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Abstract 

Truss-like shapes can occur in topology optimization described by an assembly of finite elements or its 

boundary represented as a polygon mesh. Such shape description does not cover a common engineering 

parametrization like the lines of a frame structure and its corresponding cross-section. This article addresses 

the truss-parametrization of such optimization using curve skeletons and Meta Balls. While the curve skeleton 

is common in the truss-parametrization, including Meta Balls can lead to an overall implicit and smooth shape 

description. 
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1. Introduction 
Structural optimization such as density-based topology optimization leads to a finite element model as 

a resulting representation (Bendsoe and Sigmund, 2004). Each element is typically applied with a local 

density variable, which scales the corresponding stiffness matrix (Bendsøe and Sigmund, 1999). By 

restricting the amount of possible voluminal, the density should be distributed to minimize the 

corresponding objective, such as thermal or elasto static compliance.  

As a common mesh topology an assembly of squares or cubes is often chosen due to the equal and 

uniform size, which leads to 2D and 3D image representation. On such representation common 

algorithms in digital image processing such as morphological or convolutional filters can be applied 

(Burger and Burge, 2009), which offers the advantages of fast computaionial processing. While such 

representation is common in image processing,  engineering applications requieres a shape 

parametric to be able to fulifill manufacturing constraints (Adam and Zimmer, 2015) or even apply 

shape optimization (Bandara et al., 2016; Xia et al., 2020). Topology optimization can lead to smooth 

results  (Christiansen et al., 2015) or even directly to freeform surfaces (Gao et al., 2020), which often 

does not lead to a suitable parameterization desirable for matching the shape to manufacturing. 

Particular for selective laser melting the geometry has to statisfy constraints such as minimum local 

size and avoiding overhang angles (Adam and Zimmer, 2015), that should be adjustable by the 

selected parametric. Moreover, the topology-optimized design must often be reconstructed for 

verification (Cuillière et al., 2018). If this verification fails, automatic adjustment is required, 

especially for optimization results with a large number of branches, as often occurs in thermal 

topology optimization (Joo et al., 2018).  

Converting topology optimization results into such parametrization is one of the recent research 

challenges, which can be solved by curve (Denk et al., 2021b; Yin et al., 2020) or surface skeletons 

(Denk et al., 2021c). The original concept of skeletons is derived from Blum's medial skeletons (Blum, 

1967). By choosing the locus of the center of so-called maximally inscribed balls, a medial skeleton can 
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be obtained by connecting the centers. The original shape itself can be fully restored by the 

unification of these balls. Recent skeleton-based reverse engineering approaches choose to extrude 

primitive cross-sections along these skeleton lines (Cuillière et al., 2018; Nana et al., 2017; Stangl and 

Wartzack, 2015) or apply free form surface reconstruction (Bremicker et al., 1991; Denk et al., 2021b). 

Afterward, the shape is assembled using an implicit representation CSG of these cylindrical 

primitives (Cuillière et al., 2018; Nana et al., 2017) or connecting the control points of the explicit 

free form surfaces (Bremicker et al., 1991; Denk et al., 2021b). The fundamental concept of these 

medial balls of the unification of each ball is covered by the unification of cylinders and spheres 

(Cuillière et al., 2018; Nana et al., 2017)  or the selection of reasonable control point positions 

(Bremicker et al., 1991; Denk et al., 2021b). CSG can lead to an implicit representation with sharp 

edges, while free form surfaces can leads to a smooth but explicit representation (Bremicker et al., 

1991; Denk et al., 2021b). An implicit smooth shape descriptor is desirable due to advances in 

topology modification or the use of Boolean operations.  

As an alternative, this article deals with the selection of so-called meta-balls, which can directly lead to 

a smooth geometry without post-processing. This article first gives a brief overview of skeleton-based 

reconstruction in Chapter two, followed by the basics of using Meta Balls in Chapter three. Chapter four 

focuses on the methods for fully automatic skeleton parameterization using meta-ball, visually guided 

by a use case. Chapter five applies the presented parameterization to various topology optimization use 

cases considering thermal and elastostatic compliance. Furthermore, the parametrization of an 

elastostatic optimization result is visually compared to common CSG and subdivision surface 

reconstruction methods. Furthermore, a size-constrained use case is presented where the local size can 

be adjusted directly. Finally, an example of automatic verification of the topology optimization result 

using fully automatic reconstruction is presented. 

2. State of the Art 
In the recent publications, the beamline of topology optimized shapes can be approximated by a 

contraction method applied on a polygon mesh (Cuillière et al., 2018; Stangl and Wartzack, 2015), a 

medial axis transformation (Mayer and Wartzack, 2020), or morphological thinning applied on 

images (Bremicker et al., 1991; Denk et al., 2021b; Xia et al., 2020; Yin et al., 2020). These 

skeletonization concepts can be derived from Blum's medial balls (Tagliasacchi et al., 2016) and 

should lead to similar skeletons. Typically, there are several desirable properties such as homotopy 

preservation, saleability, or regularization (Sobiecki et al., 2014; Tagliasacchi et al., 2016), which 

should be taken into account. The topological properties (e.g. homotopy) of the skeleton and the 

corresponding 3D object are the same if the number of cavities, objects and holes are also the same 

(Morgenthaler, 1981). Such conditions can be used to construct a homotopy preserving thinning 

method by using the simple point condition for digital images (Morgenthaler, 1981). A simple point 

is a point on the surface, which does not change the topological properties during the erosion (Lee et 

al., 1994; Morgenthaler, 1981). The authors of (Lee et al., 1994) use the Euler characteristic and 

adjunct tree to find such simple points for the skeletonization. Such thinning algorithm can be 

directly applied to finite elements such as voxels (Denk et al., 2021b, 2021c; Yin et al., 2020). 

Additionally also predefined points such as boundary conditions may be taken into account for 

skeletonization (Xia et al., 2020). Figure 1 shows one example of the skeletonization of a binary 

image and its segmentation. 

 
Figure 1. Binary image skeleton of the image and segmentation of the skeleton. 

Image Skeleton Segmentation
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The segmentation can be determined by considering the local neighborhood of each voxel. Branch points 

share more than two connections, while endpoints are only connected to one other voxel. Based on these 

curve or surface skeletons, various of different shape descriptors may be taken into account. The common 

shape description is the unification of cylinders along with the curve skeleton and spheres at branches and 

endpoints leading to CSG (Nana et al., 2017; Yin et al., 2020). As another alternative, the authors of (Stangl 

and Wartzack, 2015) extrude predefined cross-sections such as circles or ellipses along a fitted curve for 

the reconstruction. Such representation leads to a highly efficient parametrization with only a few 

necessary parameters. The unified primitives can be further processed by applying blended surfaces (Yin 

et al., 2020) to smooth the sharp edges occurring due to the unification.  

While the unification of primitives can lead to sharp edges, the authors of (Amroune et al., 2022; Denk et 

al., 2021b, 2021c, 2021a) applied free-form surfaces. By constructing a control polygon mesh, the 

geometry can be calculated using the subdivision surfaces (Catmull and Clark, 1978), leading to a smooth 

shape description. The authors of (Denk et al., 2021b) determined the control mesh by using the distance 

value of the along the curve-skeleton. A circular cross-section is approximated by using a square cross-

section control grid, which is extruded along with the curve skeleton. This leads to a polygon control mesh 

for each truss element, which is unified to each other considering the convex hull. The authors of (Denk 

et al., 2021a) extended that approach by using predefined cross-sections, leading to rectangular control 

point positions. Instead of a control polygon mesh, the authors of (Amroune et al., 2022) use periodic B-

splines that are raised along specific ray lines. The individual beams are then connected at junctions by a 

connector surfaces. An alternative to such CSG or free-form surfaces are Meta Balls, which are discussed 

in this article. Such Meta Balls implicitly connects to neighbour balls without the additionall effort 

calculating the intersections.  

3. Introduction in Soft Objects, Meta Balls, Convolutional Surfaces 
For skeletonization, implicit functions can be used for so-known convolutional surfaces (Bloomenthal 

and Shoemake, 1991; Hubert and Cani, 2012), which can be used for shape modeling (Alexe et al., 

2007; Karpenko et al., 2002). Based on a geometry function consisting of points edges or polygons, the 

skeleton is hulled with a kernel like the a gaussian function (Blinn, 1982), the square inverse distance 

function, or polynomial functions (Hitoshi et al., 1985; Wyvill et al., 1986). Meta balls (Hitoshi et al., 

1985) or soft objects (Wyvill et al., 1986) uses one common kernel functions particular in designing 

organic shapes (Blinn, 1982; Bloomenthal and Wyvill, 1997; Pan et al., 2016; Xu and Wu, 2016). Figure 

2 shows the interaction of Meta Balls in Blender. By defining spherical objects with a certain influence 

zone, two balls can be connected by pushing the balls to each other. By assembling various of these 

balls, complex shapes such as the T-Junction can be designed.  

 

Figure 2. Meta balls in Blender. If the influence region of two Meta Balls touches, these balls 
will be connected directly depending on the chosen fall-off curve. 

Meta balls use a so-called fall-off curve based on distance metrics, in the influence region for the 

connection of the balls to each other. Meta balls use a special kind of that kernel function with 
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 (Hitoshi et al., 1985). As alternative the authors of (Blinn, 1982) suggested as a distance function 

𝑓𝑖(𝑟𝑖) = 𝑇 𝑒

𝐵𝑖

𝑅𝑖
2 𝑟𝑖

2−𝐵𝑖
 (2) 

where 𝑇 can be chosen as a canonical value like 1 and the blobbiness parameter 𝐵𝑖 can be changed by 

arbitrary variation of the shape connection. While the meta ball equation can be computed locally, the 

gaussian function is defined over the entire domain, resulting in higher computational costs. To 

determine the geometry each contribution (ball) has to be added to a global function 𝐹 

𝐹(𝑥) = ∑ 𝑓𝑖(||𝒙 − 𝒙𝑖||
𝑛
𝑖  (3) 

on which the contour of the Meta Balls can be defined as a level set function calculating the isolines 

with 

𝐹(𝑥) − 𝐿 = 0 (4) 

on which 𝐿 is an arbitrary scalar value restricting a threshold (Blinn, 1982).  Figure 3 illustrates the level 

set function and the resulting shape abstracted from this geometry on different circles with the same radius. 

 

Figure 3. Soft objects with Bi = –0.75 using the distance function of (Blinn, 1982).  

The resulting geometry shows that if all circles are smoothly connected to each other. This geometry 

can now be adjusted by the variation of the "blobbiness" by changing 𝐵𝑖.  Meta Balls themselves can 

lead to unexpected behavior so that shapes that are not overlapping are connected, and additionally, 

blobs can occur in unexpected areas (Angles et al., 2017). By embedding additional user interaction in 

the form of 2D sketches, the Meta Balls can be guided to the desired shape description (Angles et al., 

2017). The following section deals with the fully automated reconstruction of topology optimization 

results using the curve skeleton and the Meta Balls proposed in Blender 2.93. 

4. Meta Ball and Curve Skeleton supported Surface Reconstruction 
If a topology optmization is applied directly on a 3D image representation (voxels), the result can 

directly be used for the following methods. For other results (e.g. polygon meshes, polyhedral) a 

rasterization is first requiered, so that the curve skeletonization with thinning (Lee et al., 1994) can 

directly be considered. Based on the binary skeleton, a segmentation algorithm is performed, leading to 

individual beam lines. These beam lines are simpliefied using a colapse metric pruposed in the 

following. Based on thse polyline the local raidus of the optimizatio nresult is estimated by the Euclidian 

distance transformation. Finannly meta balls can placed along the polyline with the corresponding 

radius. The nesscarry steps are visualized in the Figure 4 for use-case. 

Level Set Function Resulting Geometry

Level
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Figure 4. Skeleton supported shape reconstruction with meta balls 

The curve skeletons represented as binary images can be segmented into individual branches using the 

connectivity of each skeletal point. To reduce the number of lines based on the segmented skeleton, a 

collapsing metric is chosen, which ensures that a point 𝒗𝑖
𝑘 and the following point 𝒗𝑖

𝑡+𝑘 along the 

polyline, 𝑖 is in a certain quadratic distance 𝜖 with  

||𝒗𝑖
𝑡+𝑘 − 𝒗𝑖

𝑘|| ≤ 𝜖. (6) 

The selection of the point order can be chosen by different criteria, such as starting from the first point 

𝒗𝑖
0 of the voxel chain and proceeding until the polyline with 𝒗𝑖

𝑡 violate the distance condition. 

As restrictions for 𝜖 the properties of the digital image and the provided thinning method can be 

considered. Due to the thinning algorithm, it is ensured that the local neighborhood for skeletal points 

consists only of points located at the voxel chain so that another voxel chain has to be at least two voxels 

distance. Therefore, to avoid the intersection of the collapsed polylines to another, the maximum 

distance 𝑑 between the original voxel line and the polyline should not exceed 1.5. Figure 5 shows the 

impact of the collapse metric for different distance metrics. By increasing 𝜖 the resulting polylines are 

reduced by additionally preserving the topological properties. 

 
Figure 5. Simplification of the curve skeleton. By increasing the metric the collapsed skeleton 
can be simplified. The maximum simplification can be achieved by its topological configuration. 

For the reconstruction with Meta Ball the implementation in Blender 2.93 is chosen, on which a specific 

radius 𝑟 and its corresponding stiffness factor 𝑠 can be applied for each ball. Due to the implicit behavior 

of Meta Balls, finding an accurate radius can be challenging. Figure 6 shows the result of using Meta 

Balls along the polyline with circular cross-sections 
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Figure 6. Meta ball reconstruction 𝒔 = 𝟐. Along the polyline, several balls are placed, which are 

automatically connected to each other. 

The overall shape shows a smooth surface and organic-like surface representation. These balls can now 

be adjusted by changing the position or the radius. As an approximation the number of segments can be 

approximated with 

𝑛𝑚 = 𝑟𝑜𝑢𝑛𝑑 (
𝑤

𝑟
 ||𝒗𝑖+1 − 𝒗𝑖||) (7) 

leading to overlapping Meta Balls and influence radiuses. The following figure shows the variation of 

the number of Meta Balls along each poly segment increasing 𝑤. 

 
Figure 7. Variation of the resolution of Meta Balls along the polylines. By increasing the number 

of the Meta Balls along one segment, the continuity of the local cross-section  size can be 
changed. 

If a too small number of Meta Balls are chosen, the surface leads to a smooth but high steady changing 

shape. A factor of 𝑤 = 6 leads to a huge amount of Meta Balls without improving the reconstructed 

geometry.  The reconstruction with Meta Balls is quite flexible, and due to its connection properties, a 

smooth surface is always presented. Calculating points of the surface can be challenging due to its 

implicit representation. In the following section, the Meta Ball representation is compared to other shape 

descriptors. 

5. Case Studie Results and Discussion 
In the following case studies, different shape descriptors for surface reconstruction are first presented. 

Then, various use cases of thermal compliance optimization are considered, followed by automatic 

adjustment of the Meta Ball radius to satisfy local size constraints. Third, the reconstructed Meta Ball  

is verified using finite element analysis considering deformations. This Meta Ball shape descriptor can 

be compared to image representation, polygon mesh,  subdivision surfaces (Catmull-Clark) and CSG 

consisting of spheres and cylinders. Figure 8 shows the different shape descriptors derived from a static 

3D elasto-compliance optimization.  

 
Figure 8. Comparison of the different Shape descriptors minimizing elasto static compliance 

Metha Ball shape Adjustment Reconstructed Shape Junction intersection

Influence Radius

𝑟

𝑠

𝑛𝑚 =  

𝑤 = 1 𝑤 =  𝑤 = 6

Image (Binary) Polygon Mesh Meta Balls Catmull Clark Subdivision CSG
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While the image, polygon mesh and CSG result in an unsmoothed surface, Meta Balls and Catmull-

Clark subdivision surfaces tend to give an overall smooth surface description. Moreover, the 

reconstructed size differs from each other depending on the parameterization chosen. While Meta Balls 

and CSG tend to provide a more accurate shape coverage of the image, subdivision surface overestimate 

the optimization result. Constructive solid geometry and subdivision surfaces require joining objects 

such as spheres (Yin et al., 2020) or convex hulls (Denk et al., 2021a), as opposed to automatically 

joining Meta Balls. The main drawback of the presented Meta Ball is the selection of an appropriate 

level for the level set function. While constructive solid geometry and subdivision surfaces can directly 

represent the explicit surface, the implicit level function estimates the surface, e.g., by considering 

isocontour surfaces. Similarly, subdivision surfaces and constructive solid geometry are widely used 

shape descriptions, while Meta Balls are rarely used in commercial software packages and industrial 

engineering applications. Such descriptions always lead to organic looking objects due to the kernel 

function and are therefore limited to use cases  like the design of organs in medical technology (Pan et 

al., 2016) or topology optimization results. 

The presented parameterization can be applied to the optimization results of thermal or fluid mechanical 

topology optimization presented (Dede, 2009; Denk et al., 2021d). In particular, considering the 

minimization of thermal compliance can lead to more complex design proposals than the minimization 

of elastostatic compliance (Denk et al., 2020). Figure 9 shows such minimization of thermal compliance 

with (Denk et al., 2021d) for different use-caes and furthermore their skeletonization, segmentaiton and 

polyline simplification. 

 
Figure 9. Case study: skeletonization of use cases minimizing thermal compliance 

Compared to the usecase of elasto static compliance minimization, the results of Figure 10 leads to 

more branched results. The skeletonization and polyline simplification leads to a reasonable curve 

approximation of the beam line for all three cases. The manual reconstruction of such beamlines can 

be very time consuming and error prone, because the huge amount of beam lines are often oriented 

differently. The main dissatvantage of this curve skeletonization is that each shape is treated as an 

object that can be constructed by extruding a circular cross section. However, in topology 

optimization, solid or planar geometries can also be occur, which are poorly covered by the curve 

skeleton.  

One of the major adavances is the still existing shape parametirzation of all of these shape 

descriptors. Such parametirzation can be used to fuilifill manufacturing constraints such statisfying 

minimium size control for selective laser melting or reducing overhang angles changing the skeleton 

coordinates. Figure 10 shows the meta ball reconstruction of the 3D use cases visualized in Figure 

10. Additionally, the corresponding radii of the meta balls are scaled up to the minimum allowable 

size.   

Optimization Result Binary Image Curve Skeleton Segmentation Polylines
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Figure 10.   Meta Ball parametrization for automatic size control 

Such fully automatic size control is desirable for additive manufacturing, especially with such a large 

number of branches. In addition, the curve skeleton can be adjusted so that the corresponding shape 

requires a smaller support structure by reducing the overhang angle. While controlling the size is a 

relatively simple task when such parameterization is available, reducing the overhang angle is a 

challenge and should be futher discussed in future works. In addition, a change in geometry may affect 

the corresponding objective, which requires therfore verification of the reconstructed result.  

Once a suitable Meta Ball surface has been determined, the reconstruction of the topology optimization 

result can now be verified considering the maximum displacement using the corresponding geometry 

and, if necessary, the adapted geometry fulifilling manufacturing specifications. Figure 11 shows the 

use-case for the compliance topology optimization using solid isotropic mateiral penaltriaztion with a 

penalty exponent 𝑝 = 3 for a given volumia ratio Ω/Ω0.  

 
Figure 11.  Verification sample in terms of maximum displacement and volumina ratio of the 

topology optimzation use-case. (Cyan: fixed constraints) 

The volume ratio differs from the selected topology optimization result to the reconstructed Meta Ball 

object by 0.01, which is negligible. While this use case uses a manual setup of the finite element model, 

future work can automatically account for the boundary and load conditions. This offers the possibility 

of sequential topology optimization followed by verification, or size and shape optimization using these 

Meta Balls. If the displacement does not meet the given specification, the size of the radii of the Meta 

Balls can be automatically adjusted until the specification is met. 

6. Summary 
This article describes the use of so-called metaballs and curve skeletons for reconstruction in topology 

optimization. The main goal is to obtain a beam parametric that can be used to verify or adjust the 

optimization result. To achieve a compact beam description, skeletonization by thinning is first 

performed. To simplify the individual skeleton curves, a simplification via a collapse metric is 

introduced. The individual skeleton curves are simplified until a certain distance to the skeleton points 

is exceeded. Based on this simplified skeleton, Meta Balls be applied. These Meta Balls are placed along 

the curve skeleton by a certain distance, with each sphere seamlessly following the others. This 

parametriaztion is applied to certain use-cases.First, these Meta Balls are visually compared to common 

surface descriptions, from which their main topological advantages emerge. Meta Balls offer the 

advantage that they automatically connect seamlessly to neighboring Meta Balls without the need to 
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specifically consider these cases. Secound based on the available parameters, local size constraints were 

directly ensured for a heat sink use case. Third, a topology optimization result was reconstructed using 

Meta Balls for automated verification. 

In summary, by using a curve skeleton in combination with Meta Balls, an automated parameterization 

can be achieved, which in particular allows the automatic connection of beams in an automated way. 

Such an automation is desirable in the software implementations, because in contrast to CSG and 

subdivision surfaces no special cases and extra solutions are necessary. The biggest disadvantage 

compared to the other form descriptions is the restriction to the kernel function, so that often only 

organic objects can be considered meaningfully. 
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