ON PERMUTATIONAL PRODUCTS OF GROUPS PART 2 – AMALGAMATED PRODUCTS

R. J. GREGORAC

(Received 16 October 1968; revised 14 June 1969) To Bernhard Hermann Neumann on his 60th birthday Communicated by G. E. Wall

1. Introduction

The standard methods of constructing generalized free products of groups (with a single amalgamated subgroup) and permutational products of groups are to consider groups of permutations on *sets*. Although there is an apparent similarity between these two constructions, the exact nature of the relationship is not clear. The following addendum to [4] grew out of an attempt to determine this relationship. By noting that the original construction of permutational products (B. H. Neumann [7]) deals with a group of permutations on a *group* (although the group structure has been previously ignored; see [7], [8]) we here give an extension of the original permutational product-construction which yields both the generalized free product and the permutational products as groups of permutations on the ordinary free product of the constituents of the underlying group amalgam and a permutational product is a group of permutations on the direct product of the constituents of the amalgam.

It is also shown that this construction can be extended to other groups G containing the constituents of the amalgam provided certain conditions hold; to differentiate the general case from ordinary permutational products we call the groups of permutations so obtained *amalgamated products*.

As in [4] an epimorphism can be constructed between suitable amalgamated products and the wreath product embeddings of permutational products given in [4] can then be extended to certain amalgamated products.

Finally, this construction also yields a class of related generalized regular products (Theorem 4.6), which, so far as we know, is the only such class known, besides ordinary permutational products (Allenby [2]) and some classes which have been shown to exist by Wiegold [12].

2. Preliminaries

If x and y are elements of a group G, write $y^{-1}xy = x^y$ and $x^{-1}y^{-1}xy = [x, y]$. Note that all mappings act on the right. If X_i ($i \in I$) are subgroups of G,

then $[X_i]$ denotes the subgroup of G generated by $\{[x_i, x_j]|x_i \in X_i, x_j \in X_j, i \neq j, i, j \in I\}$ and X_i^G the normal closure X_i $[X_i, G]$ of X_i in G. We shall say that a group G generated by subgroups X_i $(i \in I)$ is a *regular product* of the X_i , if $G \cong F/N$, where $F = \Pi^* \{X_i | i \in I\}$ is the (ordinary) free product of the X_i and $N \subseteq [X_i]^F$ (Golovin [3]). Assume now that the index set I is ordered.

THEOREM 2.1 [3]. If a group G is generated by subgroups X_i ($i \in I$), then G is a regular product of the X_i if and only if every element g if G has a unique regular representation

 $g = x_1 x_2 \cdots x_n u,$ where $x_k \in X_{i_k}$, $u \in [X_i]^G$ and $i_1 < i_2 < \cdots < i_n.$

If V is a set of words, let
$$V(G)$$
 denote the V-verbal subgroup of G, i.e., the subgroup of G generated by all values of the words of V in G.

DEFINITION 2.2 (Moran [5]). Let V be a set of words. The V-verbal product $\Pi_V^*\{X_i|i \in I\}$ of groups X_i is $F/V(F) \cap [X_i]^F$, where $F = \Pi^*\{X_i|i \in I\}$.

THEOREM 2.3 [5]. If $G = \Pi_V^* \{X_i | i \in I\}$ and $I = I_1 \cup I_2$, where $I_1 \cap I_2$ is empty, then the subgroups generated by the X_i $(i \in I_1)$ and X_j $(j \in I_2)$ are, respectively, $G_1 = \Pi_V^* \{X_i | i \in I_1\}$ and $G_2 = \Pi_V^* \{X_j | j \in I_2\}$, and $G = G_1 *_V G_2$.

THEOREM 2.4 [6]. If X_i $(i \in I)$ are groups and ϕ_i is a homomorphism of the group X_i for each $i \in I$, then there exists a homomorphic mapping ϕ of $\prod_{V}^* \{X_i | i \in I\}$ onto $\prod_{V}^* \{X_i \phi_i | i \in I\}$ whose restriction to the group X_i is ϕ_i for every $i \in I$.

Suppose for each $i \in I$, A_i is a group containing a subgroup H_i which is isomorphic to a fixed group H, say $\psi_i : H_i \cong H$. Let $\psi_{ij} = \psi_i \psi_j^{-1}$. We change the notation of [4] and define an amalgam of the A_i amalgamating the H_i according to the ψ_{ij} to be the system $(A_i, H_i, \psi_{ij}; i, j \in I)$. We denote this amalgam by $\mathscr{A} = Am(A_i, H_i, \psi_{ij}; i, j \in I)$ and ordinarily think of the H_i as being identified by the ψ_{ij} so the amalgam becomes the union of the A_i intersecting in H (or H_1). The A_i are called the *constituents* of the amalgam and H is the *amalgamated sub-group*.

A group G embeds the amalgam \mathscr{A} if there exist isomorphisms $\phi_i : A_i \to A'_i \subseteq G$ such that (i) $A'_i \cap A'_j = H' \subseteq G$, (ii) if $h \in H$, then $h\psi_i^{-1}\phi_i = h\psi_j^{-1}\phi_j$ and (iii) if $h' \in H'$, then $h'\phi_i^{-1} \in H_i$ and $h'\phi_i^{-1}\psi_i = h'\phi_j^{-1}\psi_i$ (i, $j \in I$).

The group G will be said to be generated by the amalgam \mathcal{A} , if G embeds \mathcal{A} and is generated by the embedded copy of \mathcal{A} .

If G is the generalized free product on \mathscr{A} (this can be defined as the group constructed in the following Example (3.6) (2)), then K is called a *generalized* regular product on \mathscr{A} , if K embeds \mathscr{A} and $K \cong G/N$, where N is a normal subgroup of G contained in $[A_i]^G$ (Wiegold [12]). DEFINITION 2.5 [11]. If V is a set of words, the group G is a generalized V-verbal product of its subgroups G_{α} ($\alpha \in M$) with amalgamations $G_{\alpha} \cap G_{\beta} = H_{\alpha\beta}$ ($\alpha \neq \beta$), if

(i) G is generated by the G_{α} ($\alpha \in M$) and

(ii) $V(G) \cap [G_{\alpha}]^{G} = \{1\}.$

THEOREM 2.6 [12]. If the free generalized V-product of A and B amalgamating H and H ϕ according to ϕ exists it is G_0/N , where

(i) G_0 is the V-verbal product of A and B and

(ii) N is the normal closure in G_0 of the set of all elements of the form $h^{-1}(h\phi)$, where h ranges over H.

LEMMA 2.7. ([11], LEMMA 7.9). Let G be any group and $g, d \in G$ such that $[d^2, g] = 1$. Then for each $r \ge 0$ $[g^{2^r}, d]$ is in the (r+1)-st term of the lower central series of G, $G_{(r+1)}$.

3. The construction

For simplicity we deal with only two groups here; an extension to an arbitrary number of groups will be indicated later.

Let $Am(A_1, A_2; H_1, H_2; \psi)$, $\psi_{12} = \psi$, be a given group amalgam. Suppose G is any group containing isomorphic copies A_i^* of A_i (i = 1, 2), where $\phi_i : A_i \cong A_i^*$ (i = 1, 2), such that

(i) $A_1^* \cap A_2^* = H_1^* \cap H_2^*$, where $H_i^* = H_i \phi_i$ (i = 1, 2), and

(ii) the isomorphism $\psi^* = \phi_1^{-1}|_{H_1^*} \psi \phi_2|_{H_2}$ from H_1^* onto H_2^* acts as the identity when restricted to $H_1^* \cap H_2^*$.

Let *H* be the subgroup of *G* generated by H_1^* and H_2^* and suppose $H \cap A_2^* = H_2^*$. Let $G = \bigcup zH$, $z \in Z$, be a coset decomposition of *G* relative to *H*. Assume further that there is an automorphism τ (called a *switching map*) of *H* such that $\tau | H_1^* = \psi^*$ and $\tau | H_2^* = \psi^{*-1}$. Note that $\tau^2 = 1$. Next let σ be any permutation on *Z* of order two which fixes the coset representative of *H* and such that for all $z \in Z$, if $A_2^* \setminus H_2^*$ meets zH, then $A_1^* \cap (z\sigma)H$ is empty. (E.g., see Example 3.6 (1) which follows.) Define a function π on *G* by

(3.1)
$$(zh)\pi = (z\sigma)(h\tau), \quad \text{for } z \in Z, h \in H.$$

Clearly $\pi^2 = 1$, so $\pi = \pi^{-1}$ and $\pi \in \mathscr{S}(G)$, the group of all permutations on G. Finally, assume $(1\pi)A_2^* \subseteq A_2^*H$.

Let $\rho: G \to \mathscr{G}(G)$ be the right regular representation of G. We shall now prove that the amalgam $\mathscr{A} = A_1^* \rho \cup \pi^{-1} (A_2^* \rho) \pi$ is a copy of $Am(A_1, A_2; H_1, H_2; \psi)$ embedded in $\mathscr{G}(G)$. The subgroup of $\mathscr{G}(G)$ generated by the amalgam \mathscr{A} will be the required product. Clearly $A_1^* \rho \cong A_1$ and $\pi^{-1}(A_2^* \rho)\pi \cong A_2^* \rho \cong A_2$. We first show that $H_1^* \rho = \pi(H_2^* \rho)\pi$ (recall $\pi = \pi^{-1}$).

Let $h_1 \in H_1^*$ and denote the image of h_1 under ρ by ρ_{h_1} . Then

(3.2)
$$\rho_{h_1} = \pi \rho_u \pi, \quad \text{where } u = h_1 \psi^*,$$

for if $zh \in G$, $z \in Z$, $h \in H$, then

$$(zh)\pi\rho_u \pi = (z\sigma h\tau)\rho_u \pi$$

= $(z\sigma h\tau h_1\psi^*)\pi$
= $(z\sigma(hh_1)\tau)\pi \quad (\psi^* = \tau|H_1^*)$
= $z(hh_1) \qquad (\sigma^2 = \tau^2 = 1)$
= $(zh)\rho_{h_1}$.

Now let

(3.3)
$$\rho_{a_1} = \pi \rho_{a_2} \pi \in A_1^* \rho \cap \pi(A_2^* \rho) \pi.$$

where $a_1 \in A_1^*$ and $a_2 \in A_2^*$. Then

(3.4)
$$1\rho_{a_1} = a_1 \in A_1^*.$$

Let 1 = zh, where z represents H and $h \in H$. Note $1\pi = (z\sigma)(h\tau) = z(h\tau) \in H$ and

$$(1)\pi\rho_{a_2}\pi = (1\pi a_2)\pi = (a'_2 h')\pi, \ a'_2 \in A_2^*, \ h' \in H \qquad ((1\pi)A_2^* \subseteq A_2^*H) = (z'\sigma)(h''\tau),$$

where $a'_{2}h' = z'h'', z' \in Z, h'' \in H$. By (3.3) and (3.4),

(3.5)
$$(z'\sigma)(h''\tau) = a_1 \in A_1^*,$$

so $(z'\sigma)H$ meets A_1^* ; hence no element of $A_2^* \setminus H_2^*$ can be written as $z'h^*$, $h^* \in H$, that is, $a'_2 \in H_2^*$. Since $1\pi \in H$, $a_2 = (1\pi)^{-1}a'_2h'$ must also be in $H \cap A_2^* = H_2^*$. If $a_2 = a_1^*\psi^*$, for some $a_1^* \in H_1^*$, then $1\pi a_2 = z(h\tau)(a_1^*\psi^*) = z(ha_1^*)\tau$ and $(1\pi a_2)\pi = (zh)a_1^*$. But $a_1^* = a_1$ by (3.5), so $a_1 \in H_1^*$ and as in (3.2) $a_2 = a_1\psi^*$. Hence $H_1^*\rho = A_1^*\rho \cap \pi(A_2^*\rho)\pi$, as required.

The group $P(G, Z, \sigma)$ generated by \mathscr{A} in $\mathscr{S}(G)$ will be called a (G, Z, σ) amalgamated product on \mathscr{A} , or more briefly, a (G, Z, σ) -product on \mathscr{A} .

(3.6) EXAMPLES. Throughout the following examples we consider the given amalgam $\mathscr{A} = Am(A_1, A_2; H_1, H_2; \psi)$.

Let $G = A_1 * A_2/N$ be any ordinary regular product of A_1 and A_2 (we assume here that $A_1^* = A_i$ (i = 1, 2)). Then (i) and (ii) hold trivially because $H_1 \cap H_2 = 1$. It follows from the unique normal form for elements of G that $H \cap A_2 = H_2$, for, if $a_2 \in A_2 \cap H$ and $a_2 = h_1 h_2 c$, $h_1 \in H_1$, $h_2 \in H_2$, $c \in [A_1, A_2]$, then

$$1 = h_1 a_2^{-1} [a_2^{-1}, h_1] h_2 c = h_1 (a_2^{-1} h_2) c', \ c' \in [A_1, A_2], \qquad \text{so } a_2^{-1} h_2 = 1,$$

that is, $a_2 \in H_2$.

Choose a transversal Z of H. There is always at least one permutation σ satisfying the hypotheses of the construction, namely, the identity *i* on Z. For, if zH meets $A_2 \setminus H_2$, then $zh^* = a_2 \in A_2 \setminus H_2$, so $z = h_1^* a_2^* c$, $h_1^* \in H_1$, $a_2^* \in A_2 \setminus H_2$, $c \in [A_1, A_2]$. If $zh = a_1 \in A_1$, then $h_1^* a_2^* ch = a_1$, that is, $h_1^{**} a_2^{**} c^* = a_1$, $h_1^{**} \in H_1$, $a_2^{**} \in A_2 \setminus H_2$, $c^* \in [A_1, A_2]$, which is impossible by the uniqueness of the normal form for elements. Thus $zH \cap A_1$ is empty. Finally, if τ exists and $1 \in Z$, then $1\pi = 1$, so the condition $(1\pi)A_2 \subseteq A_2H$ can also always be satisfied here. The main problem is, of course, the existence of τ . We now consider some important cases where τ can be shown to exist.

(1) PERMUTATIONAL PRODUCTS. Let $G = A_1 \times A_2$; then $H = H_1 \times H_2$ and the switching map τ exists, since it merely sends $(h_1, h_2) \in H$ to $(h_2 \psi^{-1}, h_1 \psi)$ which evidently defines an automorphism on H. Let S_i be any transversal of H_i in A_i (i = 1, 2), choose $S_1 \times S_2$ as the transversal Z of H in G and let σ be the identity on Z. Note $HA_2 = A_2H$, so $(1\pi)A_2 \subseteq A_2H$. The group $P = P(A_1 \times A_2, S_1 \times S_2, i)$ is a *permutational product* on \mathscr{A} as originally described by B. H. Neumann [7] in 1954. (The term 'permutational product' was given by B. H. Neumann in 1960 ([8]) to a certain permutation group on $S_1 \times S_2 \times H_1$ which is isomorphic to P above.)

(2) GENERALIZED FREE PRODUCTS. Let $G = A_1 * A_2$, the ordinary free product on A_1 and A_2 ; then $H = H_1 * H_2$. By the fundamental property of free products the isomorphisms $\psi : H_1 \to H_2 \subseteq H$ and $\psi^{-1} : H_2 \to H_1 \subseteq H$ can be extended to a homomorphism τ from H onto H. Since $\tau^2 = 1$, τ is an automorphism on H, i.e., the switching map exists. Let Z be any transversal of H in G containing 1 and let σ be *i*. If $\chi \in P = P(A_1 * A_2, Z, i)$, then without loss of generality

(3.7)
$$\chi = \rho_{a_1} \rho_{a_2}^{\pi} \cdots \rho_{a_{n-1}}^{\pi} \rho_{a_n}$$

where, if $\chi \notin H_1 \rho$, then it can be assumed that $a_i \in A_1 \setminus H_1$, $i = 1, 3, \dots, n$ and $a_i \in A_2 \setminus H_2$, $i = 2, 4, \dots, n-1$. If $n \ge 1$, and $\chi \notin H_1 \rho$, χ is said to have length n; otherwise χ has length zero.

In order to show *P* is the generalized free product on \mathscr{A} it suffices to show that χ is non-trivial whenever the length $n \ge 1$. The action of ρ_{a_1} on $1 \in A_1 * A_2$ is $1\rho_{a_1} = a_1 = (a_1h_1^{-1})h_1$, where $a_1h_1^{-1} \in Z$, $h_1 \in H$, so

$$(1)\rho_{a_1}\pi\rho_{a_2} = a_1 h_1^{-1} h_1^{\tau} a_2$$

= $(a_1 h_1^{-1} h_1^{\tau} a_2 h_2^{-1})h_2$

where $a_1 h_1^{-1} h_1^{\tau} a_2 h_2^{-1} \in \mathbb{Z}$, $h_2 \in H$ and $(1) \rho_{a_1} \rho_{a_2}^{\pi} = a_1 h_1^{-1} h_1^{\tau} a_2 h_2^{-1} h_2^{\tau}$. Continuing this process,

$$1\chi = a_1 h_1^{-1} h_1^{\tau} a_2 h_2^{-1} h_2^{\tau} \cdots a_n \in A_1 * A_2.$$

R. J. Gregorac

Assume all pairs $h_j^{-1}h_j^r$ are written in normal form as elements of $A_1 * A_2$. Suppose $a_j \in A_1$. Since $a_j \notin H$, $h_1^* a_j h_2^* \notin H$ for any h_1^* , $h_2^* \in H$; in particular $h_1^* a_j h_2^* \notin H_1$ for any h_1^* , $h_2^* \in H_1$. Therefore only contractions, but no cancellation, can occur between the $h_j^{-1}h_j^r$ and a_j when reducing 1χ to normal form. Thus, $1\chi \neq 1$, which was to be shown.

(3) A retraction ϕ of a group G is an idempotent endomorphism of G, i.e. $\phi^2 = \phi : G \to G$. If $H = G\phi$, then H is called a *retract* of G.

LEMMA 3.8 (Smel'kin [10]). Let $G = A_1 *_V A_2$ be a V-verbal product of A_1 and A_2 . Suppose ϕ_i is a retraction of A_i , (i = 1, 2). Then the subgroup H of G generated by the retracts $H_i = A_i \phi_i$, (i = 1, 2), is the V-verbal product of H_1 and H_2 .

Now suppose H_1 and H_2 are retracts of A_1 and A_2 , i.e., H_1 and H_2 have normal complements in A_1 and A_2 (in particular, suppose A_i is a regular product $A'_i * H_i/N_i$, i = (1, 2)). Let V be a verbal subgroup of $A_1 * A_2$ and let $G = A_1 *_V A_2$ be the V-verbal product of A_1 and A_2 . By the above Lemma 3.8 $H = H_1 *_V H_2$, so τ exists by an argument similar to that given in (2). That is, by Theorem 2.4 an epimorphism $\tau : H \to H$ exists such that $\tau | H_1 = \psi$ and $\tau | H_2 = \psi^{-1}$. Finally, τ is an isomorphism because $\tau^2 = 1$.

Before continuing with further examples consider the following special case of Example (3) which shows that the amalgamated products will, in general, be different from each other as V varies. (Of course, not always. Some amalgams can only generate their generalized free products; see Example 4.12 [4].)

Suppose H_1 and H_2 are V-verbal factors of A_1 and A_2 , say $A_1 = A'_1 *_V H_1$ and $A_2 = A'_2 *_V H_2$. Let $G = A_1 *_V A_2$. Then $H = H_1 *_V H_2$ is a V-verbal factor of G, $G = (A'_1 *_V A'_2) *_V H$, by the properties of V-verbal multiplication. Furthermore, the switching map τ as defined above can be extended to an automorphism τ' of G of order two such that $\tau'|A'_1 *_V A'_2$ is the identity on $A'_1 *_V A'_2$ by Theorem 2.4. Choose Z to be the normal complement $(A'_1 *_V A'_2)^G$ of H in G, and let $\sigma = \tau'|Z$. Since $Z = (A'_1 *_V A'_2)[A'_1 *_V A'_2, G]$, σ is a permutation on Z. It must be verified that if A_1 meets $(z\tau')H$, then $(A_2 \setminus H_2) \cap zH$ is empty. Suppose $z\tau'h = a_1 \in A_1$ for some $z \in Z$. Applying τ' to both sides of this equation, $z(h\tau') = a_1\tau' \in A_1 *_V H_2$. Thus $z = a_1^*h_2^*c^*$ for some $a_1^* \in A_1$, $h_2^* \in H_2$, $c^* \in [A_1, A_2]$. If also $zh^* = a_2 \in$ $A_2 \setminus H_2$, then $z = h'_1 a'_2 c'$, where $h'_1 \in H_1$, $a'_2 \in A_2 \setminus H_2$ and $c' \in [A_1, A_2]$. This would imply the contradiction $a'_2 = h_2^* \in H_2$. Thus $(A_2 \setminus H_2) \cap zH$ is empty.

Now we show

(3.9)
$$P = P(G, Z, \tau'|Z) \cong A'_1 *_V H_1 *_V A'_2.$$

Let $u \in A'_2$ and $zh \in G$, where $z \in Z$, $h \in H$. Then

$$\begin{aligned} (zh)\rho_u^{\pi} &= ((zh)\tau'u)\pi \qquad (\sigma = \tau'|Z) \\ &= ((zhu)\tau')\tau' \qquad (\tau'|A_2' \text{ is the identity on } A_2') \\ &= (zh)\rho_u, \end{aligned}$$

that is, P is generated by $A_1 \rho$ and $(A'_2 \rho)^{\pi} = A'_2 \rho$. But these are just the right regular representations of A_1 and A'_2 over G, which generate the right regular representation of $A_1 *_V A'_2$ over G, conpleting the proof of (3.9).

Note the condition that H_1 and H_2 be retracts in (3) is not necessary in order that τ exist; for example, Smel'kin [10] proved that if A_1 and A_2 are torsion free abelian groups and V is the verbal subgroup of $A_1 * A_2$ corresponding to the variety of nilpotent groups of class at most n, then $H = H_1 *_V H_2 \subseteq A_1 *_V A_2$.

(4) ISOMORPHIC CONSTITUENTS. Suppose A_1 and A_2 are isomorphic, say $\gamma : A_1 \cong A_2$, $\psi = \gamma | H_1$, and consider the V-verbal product $A_1 *_V A_2$. Then τ exists, for there is an isomorphism τ' of order two from $A_1 *_V A_2$ onto $A_1 *_V A_2$ such that $\tau' | A_1 = \gamma$ and $\tau' | A_2 = \gamma^{-1}$. Take $\tau = \tau' | H$.

(5) RIGHT REGULAR REPRESENTATION. So far in the examples $A_1 \cap A_2 = \{1\} \subseteq G$. At the other extreme, let \mathscr{A} generate G, $H_1 = H_2 = H \subseteq G$, take τ as the identity on H; let Z be any transversal of H in G containing 1 and let σ be the identity on Z. Clearly π is the identity and P(G, H, i) is just the right regular representation of G. In particular, an amalgam \mathscr{A} can generate a group G if and only if G is isomorphic to some amalgamated product on \mathscr{A} .

(3.11) THE GENERAL CASE. Suppose now that the amalgam has more than two constituents. Suppose that for each $i \in I$, A_i is a group having a subgroup H_i which is isomorphic to a fixed group H', say $\psi_i : H_i \cong H'$ and set $\psi_{ij} = \psi_i \psi_j^{-1} : H_i \cong H_j$, $i, j \in I$, $i \neq j$. Let G be any group containing isomorphic copies A_i^* of A_i , say $\phi_i : A_i \cong A_i^*$, $(i \in I)$, and suppose $A_i^* \cap A_j^* = H_i^* \cap H_j^*$ and $\phi_i^{-1}\psi_{ij}\phi_j$ acts as the identity on $H_i^* \cap H_j^*$, $(i, j \in I, i \neq j)$. Let H be the subgroup of G generated by the H_i^* , $(i \in I)$, and assume $H \cap A_j^* = H_j^*$, $j \in I \setminus \{1\}$. Choose a transversal Z of H in G and assume automorphisms τ_j can be defined on H such that $\tau_j | H_1^* = \psi_{1j}^*$, $\tau_j | H_j^* = \psi_{1j}^{-1}$ and $\tau_j | H_k^*$ acts as the identity on H_k^* , $(j, k \in I \setminus \{1\}, k \neq j)$. Define a permutation σ on Z as before, except assume for all $i, j \in I$, $i \neq j$, if A_j^* meets zH, then both $(A_i^* \setminus H_i^*) \cap (z\sigma)H$ and $(A_i^* \setminus H_i^*) \cap zH$ are empty. Finally, for each $j \in I \setminus \{1\}$, let π_j be a permutation on G given by $(zh)\pi_j = (z\sigma)(h\tau_j), z \in Z, h \in H;$ assume also that $(1\pi_j)A_j = A_jH$, $(j \in I \setminus \{1\})$. Then, as before, the amalgam is isomorphic to $\cup \{(A_i^*\rho)^{\pi_i} | i \in I\}$, where π_1 is defined to be the identity on G. The details are omitted.

4. An epimorphism

Let $\mathscr{A} = Am(A_i, H_i; \psi_{ij}; i, j \in I)$ be an amalgam and let G be a group containing copies A_i^* of the A_i as in Section (3.11).

Assume further that G is generated by the A_i^* and let $P = P(G, Z, \sigma)$ be an amalgamated product on \mathscr{A} . A homomorphism θ of G will be called a (G, Z, σ) -homomorphism, if the following conditions are satisfied:

R. J. Gregorac

- (i') there exist isomorphisms $\psi'_{ij} : H_i \theta \cong H_j \theta$ such that $\theta \psi'_{ij} = \psi_{ij} \theta$, on H_i $(i, j \in I, i \neq j)$.
- (ii') $Z\theta$ is a transversal of $H\theta = \langle H_i\theta | i \in I \rangle$ in $G\theta$.
- (iii') a permutation $\sigma' : Z\theta \to Z\theta$ exists as required in order to construct a $(G\theta, Z\theta, \sigma')$ -product on the factor amalgam $\mathscr{F} = Am(A_i\theta, H_i\theta, \psi'_{ij}|i, j \in I, i \neq j)$, such that in addition $\theta\sigma' = \sigma\theta$ on Z, and
- (iv') for all $j \in I$, $j \neq 1$, switching maps $\tau'_j : H\theta \to H\theta$ exist such that $\tau'_j | H_1\theta = \psi'_{1j}$ and $\tau'_j | H_j\theta = (\psi'_{1j})^{-1}$.

Now suppose θ is such a (G, Z, σ) -homomorphism; then, since H is generated by the H_i , $\theta \tau'_j = \tau_j \theta$ on H. Furthermore, permutations $\pi'_j : G\theta \to G\theta$ can be constructed as in (3.11) using σ' and τ'_j and

(4.1)
$$\theta \pi'_{j} = \pi_{j} \theta, \quad (j \in I, j \neq 1).$$

Thus $(1\pi'_j)A_j\theta = ((1\pi_j)A_j)\theta \subseteq (A_jH)\theta = A_j\theta H\theta$, which is required to construct a $(G\theta, Z\theta, \sigma')$ -amalgamated product on \mathscr{F} using the switching maps τ'_j . Denote the product depending on the ψ'_{ij} by $P'(G\theta; Z\theta, \sigma', \psi'_{ij})$ or merely by P'.

THEOREM 4.2. Let \mathscr{A} and G be as above and suppose θ is a (G, Z, σ) -homomorphism of G. Then there exists an epimorphism f from $P = P(G, Z, \sigma)$ onto $P' = P'(G\theta, Z\theta, \sigma', \psi'_{ij})$ extending the canonical epimorphisms $(A_i\rho)^{\pi_i} \rightarrow (A_i\theta\rho)^{\pi'_i}, (i \in I)$.

PROOF. The function θ is an epimorphism. It follows from (4.1) that for each $a_j \in A_j^*$

(4.3)
$$\pi_{j}P_{a_{j}}\pi_{j}\theta = \theta\pi_{j}'P_{a_{i}\theta}\pi_{j}' \quad (j \in I)$$

where, as in Section (3.11), π_1 and π'_1 are the identities on G and G θ respectively. Thus, since P is generated by the $(A_i^*\rho)^{\pi_i}$, to each $x \in P$, there exists a unique $xf \in P'$ such that $x\theta = \theta(xf)$; xf is unique because θ is an epimorphism. The required epimorphism f is given by $f: x \to xf$. (cf. Theorem 3.1, [4]).

We shall call f the natural homomorphism from P onto P' when it exists.

The usual proof of the following well-known result uses directly the uniqueness of the normal form in the generalized free product.

COROLLARY 4.4. Let G be any group generated by \mathscr{A} . Then there exists a natural homomorphism from the generalized free product on \mathscr{A} onto G which acts as the identity on the A_i , $(i \in I)$.

PROOF. (See Example (3.6), (2) and (5).) Consider the right regular representation of G, $G\rho$ as a product on G. There is a natural homomorphism θ from $F = \pi^* \{A_i | i \in I\}$ onto G extending the maps $A_i \to A_i \subseteq G$. Let $Z = Z_1 Z_2$ where Z_2 is a transversal of H in H ker θ such that $1 \in Z_2 \subseteq$ ker θ and Z_1 is a transversal of H ker θ in F, $1 \in Z_1$. Then Z is a transversal of H in F which maps onto a transversal $Z\theta$ of $H\theta$ in $F\theta = G$. Let σ be the identity on Z. Then if σ' , ψ'_{ij} and τ'_j are taken to be identity maps, θ is a (G, Z, σ) -homomorphism, so the result follows by Theorem 4.2.

Note. Many times it will be convenient to choose Z as above in Corollary 4.4; this will be denoted by a remark such as 'let $Z = Z_1 Z_2 \cdots$ ', if no further explanation is required. If no mention of σ is made it will be assumed to be the identity on Z.

Now consider an amalgam on two groups A_1 and A_2 . Let $G = A_1 *_V A_2$ be a verbal product. Choose a transversal $Z_1 Z_2$ of H in G as follows: let Z_2 be a transversal of H in HN, $1 \in Z_2 \subseteq N$, where N is the normal closure of the amalgamating relations $\{h_1^{-1}(h_1\psi)|h_1 \in H_1\}$ in G and let Z_1 be a transversal of HN in G, $1 \in Z_1$. (See Theorem 2.6.)

COROLLARY 4.5. Let $G = A_1 *_V A_2$ and $Z_1 Z_2$ be as above. If some $P = P(G, Z_1 Z_2, \sigma)$ exists which is a generalized V-verbal product on \mathcal{A} , then P is the free generalized V-verbal product on \mathcal{A} .

PROOF. Let K be the free generalized V-verbal product on \mathscr{A} and let $\theta : G \to K$ be the natural epimorphism from G onto K. Then $Z\theta$ is a transversal of H_1 in K.

Thus there is a natural epimorphism f from P onto $K\rho$. If ψ is the canonical epimorphism from $K\rho$ onto P, then ψf is the identity, so $P \cong K$ which was to be shown.

THEOREM 4.6. Let $G = A_1 * A_2/N$ be any regular product. If any amalgamated product exists on G which is generated by the amalgam \mathcal{A} , then a (G, Z, i)-amalgamated product exists which is a generalized regular product on \mathcal{A} .

PROOF. Since at least one amalgamated product exists, the switching map exists. Let Z be any transversal of H in G which maps onto a transversal $Z\theta = S \times T$ of $H_1 \times H_2$ in $A_1 \times A_2$, where θ is the canonical epimorphism from G onto $A_1 \times A_2$. Then an amalgamated product P = P(G, Z, i) exists and maps onto the permutational product $P' = P(A \times B; S \times T)$, say $\phi : P \to P'$. Let f and f' be the natural epimorphisms from the generalized free product on the amalgam onto P and P', respectively. Since

is a commutative diagram (where the maps are the canonical epimorphisms) it follows from Theorem 4.2 that $f' = f\phi$, so ker $f \subseteq$ ker f'. Allenby [2] has shown that any permutational product is a generalized regular product, hence P is itself a generalized regular product on the amalgam.

It is known that if the generalized direct product D on $\mathscr{A} = Am(A, B; H_1,$

 H_2 ; ψ) exists, then all permutational products must be isomorphic to D, that is, D is the free generalized abelian product on \mathscr{A} . The following examples show that even though the free generalized V-product generated by \mathscr{A} , say K, exists, and an amalgamated product $P = P(G, Z_1 Z_2, i)$ exists on $A *_V B$ where the transversal $Z_1 Z_2$ is chosen as in Corollary 4.5 (so P is a generalized regular product mapping onto K), P may not be isomorphic to K. (In this example K will exist, because the generalized direct product does; see Wiegold [11], Theorem 4.6.)

Let N_c stand for the verbal subgroup of A * B corresponding to the class of nilpotent groups of class at most c.

Let $A \otimes B$ denote the tensor product of the groups A and B. The regular N_2 -product of groups A and B can be faithfully represented by

$$G = \{(a, b, c) | a \in A, b \in B, c \in A \otimes B\},\$$

where

$$(a, b, c)(a_1, b_1, c_1) = (aa_1, bb_1, cc_1a_1^{-1} \otimes b)$$

and

 $A \cong \{(a, 0, 0) | a \in A\}, \quad B \cong \{(0, b, 0) | b \in B\}$

(Wiegold [11], p. 154).

EXAMPLE (4.7). If A and B are copies of the additive group of rational numbers, Q, then (using additive notation)

$$G = \{(s, t, u) | s, t, u \in Q\}$$

where

$$(s, t, u)(s_1, t_1, u_1) = (s+s_1, t+t_1, u+u_1-ts_1)$$

and Let

$$(s, t, u)^{-1} = (-s, -t, -u-ts).$$

$$H_1 = \{(2n, 0, 0) | n \in I\}, \qquad H_2 = \{(0, 3m, 0) | m \in I\},\$$

where I is the integers, and assume the amalgamating isomorphism ψ is given by $(2n, 0, 0) = \langle (0, 3n, 0), n \in I.$ Now

$$(4.8) \qquad \qquad [(2,0,0),(0,3,0)] = (0,0,6)$$

so

$$\langle H_1, H_2 \rangle = \{ (2n, 3m, 6p) | n, m, p \in I \}.$$

The switching map τ exists by the remark at the end of (3.6) (3).

If $h_1 = (2n, 0, 0)$, $n \in I$ then $h_1(h_1^{-1}\psi) = (2n, -3n, 0) \in N$, where N is the normal closure of $\{h_1(h_1^{-1}\psi)|h_1 \in H_1\}$ in G,

$$(2n, -3n, 0)^{(s, t, u)} = (2n, -3n, 2nt+3ns) \in N$$

and

$$(2, -3, u)(-2, 3, 0) = (0, 0, u-6) \in N$$

where s, t, $u, \in Q$.

Thus

$$N = \{ (2n, -3n, u) | n \in I, u \in Q \}$$

and

$$HN = \{ (2n, 3m, u) | n, m \in I, u \in Q \}.$$

If $u \in Q$, then u can be uniquely written $u = 6k + u', 0 \le u' < 6, k \in I, u' \in Q$. Choose the transversal Z_2 of H in HN to be

$$Z_2 = \{ (0, 0, u') | 0 \le u' < 6, u' \in Q \}.$$

Similarly choose a transversal
$$Z_1$$
, of HN in G; let

$$Z_1 = \{ (s', t', 0) | 0 \le s' < 2, 0 \le t' < 3, s', t' \in Q \}.$$

Then

$$Z_1 Z_2 = \{ (s', t', u') | 0 \le s' < 2, 0 \le \tau' < 3, 0 \le u' < 6, s', \tau', u' \in Q \}$$

is a transversal of H in G chosen as required in Corollary 4.5.

If $z = (0, 0, 6p) = (0, 0, 6)^p \in H$, then by (4.8) $z\tau = (0, 0, 6)\tau^p = [(0, 3, 0), (2, 0, 0)]^p = (0, 0, -6)^p$. Thus if $(2m, 3m, 6p) \in H$,

$$(2n, 3m, 6p)\tau = (2m, 3n, -6p-6mn).$$

Since $\sigma = i$ on $Z_1 Z_2$, $(s, t, u)\pi$ can now be calculated for any $(s, t, u) \in G$.

Let $a' = (1, 0, 0)\rho$ and $b' = (0, 1, 0)\rho^{\pi}$. Then $(a')^2 \in H\rho \subseteq Z(P)$; set d equal to a' in Lemma 2.7 and $g = (b')^{\frac{1}{2}r} = (0, \frac{1}{2}r, 0)\rho^{\pi}$. Then $[b', a'] \in G_{(r+1)}, r \ge 0$. Calculating,

$$(\frac{1}{2}, \frac{5}{2}, 5)[b', a'] = (\frac{1}{2}, \frac{5}{2}, 6)$$

Thus P is not nilpotent of any class, so P is not isomorphic to the free generalized nilpotent product of class 2, K.

Suppose now the generalized N_2 -product of an amalgam \mathscr{A} exists. Does the existence of this product force the switching automorphism to exist in $A *_{N_2} B$?

The following example due to Dr L. G. Kovács shows this is not the case. Let $A = C_2 \times C_4$ and $B = C_2 \times C_2$, where C_n is the cyclic group of order *n*; let these cyclic groups be generated by *a*, *b*, *c* and *d*, respectively. Amalgamate $\langle a, b^2 \rangle$ with B via $a \leftrightarrow c, b^2 \leftrightarrow d$. Then in $G = A *_{N_2} B$ we have $[b^2, e] = [b, e^2] = 1$, $e \in \{c, d\}$, so b^2 is in the centre of G and thus of H. A simple calculation using Wiegold's representation of G above shows that d does not commute with a. Thus a switching automorphism does not exist. I thank Dr. Kovács for allowing me to use this example.

5. A wreath product embedding

It is convenient to generalize and unify the embeddings given in Theorems 4.1, 5.2 and 6.1 of [4] in the following way.

Assume that an amalgam \mathcal{A} is given as in (3.11) and that some amalgamated

[11]

product $P = P(G, Z, \sigma)$ on a group G exists generated by \mathscr{A} . Let θ be a (G, Z, σ) homomorphism, $P' = P'(G\theta, Z\theta, \sigma')$ and $f: P \to P'$ the natural homomorphism. Choose a set W of coset representatives of ker θ in G. Thus, if $d \in G$, then $d = w\lambda$, $w \in W$, $\lambda \in \ker \theta$ and $d\theta = w\theta$. Define $[d\theta] = w$ and note $[d\theta]\theta = d\theta$.

THEOREM 5.1. Suppose there exist homomorphisms $\alpha : P \to Aut(\ker \theta)$ and $r : \ker \theta \to \mathscr{S}(G)$ such that

(1) if $g \in G$, then there exists a unique $\lambda r \in (\ker \theta)r = R$ such that $g = [g\theta]\lambda r$, (2) if $y \in P$, then

(5.2)
$$y^{-1}(\lambda r)y = (\lambda^{y\alpha})r$$

and $(\ker r)^{yx} \subseteq \ker r \ (y \in P)$.

Then there exists a monomorphism from P into the unrestricted permutational wreath product

(5.3)
$$P\beta(\ker \theta) r Wr(P'; G\theta),$$

where the homomorphism $\beta: P \to \operatorname{Aut}((\ker \theta)r)$ is given by

(5.4)
$$\lambda r^{y\beta} = (\lambda^{y\alpha})r \qquad (\lambda \in \ker \theta, \ y \in P)$$

PROOF. First note that (5.4) determines a homomorphism β as required. Now let $x \in P$. It follows from the proof of Theorem 4.2 if $d \in G$, then

(5.5)
$$dx\theta = d\theta xf,$$

so $[d\theta]x\theta = d\theta xf$. Thus, by (1), if $d \in G$, there exists a unique $(\lambda_x(d\theta))r \in (\ker \theta)r$ such that

(5.6)
$$[d\theta]x = [d\theta x f](\lambda_x(d\theta))r$$

Define an element e_x in the direct power of $|G\theta|$ copies of $P\beta(\ker \theta)r$, $(P\beta(\ker \theta)r)^{G\theta}$, by

(5.7)
$$e_{x}(d\theta) = x\beta(\lambda_{x}^{-1}(d\theta))r. \quad (d\theta \in G\theta)$$

LEMMA 5.8. The required monomorphism is given by

(5.9)
$$x \to xf e_x^{xf} = e_x xf \qquad (x \in P).$$

PROOF. It must be shown that

$$e_{xy}(xy)f = e_x xf e_y yf$$
 or
$$e_{xy} = e_x e_y^{xf^{-1}}$$

which by the definition of conjugation in wreath products is equivalent to

(5.10)
$$e_{xy}(d\theta) = e_x(d\theta)e_y(d\theta x f) \qquad (d\theta \in G\theta)$$

Now by (1) and represented use of (5.6), if $d = [d\theta]\lambda r \in G$, with $\lambda \in \ker \theta$, then

$$([d\theta]\lambda r)xy = [d\theta x f y f](\Lambda_1)r$$

= $[d\theta x f]y(\Lambda_2)r$
= $[d\theta]x(\lambda_x^{-1}(d\theta))ry(\Lambda_2)r$
= $[d\theta]xy(\Lambda_3)r$
= $([d\theta]\lambda r)(\lambda^{-1})rxy(\Lambda_3)r$
= $([d\theta]\lambda r)xy(\Lambda_4)r,$

where

$$\Lambda_{1} = \lambda_{xy}(d\theta)\lambda^{(xy)\alpha}$$

$$\Lambda_{2} = \lambda_{y}^{-1}(d\theta x f)\Lambda_{1}$$

$$\Lambda_{3} = \lambda_{x}^{-y\alpha}(d\theta)\Lambda_{2}$$

$$\Lambda_{4} = \lambda^{-(xy)\alpha}\Lambda_{3} = \lambda^{-(xy)\alpha}\lambda_{x}^{-y\alpha}(d\theta)\lambda_{y}^{-1}(d\theta x f)\lambda_{xy}(d\theta)\lambda^{(xy)\alpha}.$$

and

Thus $(\Lambda_4)r = 1$, so

$$(\lambda_x^{-y\alpha}(d\theta))r(\lambda_y^{-1}(d\theta xf))r(\lambda_{xy}(d\theta))r = 1$$

from which (5.10) follows.

To complete the proof suppose $e_x xf = 1$. Then xf = 1, $x\beta = 1$ and for each $d\theta \in G\theta$, $(\lambda_{xy}(d\theta))r = 1$. Let $d = [d\theta]\lambda r \in G$. Then

$$([d\theta]\lambda r)x = [d\theta]x\lambda r^{x\beta}$$

= $[d\theta xf](\lambda_x(d\theta))r\lambda r^{x\beta}$
= $[d\theta]\lambda r.$

Thus x = 1 completing the proof.

For example, if Theorem 5.1 is applied to permutational products where $H_1 \lhd A$ and $H_2 \lhd B$, then ker $\theta = H_1 \times H_2$, *r* can be chosen to be the restriction of the right regular representation of *G* to $H_1 \times H_2$ and if $y = \rho_{a_1} \rho_{b_2}^{\pi} \cdots \rho_{a_n} \in P$, where $a_i \in A$, $b_j \in B$, then α is given by the equations $y^{-1}(\rho_{h_1h_2})y = \rho_u$, where $u = h_1^x h_2$, $h_1 h_2 \in H_1 \times H_2$, and (with the obvious meaning), $z = a_1 b_2 \cdots a_n$. This is essentially the embedding Theorem 4.1 of [4] mentioned at the beginning of this section. It can be shown that, in general, the term $P\beta$ is needed for permutational products. On the other hand, the following shows why *r* is not always set equal to ρ as above.

If G^* is the generalized free product of A and B above (H normal in each), then there is a homomorphism $\theta: G^* \to A/H * B/H$ such that ker $\theta = H$. Considering both the right regular representations of G^* and A/H * B/H as amalgamated products on G^* and A/H * B/H, and taking $r = \rho$ as above, G^* can be embedded in $P\beta H Wr A/H * B/H$, where $P\beta$ is the group of automorphisms G^* induces on H, $G^*/C_{G^*}(H)$. This is not as good as the standard wreath product embedding of G^* , H Wr A/H * B/H. Instead if $g^* \in G^*$, define $(g^*)\lambda r = \lambda^{-1}g^*$. Then Hr commutes with P in $\mathscr{S}(G)$. This choice of r in (5.1) thus gives the expected embedding of G^* . It is also not difficult to see that Theorem 6.10 of [4] can also be extended to amalgamated products. That is, suppose $P(G, Z, \sigma)$ is an amalgamated product on \mathscr{A} , $H_1 \subseteq U_1 \subseteq A_1$, $H_2 \subseteq U_2 \subseteq A_2$, and assume Z is chosen as in [4], i.e., $Z = Z_1 Z_2$, where Z_1 is a transversal of U in G, where $U = \langle U_1, U_2 \rangle$, and Z_2 is a transversal of H in U, $1 \in Z_1 \cap Z_2$.

Then, if σ sends $z_1 z_2$ to $z_1 z'_2$, $z_1 \in Z_1$, $z_2, z'_2 \in Z_2$, the subgroup U^* of P generated by $U_1 \rho$ and $(U_2 \rho)^{\pi}$ is isomorphic to $P_1(U, Z_2, \sigma | Z_2)$.

We conclude by stating two of the many problems which suggest themselves here and which we have not been able to answer.

(1) It is known that not every subgroup U^* of a permutational product (i.e., an amalgamated product on $A \times B$) need again be a permutational product even though it is generated by $U_1 \subseteq A_1$ and $U_2 \subseteq A_2$, where $U_1 \cap H_1 = U_2 \cap H_1$ ([9]). Suppose U_1 and U_2 are so chosen in an amalgamated product P on a regular product A * B/N, such that (i) P is a generalized regular product and (ii) the subgroup U^* of P is a generalized regular product (Allenby [1] gives some general criteria for this to happen). When must the subgroup U^* be an amalgamated product on a regular product $U_1 * U_2/N_1$ (where N_1 is possibly different from N)?

(2) Determine some classes of amalgamated products on verbal products $A *_V B$ which are generalized V-verbal products, other than those on A * B and $A \times B$.

References

- R. B. J. T. Allenby, 'Normal forms for generalised regular products of groups', Math. Zeitschr. 102 (1967) 356-369.
- [2] R. B. J. T. Allenby, 'Permutational Products and Regular Products of Groups', Trans. Amer. Math. Soc. 13 (1969) 537-543.
- [3] O. N. Golovin, 'Nilpotent products of groups', Mat. Sb. 27 (69) (1950), 427-454 Amer. Math. Soc. Transl. Ser. II 2 (1956), 89-115.
- [4] R. J. Gregorac, 'On Permutational Products of Groups', J. Austral. Math. Soc., 10 (1969), 111-135.
- [5] S. Moran, 'Associative operations on groups, I', Proc. London Math. Soc. (3) 6 (1956), 581-596.
- [6] S. Moran, 'Associative operations on groups, II', Proc. London Math. Soc. (3) 8 (1958), 548-568.
- [7] B. H. Neumann, 'An essay on free products of groups with amalgamations' Phil. Trans. Royal Soc. of London (A) 246 (1954), 503-554.
- [8] B. H. Neumann, 'Permutational Products of Groups', J. Austral. Math. Soc. 1, (1960) 299-310.
- [9] B. H. Neumann, 'On Amalgams of Periodic Groups', Proc. Roy. Soc. (A) 255 (1960), 477-489.
- [10] A. L. Šmel'kin, 'Nilpotent products and torsion-free nilpotent groups', Sibirsk. Math. Journal, 3, No. 4 (1962) 625-640.
- [11] J. Wiegold, 'Nilpotent products of groups with amalgamations', Publ. Math. Debrecen 6 (1959), 131-168.
- [12] J. Wiegold, 'Some remarks on generalised products of groups with amalgamations', Math. Zeitschr. 75 (1961), 57-78.

Institute of Advanced Studies

Australian National University, Canberra