
Then by lemma 3,

is finite. For i 'eB and arbitrary e > 0, we choose the points a,-, a<(> a,) in
{x'i • xi+i) n ^ such that

F{**+!-)-F(x't+) < F(«;)-F(a,.)+e/2'+i.

The intervals (a,-, a^), ieB form an elementary system I1 in [a, b]. So we
have

|Zi < aIi+e ^ V +(F; a, ft)+e.
Also utilising (9)

2i ^ - 1 iir(*;+)-FK--)i ^ -^.
Hence

al ^ F(6-)-F(a+)-F+(F; a, b)-e-K.

li a = xltx'n = box a — xltx'n<b or a <xx,x'n = b then it can be similarly
shown that al 2g G, a fixed constant independent of/. Since V~(F; a, b) ^ 0,
it follows that V~(F; a, b) is finite.

In a similar way it may be shown that if V~(F; a, b) is finite then
V+(F; a, b) is also finite. This proves the lemma.
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3. Theorems and Corollaries

THEOREM 1. If F(x) is defined in [a, b] and belongs to the class tft, then
VJF; a, b) < V+(F; a, b)-V~(F; a, b).

PROOF. If V+(F; a, b) is infinite, then clearly the theorem holds.
Suppose, therefore, that V+(F; a, b) is finite. By lemma 4, V~(F; a, b)
is then finite.

Let a gS x0 < xt < x2 < • • • < xn ^ b be any co-subdivision of [a, b].
We divide the set of integers 1, 2, 3, • • •, n into two parts P and N such that
F(Xi+)—-F^-!—) ^ 0 for ieP and F(xi+)—F(xi_1—) < 0 for ieN.
The intervals (*<_!,*<), ieP and [xi_1,xt),ieN form two elementary
systems Jx and / 2 in [a, b]. So

^V+(F;a,b)-V-(F;a,b).

Since the above inequality is true for any w-subdivision of [a, b], the
theorem follows.

The following example shows that the equality sign need not hold in
the relation

VU(F; a, b) ^ V+(F; a, b)-V~{F; a, b).

Example. Let
0 for O^x ^ | ,

W(a;) = l for i < « g l
and

4* for 0 ̂  a; ^ J ,
* ~ 3-2a; for | < a; ̂  1.

Then clearly F(«) belongs to the class 'W, and

F+(F; 0, i ) = 2, F+(F; i 1) = 0, 7~(F; 0, f) = 0, F-(F; J, 1) = - 1 .

Using lemma 1 and lemma 2, we obtain

V+(F; 0, 1) = 2, F-(F; 0, 1) = — 1.

Any co-subdivision of [0, 1] consists of only two points x0, xt, where
0 ^ x0 ^ | , l < xx ^ 1. Hence F = |F(a;1+)-F(a;0-)| = IFfas^-Ffxi,)!.
Since 0 <; F(x0) ^ 2 and 1 ^ F(xx) < 2 we deduce that

FW(F; 0, 1) = 2 < F+(F; 0, 1 ) -F - (F ; 0, 1).

THEOREM 2. / / F(x) is AC—ca above on [a, b] and <a{x) is constant in
(a, /?) C [a, 6], then F(x) is non-increasing in (a, /?).
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PROOF. From the definition of F(x), it follows that F(x) is continuous
in (a, P). Let e > 0 be arbitrary. Since F(x) is AC—w above on [a, b],
there exists a positive number d such that for every elementary system
/ : (* , ,£ ( ) in [a, b~\ we have 24{F(avl-)—Ffo—)} < e whenever
2,-{<w(a;<+)— (o(xt—)} < 5. Let â  and *2(> a )̂ be any two points in (a, /S).
Then (co(a:24-) — wfo—)} < <5, and it follows that F(xi)—F(x1)<e.
Since e > 0 is arbitrary, it follows that F(x2) ^ F(x1) which proves the
theorem.

COROLLARY. If F(x) is AC—to on [a, b] and a>(x) is constant in (a, ft) C
[a, 6], then F(x) is constant in (a, /S).

THEOREM 3. / / F(x) is AC—to above on [a, A], then F(x) is BV—w on
[a, b}.

PROOF. Since F(x) is AC—a> above on [a, b] there exists a number
6 > 0 such that for every elementary system / in [a, 6] we have

(10) al < 1 whenever /„ < 5.

We consider the following cases.

(I). The saltus of a>(x) at every point of [a, b] is less than \b.

In this case [a, b] can be divided into a finite number of subintervals

[co. c{\, [clt c2], • • • [cN_lt cN] (a = c0 < ct < • • • < cN = b)

such that

(11) {a>(cr+)-<»{ct~i-)} <¥, r=l,2,-;N.

Let I: (xit x't), i — 1, 2, • • •, n be any elementary system in [cr_1( cr].
Then by (U), /„ < 6 and so by (10), al < 1. This implies that

F+(F ; C r _ 1 > C r ) ^ l , r = 1,2. • • - , # .

By lemma 1, it follows, therefore, that V+(F; a, b) is finite.

(II). There exist points in [a, b] at which the saltus of co(x) is 2: \d.

It is known [4] that these points are finite in number. Let them be
«i, «a. "" •» «m

 s u c n tha-t «i < a2 < • • • < <xm. In [ a ^ , ar] we choose points
a, fi{> a) of S such that

(12) ft)(a)_w(ar_1+) < 1 ^ and o)(ar-)-w(/3) < |<5.

At each point in [a, /?] the saltus of w(x) is less than ^d. So, by Case (I),
V+(F; a, /3) is finite.

Let / ' : (xt, x'i), i = 1, 2, • • •, n be any elementary system in [ar_!, a].
If <*,._! < ^ then by (12), I'o < d and so by (10), 0/ ' < 1.
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If a,.! = xx we choose a point f in (ar_1, x[) n S such that

\F(i)-F(ar_1+)\ < 1.

The intervals (f, x[), (xit x'2), • • •, (xn,x'n) form an elementary system
I" ui [«r-i. «]• By (12), I'J < 6 and so al" < 1. Now

a/' = { i r ( : e i + ) __ F { a ; i _ ) } + | j 27 ( a . ; + ) _ i r ( a ; t . _ ) }

< 2+K, where X = |F(ar_1+)-F(or_1-) | .

So, in any case al' < 2-\-K. Since this is true for every elementary system / '
in [a,.,, a], it follows that V+(F; x,^, «) is finite. Similarly it can be shown
that V+(F; fl, a.r) is finite and consequently by lemma 1, it follows that
V+(F; a, b) is finite. The proof of the theorem is, therefore, complete because
by lemma 4, V~(F; a, b) is finite and so by theorem 1, F(x) is BV—w
on [a, 6].

Finally the author is thankful to Dr. B. K. Lahiri for his kind help and
suggestions in the preparation of this paper.
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