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Particle focusing in a wavy channel
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It is known that inertial lift forces can lead to particle focusing in channel flows; yet
oscillatory straining effects have also been suggested as a mechanism for particle focusing
in wavy channels. To explore the synergy between these two mechanisms, we analytically
and experimentally investigate the focusing behaviour of rigid neutrally buoyant particles
in a wavy channel. We decompose the particle-free channel flow into a primary Poiseuille
flow and secondary eddies induced by the waviness. We calculate the perturbation of the
particle on the particle-free flow and the resulting lateral lift force exerted on the particle
using the method of matched asymptotic expansions. This yields a zeroth-order lift force
arising from the Poiseuille flow and a first-order lift force due to the waviness of the
channel. We further incorporate the inertial lift force into the Maxey–Riley equation and
simulate particle trajectories in wavy channels. The interactions between the zeroth-order
lift force and the particle-free flow largely determine the focusing locations. Experiments
in wavy channels with varying amplitudes at channel Reynolds numbers ranging from
5 to 250 are consistent with the predictions of the focusing locations, which are mainly
governed by the channel Reynolds number as well as the competition between the inertial
lift and the oscillatory straining effects.

Key words: particle/fluid flow, microfluidics, suspensions

1. Introduction

Randomly distributed particles can spontaneously migrate across streamlines in channel
flows and eventually focus at specific regions or locations within the cross-section. In
the pioneering experimental work of Segré & Silberberg (1961), particles migrate across
streamlines and focus into a ring in a circular pipe. Since then, experimental studies
have extensively investigated particle focusing in straight channels by varying the channel
Reynolds number, the shape of the channel cross-section and the particle size (Matas,
Morris & Guazzelli 2004; Di Carlo et al. 2009; Morita, Itano & Sugihara-Seki 2017;
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Nakayama et al. 2019). The inertial lift force has long been identified as the mechanism
driving lateral migration of particles and thus as the key to understanding the physics
underlying particle focusing (Saffman 1965). Previous theoretical work has employed
asymptotic analysis (Cox & Brenner 1968; Ho & Leal 1974; Schonberg & Hinch 1989;
Hogg 1994; Asmolov 1999; Matas, Morris & Guazzelli 2009; Hood, Lee & Roper 2015),
numerical simulations (Asmolov et al. 2018; Bazaz et al. 2020) and, more recently,
machine learning (Su et al. 2021) to calculate the variation of the lift force on a particle in
a straight channel. These studies provided reliable predictions for the focusing conditions
and the equilibrium locations of particles.

Driven by microfluidic applications, the past twenty years have witnessed a variety of
particle focusing techniques featuring non-standard channel structures. These structures
include spiral channels (Bhagat, Kuntaegowdanahalli & Papautsky 2008; Harding, Stokes
& Bertozzi 2019), asymmetric or symmetric serpentine channels (Di Carlo et al. 2007,
2008), expansion–contraction channels (Park, Song & Jung 2009; Zhou, Kasper &
Papautsky 2013), pillar arrays in straight channels (Amini et al. 2013), grooved or
textured channels (Nizkaya et al. 2020; Zhang et al. 2021), channels with unconventional
cross-sections (Kim et al. 2016) and permeate channels (Garcia & Pennathur 2017; Garcia,
Ganapathysubramanian & Pennathur 2019). Many non-standard channels demonstrate the
potential to reduce the footprint of the device and to improve focusing performance relative
to straight channels, as characterized by the reduction in the required channel length
and pressure for the focusing of sub-micron particles (Tang et al. 2020). On top of the
zeroth-order Poiseuille flow, non-standard channels introduce secondary flows that are the
reason for the improved performance (Tang et al. 2020). Most studies still acknowledge
the role of the inertial lift force in particle focusing (Zhang et al. 2016). However, due
to the existence of secondary flows, the variations of the inertial lift force are poorly
understood in many non-standard channels (Stoecklein & Di Carlo 2019). Quantitative
predictions of the focusing locations in curved ducts have been explored based on the
balance between the inertial lift force and other hydrodynamic forces arising from the
secondary flows (Harding et al. 2019; Harding & Stokes 2020; Ha et al. 2022; Valani,
Harding & Stokes 2022). However, the focusing locations remain to be explored in many
other types of non-standard channels.

One common feature of many non-standard channels is periodicity along the axial
direction (figure 1). For example, the centreline of a serpentine channel can be described
by a sinusoidal function. The curvature introduces a secondary Dean flow that is
perpendicular to the axial direction (Di Carlo et al. 2007). The Dean flow emerges
due to the mismatch in the velocity across the channel cross-section and the resultant
centrifugal pressure gradient. The balance between the inertial lift force and the drag
force associated with the Dean flow determines the equilibrium positions of the particles
(Di Carlo et al. 2007). As a second example, the centreline of an expansion–contraction
channel follows a straight line, but its walls have a periodic square waveform. Thus,
vortices form at the abrupt expansions. Depending on the interplay between the inertial
lift force and the vortices, particles can either be trapped in the expanded regions or
migrate towards the inner part of the channel (Park et al. 2009; Zhou et al. 2013). In
these two examples, the periodic channels significantly differ from straight channels in
that the secondary flows are of equal importance to the inertial lift force in determining
the particles’ behaviour. Similarly, when periodic channels only moderately deviate from
straight channels, a less noticeable secondary flow may give rise to different focusing
mechanisms. Hewitt & Marshall (2010) investigated particle focusing in a corrugated tube
with a radius varying sinusoidally along the axial direction. By neglecting the lift force
on the particles and employing lubrication theory for the channel flow, they analytically
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Wavy channel 

(this work)

Serpentine channel 

(e.g. Di Carlo et al. 2007, 2008)

Corrugated tube 

(e.g. Hewitt & Marshall 2010)

Expansion–contraction channel 

(e.g. Park et al. 2009; Zhou et al. 2013)

(b)(a)

(d )(c)

Figure 1. Schematics of several types of periodic channels discussed in the literature.

found that particles focus on the centreline of the tube. This behaviour was also revealed
in their discrete-element simulations in which a Saffman lift force acts on the particles.
They attributed particle focusing to the alternating series of positive and negative strain
rates induced by the waviness, and termed this behaviour ‘oscillatory clustering’ (Marshall
2009; Hewitt & Marshall 2010). Nizkaya, Angilella & Buès (2014) neglected the lift force
in analysing particle focusing in wavy channels. In light of these studies, one may question
whether inertial lift force plays a critical role in particle focusing in wavy channels.
Additionally, to the best of our knowledge, the variation of the inertial lift force has not
been investigated in a wavy channel.

In this paper, we analytically and experimentally investigate the underlying mechanisms
that drive focusing behaviour of neutrally buoyant particles in a wavy channel (figure 1).
We provide a theoretical analysis for a particle that has an asymptotically small dimension
compared with the channel width, as summarized in figure 2. To this end, we first calculate
the flow in the wavy channel in the absence of particles, i.e. the particle-free flow or
undisturbed flow. Throughout this paper, ‘disturbance/perturbation’ refers to the impact
of particles on the particle-free flow. By incorporating the particle-free velocity field into
the method of matched asymptotic analysis, we then calculate the inertial lift force on a
neutrally buoyant particle in the wavy channel. We simulate the trajectory of the particle
and predict focusing locations with a modified Maxey–Riley equation, incorporating
source terms including the Stokes drag, fluid acceleration, added mass and lift force on
the particle. We reveal the critical role of the inertial lift force in particle focusing and
demonstrate different focusing behaviours than those observed in straight channels. By
conducting experiments using particles that have finite dimensions compared with the
channel width, we not only validate our predictions of the focusing locations but also reveal
conditions in which realistic focusing behaviour deviates from the asymptotic analysis.

The paper is organized as follows: in § 2, we calculate the particle-free flow in the wavy
channel. In § 3, we formulate the governing equations for the perturbations introduced
by an asymptotically small neutrally buoyant particle. In § 4, we calculate the inertial lift
force on the particle with matched asymptotic analysis. In § 5, we simulate the trajectory
of the particle and predict its focusing locations. In § 6, we experimentally validate our
predictions of the focusing locations, explore the focusing conditions and establish the
differences in the focusing behaviour between wavy and straight channels. In § 7, we
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Sec. 4.1: Inner solution Sec. 4.2: Outer solution

Sec. 4.3: Matching inner & outer solutions

Inertial lift force on particle, FL

Sec. 5: Particle focusing location

Sec. 6: Experiments

First-order flow

due to waviness

ε =Rc   a/l « 1

Rc: channel Re

1/2

(0)

Perturbation velocity field u

Particle-free velocity field
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Asymptotic theory (ε « 1, εw « 1, a/l « 1)
Sec. 3–5: Particle-disturbed flow

Validation

x
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Figure 4

Figure 5 Figure 6

Figure 9

Figures 10–13

Figures 6–8

l: mean channel width

2a

εw « 1

εw h

V̄

V̄X

(1)V̄X

(1)V̄

Figure 2. Structure of the paper. Throughout this work, perturbation refers to the impact of the particle on the
particle-free flow.

introduce a scaling analysis to qualitatively compare the relative importance between the
inertial lift and oscillatory straining effects, revealing how such competition leads to the
variation of the focusing locations of particles in different parameter regimes.

2. Particle-free flow

We begin by computing the laminar particle-free velocity field in a two-dimensional wavy
channel that extends infinitely in the out-of-plane direction. Consider fluid flow between
two symmetric wavy plates with an average separation of l, as shown in figure 3. The
wavy plates have a sinusoidal profile with amplitude εwh and wavelength λ, where h is the
mean half-width of the channel, h = l/2. We denote the angular frequency of the waviness
as ω′, i.e. λ = 2π/ω′; additionally, we assume λ is at least of O(h). The laboratory
frame is chosen with an origin located at the intersection between the middle plane
and a cross-section on which the channel is of minimum width. We use the coordinate
R′ = (X ′,Y ′,Z ′) for the laboratory frame. The flow is driven by a pressure gradient in
the X ′ direction, and the velocity on the middle plane has an average magnitude of U′

m.
We non-dimensionalize our variables by normalizing the particle-free velocity V̄ ′ with

U′
m and by introducing R = R′/h = (X ,Y,Z). In the rest of the paper, dimensionless

variables are indicated by a lack of primes. The particle-free fluid pressure P̄ ′ is
normalized with ρU′2

m , where ρ is the fluid density. The dimensionless governing equations
of V̄ can then be written as the dimensionless Navier–Stokes equations and the continuity
condition

V̄ · ∇V̄ = −∇P̄ + 2
Rc

∇2V̄, (2.1a)

∇ · V̄ = 0, (2.1b)
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U ′
m

x′
y′z′

l

h

2a

λ = 2π/ω′ εwh

Y ′

X ′
Xp

′

Z′
Zp

′

ϕp = ω′Xp
′
: particle phase angle in x-direction

l: mean channel width 

Figure 3. Schematics of the flow in a wavy channel and two sets of coordinate systems. The solid and dashed
velocity profiles represent the actual flow at X ′ = 0 and the zeroth-order plane Poiseuille flow, respectively.

where P̄ is the dimensionless particle-free fluid pressure, Rc = 2U′
mh/ν is the channel

Reynolds number (Schonberg & Hinch 1989; Hogg 1994; Asmolov 1999) and ν is the
kinematic viscosity of the fluid. The velocity V̄ is subject to a no-slip boundary condition
on the walls

V̄ = 0 at Z = ±1 ∓ εw Re[exp(iωX )], (2.2)

where ω = ω′h. For a small waviness amplitude, i.e. εw � 1, the particle-free velocity and
pressure can be expressed as a series of higher-order corrections to Poiseuille flow

V̄ = V̄ (0) + εwV̄ (1) + O(ε2
w) and P̄ = P̄(0) + εwP̄(1) + O(ε2

w), (2.3a,b)

where the X -component of the zeroth-order particle-free velocity is V̄(0)
x = 1 − Z2, the

Z-component of the zeroth-order particle-free velocity is V̄(0)
z = 0 and the zeroth-order

particle-free pressure P̄(0) varies linearly in the X direction. Note that this expansion is
distinct from the standard lubrication approach in which εwh/λ� 1. Here, we instead
allow for the case where the amplitude of the waviness may be of the same order as the
wavelength.

To solve the first-order particle-free flow, we employ a strategy introduced by Van
Dyke in 1975; instead of enforcing the no-slip condition at the wavy wall, we transfer
the boundary condition in (2.2) to the average locations of the walls (Van Dyke 1975;
Selvarajan, Tulapurkara & Vasanta Ram 1998, 1999) such that the no-slip condition is
enforced at the wall to first order. To this end, we write (2.2) as a Taylor series around
Z = 1 and then expand V̄ and its derivatives in orders of εw with (2.3a,b), finally arriving
at

V̄ (1)
x � ±[V̄ (0)

x ]′Re[exp(iωX )] and (2.4a)

V̄ (1)
z � ±[V̄ (0)

z ]′Re[exp(iωX )] at Z = ±1, (2.4b)

where the prime symbols denote derivatives with respect to Z .
We now return to (2.1) to solve for the first-order velocity V̄ (1) and pressure P̄ (1).

Inserting (2.3a,b) into (2.1) gives rise to the first-order governing equations, which are
then solved with the transferred boundary condition (2.4). The first-order problem is
linear in V̄ (1) and P̄ (1); additionally, X and Z are separated in the transferred boundary
conditions (2.4). Thus, we perform separation of variables and make the ansatz V̄ (1) =
Re[V̂(Z) exp(iωX )] and P̄(1) = Re[P̂(Z) exp(iωX )] following the structure of (2.4).
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Herein, V̂(Z) and P̂(Z) are assumed to be complex functions, and the Re symbols ensure
that the computed V̄ (1) and P̄ (1) are real-valued functions. The first-order variables V̂(Z)

and P̂(Z) are then subject to the following differential equations and boundary conditions:

iωV̂x + dV̂z

dZ = 0, (2.5a)

iω(1 − Z2)V̂x − 2ZV̂z = −iωP̂ + 2
Rc

(
−ω2 + d

dZ2

)
V̂x, (2.5b)

iω(1 − Z2)V̂z = −dP̂
dZ + 2

Rc

(
−ω2 + d

dZ2

)
V̂z, (2.5c)

V̂x = −2 and V̂z = 0 at Z = ±1. (2.5d)

Note that we drop the Re symbols and the sinusoidal term exp(iωX ) in obtaining (2.5).
Equation (2.5) can be solved numerically with the orthonormalization method (Conte
1966; Scott & Watts 1977). To avoid numerical instability, we perform integration from
both boundaries and match the results at Z = 0. In short, we solve (2.5) on two intervals,
Z ∈ [−1, 0] and Z ∈ [0, 1]. For each interval, we write the solution as the summation of
a particular solution and a linear combination of orthonormal homogeneous solutions,
where the pre-factors for the homogeneous solutions are the unknowns. We integrate
(2.5) from both boundaries Z = ±1, and finally determine the pre-factors by utilizing
the continuity of the functional values at Z = 0.

Figure 4 shows the particle-free velocity field in a wavy channel. Unlike the zeroth-order
flow which is independent of the X -coordinate (figure 4a), the first-order velocity
varies periodically along the X -direction (figure 4b). Due to the waviness, a pair of
counter-rotating vortices appear in both the X - and Z-directions in each period of the
channel. To better illustrate the distributions of V̄(1)

x and V̄(1)
z across the channel, we

select the cross-section X = 0 and show V̄(1)
x (X = 0) and V̄(1)

z (X = 0) as functions
of Z at varying channel Reynolds number Rc (figure 4c) and frequency ω (figure 4d).
The first-order x-velocity correction, V̄(1)

x (X = 0,Z) is symmetric about Z = 0, whereas
V̄(1)

z (X = 0,Z) is anti-symmetric. As Rc or ω increases, V̄(1)
x becomes more uniform,

and the magnitude in the middle of the channel decreases; by contrast, V̄(1)
x varies more

sharply close to the boundaries. The magnitude of V̄(1)
z does not vary monotonically

with Rc (figure 4c). By contrast, the magnitude of V̄(1)
z increases with ω (figure 4d). The

locations of the maximum and minimum V̄(1)
z move toward the boundary of the channel

as ω increases. Figures 4(c) and 4(d) indicate that the shear rate close to the boundaries is
positively related to Rc and ω.

Figure 4 also includes the analytic solutions at the asymptotic limits Rc → 0 and ω → 0
in 4(c) and 4(d), respectively. In the Stokes-flow limit, the first-order velocity component
V̄(1)

x (X = 0,Z) is given by

V̄(1)
x (X = 0,Z) = 4 cosh(ωZ) [−ω cosh(ω) + sinh(ω)] + 4ωZ sinh(ω) sinh(ωZ)

2ω − sinh(2ω)
,

(2.6)

and V̄(1)
z (X = 0,Z) is calculated to be zero. As Rc decreases, our numerical computations

asymptote to these analytic solutions, as shown in figure 4(c). In the limit of an
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Figure 4. Particle-free flow in the wavy channel. The flow field can be approximated as the sum of (a) a
zeroth-order Poiseuille flow V̄ (0) and (b) a first-order flow V̄ (1) which introduces eddies. In (b), Rc = 10 and
ω = 2. (c) Variations of the first-order velocity components V̄ (1)

x and V̄ (1)
z across the channel at X = 0 for

varying channel Reynolds numbers Rc, where ω = 2. (d) Variations of the first-order velocity components V̄ (1)
x

and V̄ (1)
z across the channel at X = 0 for varying frequencies ω of the waviness, where Rc = 250. Dashed lines

in (c,d) represent analytic solutions in the limits Rc → 0 and ω → 0, respectively.

infinitesimal waviness frequency, i.e. ω → 0, our numerical computations also asymptote
to the analytic solutions (figure 4d), where

V̄(1)
x (X = 0,Z) = 1 − 3Z2 and V̄(1)

z (X = 0,Z) = 0. (2.7a,b)

The detailed derivations for the Stokes-flow limit Rc → 0 and the lubrication limit ω → 0
are reported in Appendices A and B.
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3. Particle perturbation analysis formulation

We now introduce a spherical particle that gives rise to a perturbation to our particle-free
channel flow. Hence, we investigate the perturbation in three dimensions. As shown in
figure 3, the particle is located at (dimensional) coordinates (X ′

p,Y ′
p,Z ′

p) and is moving
with a (dimensional) translational velocity U ′

p = U′
p,xex + U′

p,zez, where ex and ez are unit
vectors in the x- and z-directions, respectively. We define ϕp = ω′X ′

p as the phase angle
corresponding to the X -location of the particle (figure 3). To understand the perturbation
induced by the particle, we choose a non-inertial frame of reference that is instantaneously
located at the particle centre and translates at the particle velocity U ′

p (Hogg 1994;
Asmolov 1999; Hood et al. 2015). Since the particle is free, the net force (including the
virtual force due to the acceleration of the frame) acting on the particle is zero in this frame
of reference. We use the coordinate r′ = (x′, y′, z′) for the particle frame (figure 3). Let v̄′
denote the particle-free velocity and p̄′ the particle-free pressure in the particle frame;
namely, the velocity and pressure fields computed in the previous section are shifted by
the (currently unknown) velocity U ′

p. The particle-free equations of motion can be written
in terms of v̄′ as

ρ

(
∂ v̄′

∂t′
+ v̄′ · ∇′v̄′ + a′

p

)
= −∇′p̄′ + μ∇′2v̄′, (3.1a)

∇′ · v̄′ = 0, (3.1b)

v̄′ = −U ′
p on the walls, (3.1c)

where a′
p is the particle acceleration measured in the laboratory frame (Kundu, Cohen &

Dowling 2016). Although (3.1) has been solved in the previous section, we rewrite it here
in the particle frame as they will be used below to derive the governing equations for the
difference between the disturbed and particle-free velocity fields.

We now consider the equations of motion for the flow field which is perturbed by the
presence of the particle. Let v′ (note no overbar) denote the disturbed fluid velocity and p′
the disturbed pressure in the particle frame. The equations for the disturbed flow take the
same form of the Navier–Stokes equations and the continuity condition as (3.1)

ρ

(
∂v′

∂t′
+ v′ · ∇′v′ + a′

p

)
= −∇′p′ + μ∇′2v′, (3.2a)

∇′ · v′ = 0. (3.2b)

The boundary conditions include a no-slip boundary condition on the walls, a no-slip
boundary condition on the surface of the particle and the absence of perturbation far away
from the particle

v′ = −U ′
p on the walls, (3.3a)

v′ = Ω ′
p × r′ at

∣∣r′∣∣ = a, (3.3b)

v′ = v̄′ at
∣∣x′∣∣→ ∞, (3.3c)

where a is the particle radius, and Ω ′
p is the particle’s rotational velocity. Next, we define

the perturbation velocity u′ as the difference between the disturbed and the particle-free
velocities, i.e. u′ = v′ − v̄′. The governing equations of u′ can be obtained by subtracting
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(3.1) from (3.2)

∂u′

∂t′
+ u′ · ∇′u′ + v̄′ · ∇′u′ + u′ · ∇′v̄′ = − 1

ρ
∇′( p′ − p̄′) + ν∇′2u′, (3.4a)

∇′ · u′ = 0. (3.4b)

Note that the particle acceleration a′
p in (3.1) and (3.2) cancels out during subtraction. The

boundary conditions of (3.4) are

u′ = 0 at z′ =
{−Z ′

p − h + εwh Re{exp[i(ω′x′ + ϕp)]}
h − Z ′

p − εwh Re{exp[i(ω′x′ + ϕp)]} , (3.5a)

u′ = Ω ′
p × r′ − v̄′ at

∣∣r′∣∣ = a, (3.5b)

u′ = 0 at
∣∣x′∣∣→ ∞. (3.5c)

We non-dimensionalize (3.5) by introducing

r = r′

a
, u = u′

U′
m

, v̄ = v̄′

U′
m

, ω = ω′h,

Ωp = 2hΩ ′
p

U′
m

, and q =
(

μU′
m

a

)−1 (
p′ − p̄′) ,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.6)

where v̄ is the dimensionless particle-free velocity in the particle frame, q is the
dimensionless perturbation pressure and a lack of prime denotes dimensionless variables.
Additionally, we introduce a particle Reynolds number Rp = U′

ma2/(lν) (Schonberg &
Hinch 1989; Hogg 1994; Asmolov 1999), where ν is the kinematic viscosity of the
fluid. We define ε = R1/2

p = R1/2
c a/l (Asmolov 1999; Matas et al. 2009). This small

dimensionless parameter ε is taken to be the asymptotic parameter that we will use to
analyse the perturbation introduced by the particle, and we assume ε � 1. Hence, we have
the following dimensionless governing equations of u:

εR1/2
c

(
∂u
∂t

+ u · ∇u + v̄ · ∇u + u · ∇v̄

)
= −∇q + ∇2u, (3.7a)

∇ · u = 0, (3.7b)

with boundary conditions

u = 0 at z = 1
2ε−1R1/2

c (∓1 − Zp ± εw Re{exp[i(ϕp + xεκ)]}), (3.8a)

u = εR−1/2
c Ωp × r − v̄ at |r| = 1, (3.8b)

u = 0 at |x| → ∞, (3.8c)

where we replace 2ωR−1/2
c with κ , and v̄ is the non-dimensional particle-free flow field in

the frame of the particle. Additionally, we factor out ε in the exponential term of (3.8a) for
mathematical convenience in § 4.2.

Finally, we express the particle-frame-based particle-free velocity v̄ in (3.7) using
quantities that have been calculated in § 2. In terms of the dimensionless particle-free
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velocity V̄ in the laboratory frame, and the dimensionless particle velocity Up we have

v̄ = V̄ − Up. (3.9)

We further rewrite the arguments of V̄ , V̄ (0)
, V̄ (1)

and V̂ in terms of the dimensionless
coordinates in the particle frame x, y and z with the relationships X = ax/h + Xp and
Z = az/h + Zp, e.g. V̂x(Z) = V̂x(2εzR−1/2

c + Zp). Note that a conversion between Y and
y is not necessary because the y-components of both V̄ and Up are equal to zero, leading
to v̄y = 0 (3.9); similarly, all y-components in the rest of this section vanish. Moreover,
since the perturbation velocity u is influenced by the lag between the particle velocity Up

and the particle-free velocity at the instantaneous location of the particle centre V̄(Rp(t)),
we define a dimensionless particle slip velocity, V s = V̄(Rp(t)) − Up. Inserting (2.3a,b),
the asymptotic expansions for V̄ and P̄ into (3.9), we find

v̄x = Vs,x + 	V̄(0)
x + εw	V̄(1)

x + O(ε2
w), v̄z = Vs,z + εw	V̄(1)

z + O(ε2
w), (3.10a,b)

where 	V̄(i)
x represents the difference between the ith order particle-free velocity

at location r = (x, y, z) and the ith-order particle-free velocity at the particle centre
(0, 0, 0). Here, 	V̄(0)

x = εγ zR−1/2
c − 4ε2z2R−1

c and 	V̄(0)
z = 0, where γ = −4Zp is the

zeroth-order shear rate at the particle centre normalized with a characteristic shear rate,
U′

m/l. Additionally,

	V̄(1)
x = Re{V̂x(2εzR−1/2

c + Zp) exp[i(ϕp + εxκ)] − V̂x(Zp) exp(iϕp)}, (3.11a)

	V̄(1)
z = Re{V̂z(2εzR−1/2

c + Zp) exp[i(ϕp + εxκ)] − V̂z(Zp) exp(iϕp)}. (3.11b)

To determine the orders of 	V̄(1)
x and 	V̄(1)

z in ε for later analyses in § 4, we first write
the Taylor series expansions of V̂x(2εzR−1/2

c + Zp) and V̂z(2εzR−1/2
c + Zp) at z = 0 under

the condition 2εzR−1/2
c � 1

V̂x(2εzR−1/2
c + Zp) = V̂x0 + αxεzR−1/2

c + 1
2βxε

2z2R−1
c + O(ε3), (3.12a)

V̂z(2εzR−1/2
c + Zp) = V̂z0 + αzεzR−1/2

c + 1
2βzε

2z2R−1
c + O(ε3), (3.12b)

where V̂x0 = V̂x(Zp), V̂z0 = V̂z(Zp) and αx, αz, βx and βz are prefactors of the Taylor
series, which can be determined numerically from the solutions to (2.5). Specifically, the
continuity condition gives rise to the relation iκR1/2

c V̂x0 + αz = 0. Given (3.12), we further
expand 	V̄(1)

x and 	V̄(1)
z in Taylor series with respect to both x and z, and find that 	V̄(1)

x

and 	V̄(1)
z are of O(ε), e.g. 	V̄(1)

x = Re[(ixκV̂x0 + αxzR−1/2
c ) exp (iϕp)]ε + O(ε2). These

expressions will be used to express the boundary conditions order by order at the surface of
a particle in the following section. Furthermore, we can analytically obtain the variables in
(3.11) and (3.12) in the lubrication limit where the angular frequency ω → 0 (Appendix B)

	V̄(1)
x → −12zε(ZpR−1/2

c + zεR−1
c ) cos(ϕp) and 	V̄(1)

z → 0, (3.13a,b)

which are of O(ε). We further find in this limit:V̂x0 → 1 − 3Z2
p , V̂z0 → 0, αx → −12Zp,

αz → 0, βx → −24 and βz → 0.
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Particle focusing in a wavy channel

4. Inertial lift force acting on a neutrally buoyant particle

The particle induces a small perturbation to the steady channel flow and hence experiences
an inertial lift force in the lateral direction. In this section, we calculate the inertial lift force
on a neutrally buoyant particle (recall that we seek to determine whether particle focusing
in wavy channels arises from this lift force). The problem formulated in (3.7) is solved
with the method of matched asymptotic expansions (Schonberg & Hinch 1989; Hogg 1994;
Asmolov 1999). We first solve an inner problem to obtain the flow field surrounding the
particle. We then regard the particle as a singular point that exerts a force on the channel
flow in an outer problem. Finally, matching the inner and outer solutions gives rise to a lift
force on the particle.

4.1. Inner solution
We introduce an inner expansion of the perturbation velocity and pressure

u = u0 + εu1 + O(ε2), q = q0 + εq1 + O(ε2). (4.1a,b)

Inserting (4.1a,b) into (3.7), the zeroth-order governing equations represent a Stokes-flow
problem

∇2u0 − ∇q0 = 0, (4.2a)

∇ · u0 = 0, (4.2b)

u0 = −Vs,xex − Vs,zez, |r| = 1, (4.2c)

u0 → 0, r → ∞. (4.2d)

In the absence of fluid inertia, we apply Faxén’s law and find that Vs,x and Vs,z are
of O(ε2R−1

c ). Thus, (4.2c) reduces to u0 = 0 on the particle surface, and u0 vanishes
everywhere in the channel. The first-order governing equations are then

∇2u1 − ∇q1 = 0, (4.3a)

∇ · u1 = 0, (4.3b)

u1 = R−1/2
c

(
Ωp × r − γ zex

)− εwε−1	V̄(1)
x ex − εwε−1	V̄(1)

z ez, |r| = 1, (4.3c)

u1 → 0, r → ∞, (4.3d)

where both ε−1	V̄(1)
x and ε−1	V̄(1)

z are of O(1) (see the end of § 3). We also assume
that εw and ε are of the same order of magnitude such that the last two terms in (4.3c)
are bounded. The first-order problem is still a Stokes-flow problem. Due to its linearity,
(4.3) can be decomposed into several sub-problems, which we solve separately based on
the fundamental solutions for a sphere immersed in Stokes flow derived by Guazzelli &
Morris (2011). For a rotational boundary condition with dimensionless rotation rate ω at
the particle surface, i.e. u1 = ω × r at |r| = 1, the perturbation velocity u1 is given by

u1 = ω × r
r3 , (4.4)

which is adapted from (2.7) in Guazzelli & Morris (2011). For a straining boundary
condition with dimensionless strain-rate tensor E at the particle surface, i.e. u1 = Er at
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|r| = 1, the components of the perturbation velocity u1 are given by

u1i = 5
2

xi
(
xjE jkxk

)
r5 + 1

2
E jk

[
δijxk + δikxj

r5 − 5xixjxk

r7

]
, (4.5)

which is adapted from (2.17) in Guazzelli & Morris (2011). Based on these fundamental
solutions, we decompose u1(r) into three parts: u1(r) = u1A(r) + u1B(r) + u1C(r) to
satisfy the different components in boundary condition (4.3c). In (4.3c), the term
R−1/2

c (Ωp × r) at the boundary corresponds to a pure rotational boundary condition with
a dimensionless rotation rate ω = R−1/2

c Ωp, which gives rise to the solution

u1A(r) = R−1/2
c Ωp × r

r3 . (4.6)

The term −R−1/2
c γ zex in (4.3c) represents a simple-shear boundary condition, which can

be treated as the combination of a rotational boundary condition with a dimensionless
rotation rate ω = −R−1/2

c (γ /2)ey and a straining boundary condition with a dimensionless
strain-rate tensor

E = −1
2 R−1/2

c

⎡
⎣0 0 γ

0 0 0
γ 0 0

⎤
⎦ . (4.7)

We then construct the following solution:

u1B(r) = R−1/2
c

[
−γ

2
ey × r

r3 + 5
2
γ rxz

(
1
r7 − 1

r5

)
− γ

2r5 (exz + ezx)
]

. (4.8)

The terms −εwε−1	V̄(1)
x ex − εwε−1	V̄(1)

z ez in (4.3c) can be treated as the combination
of a rotational and a straining boundary condition. Given (3.11), we find the Taylor series
for these two terms at the origin and only collect the leading-order terms in ε. The
corresponding strain-rate tensor E and rotation vector ω at the origin can be written as

E = −εwR−1/2
c Re

⎧⎪⎪⎨
⎪⎪⎩exp(iϕp)

⎡
⎢⎢⎣

−αz 0
ζ

2
0 0 0
ζ

2
0 αz

⎤
⎥⎥⎦
⎫⎪⎪⎬
⎪⎪⎭

and

ω = −εwR−1/2
c Re

⎧⎪⎨
⎪⎩exp(iϕp)

⎡
⎢⎣

0
σ

2
0

⎤
⎥⎦
⎫⎪⎬
⎪⎭ ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.9)

where ζ := αx + iκR1/2
c V̂z0 and σ := αx − iκR1/2

c V̂z0, which reduces to ζ = σ = −12Zp
for an infinitesimal angular frequency ω. The third component of the first-order velocity
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Particle focusing in a wavy channel

field u1C(r) is thus given by

u1C(r) = εwR−1/2
c Re

{
exp(iϕp)

[(
−σ

2
ey

)
× r

r3 + 5
2

r
(
ζxz − αzx2 + αzz2

)( 1
r7 − 1

r5

)

−ζ

2

(
zex + xez

r5

)
+ αz

(
xex − zez

r5

)]}
. (4.10)

We now determine the rotation velocity Ωp by establishing the balance of moment on the
particle. According to Faxén’s second law, the leading-order dimensional hydrodynamic
torque on the particle T ′ is proportional to the relative rotation velocity between the
undisturbed flow and the particle (Guazzelli & Morris 2011)

T ′ = 8πμa3(Ω̄
′
(r′ = 0) − Ω ′

p), (4.11)

where Ω̄
′
(r′ = 0) = ∇′ × v̄′/2 is the rotation vector of the undisturbed flow evaluated at

the particle centre. The torque leads to the angular acceleration of the particle, i.e. T ′ =
Ip dΩ ′

p/dt′, where Ip = (2/5)a2mp is the moment of inertia of the particle. Since we
assume that the wavelength of the channel λ is at least of O(l), the characteristic time
scale t′ for the variation of Ω ′

p is taken to be l/U′
m. Further normalizing the rotation vectors

with U′
m/l (3.6), we can establish the following moment balance on the neutrally buoyant

particle:

1
15

ε2 dΩp

dt
= Ω̄(r = 0) − Ωp. (4.12)

Expanding Ωp into orders of ε, we find Ω(0)
p = Ω̄(r = 0). Namely, in the framework of

the first-order perturbation analysis in ε, the particle follows the rotation of the undisturbed
flow at the instantaneous particle centre, exerting no net hydrodynamic torque on the
fluid. Therefore, the summation of all rotational components in u1(r) must vanish, and
Ω(0)

p equals {γ + εw Re[exp(iϕp)σ ]}ey/2. Instead of a lift force, the perturbation velocity
u1(r) leads to a strainlet (or force dipole) on the particle. The truncated term Ωp − Ω(0)

p
generates a rotlet, but its strength is negligible compared with the strainlet. To give a
sense of the perturbation velocity field associated with the strainlet, figure 5 shows the
distributions of the x and z components of u1(r) on the plane y = 0 in the particle
frame. Furthermore, at the limit εw → 0, our analytic expression of u1(r) recovers the
corresponding expression in a straight channel (see (5.3) in Asmolov 1999).

4.2. Outer solution
To find the lift force, we now turn to the outer region in which the balance between
the viscous and inertial effects are important. In the outer problem, we introduce
outer coordinates R = (X, Y, Z) that are related to the inner variables via R = εr.
The perturbation velocity and pressure fields are then expressed as U(R) and P(R),
respectively.

To match the inner and outer problems, we regard the particle as a singular point that
exerts a strainlet on the flow field. We will introduce the strainlet as a forcing term at the
origin in the momentum equations of the outer problem. To this end, we first convert u1(r)
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Figure 5. Distributions of the (a) x-component and (b) z-component of the first-order perturbation velocity
u1(r) on the plane y = 0, where r = (x, y, z) denotes the coordinate system in the particle frame. Arrows
represent the vector field u1(r), and the circle represents the particle surface. In this example, Rc = 100, ω = 2,
Zp = 0.5, ϕp = 0.3 and εw = 0.05.

(see (4.6)–(4.10)) to a function of outer coordinates

u1(R) = 5
2
ε2R−1/2

c
R
R5 {−γ XZ + εw Re[exp(iϕp)(−ζXZ + αzX2 − αzZ2)]} + O(ε4).

(4.13)

Given (4.1a,b) and (4.13), we now propose an outer expansion of the perturbation field

u = ε3U + O(ε4), q = ε4Q + O(ε5). (4.14a,b)

For a general strain tensor E and the corresponding strainlet velocity field u =
5xiE ijxjr/(2r5), the singular forcing term on the right-hand side of the outer momentum
equations takes the form of 20πE ij∂δ(r)/∂xj (Hogg 1994). Hence, the governing equations
and boundary conditions for our outer problem are

R
1
2
c (v̄ · ∇U + U · ∇v̄) = ∇Q + ∇2U − 10

3
πR−1/2

c γ

[
∂δ(R)

∂Z
ex + ∂δ(R)

∂X
ez

]

+ εw
10
3

πR−1/2
c Re

[
exp(iϕp)

{
−ζ

[
∂δ(R)

∂Z
ex + ∂δ(R)

∂X
ez

]

+2αz

[
∂δ(R)

∂X
ex − ∂δ(R)

∂Z
ez

]}]
(4.15a)

∇ · U = 0 (4.15b)

U = 0 at Z = 1
2 R1/2

c
(∓1 − Zp ± εw Re{exp[i

(
ϕp + Xκ

)
]}) . (4.15c)

In obtaining (4.15a), we neglect the time-derivative term. This is because the time scale
for the establishment of the disturbance flow, l2/ν, is much smaller than the time scale
over which the particle migrates laterally relative to the particle-free flow, l/Ulateral (Hogg
1994). Here, Ulateral denotes the lateral migration velocity of the particle. We also neglect
a term ε3U · ∇U in (4.15a), as the interaction of the perturbation flow with itself is
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Particle focusing in a wavy channel

negligible compared with other inertial terms. Next, we expand R1/2
c v̄, U , and Q in powers

of εw

R1/2
c v̄x = V̄(0)

x + εwV̄(1)
x + O(ε2

w), R1/2
c v̄z = εwV̄(1)

z + O(ε2
w), (4.16a)

U = U (0) + εwU (1) + O(ε2
w), Q = Q(0) + εwQ(1) + O(ε2

w), (4.16b)

where V̄(0)
x = γ Z − 4Z2R−1/2

c , V̄(1)
x = R1/2

c 	V̄(1)
x and V̄(1)

z = R1/2
c 	V̄(1)

z (3.10a,b), which
reduce to V̄(1)

x → −12zε(Zp + zεR−1/2
c ) cos(ϕp) and V̄(1)

z → 0 in the limit ω → 0.
Expanding (4.15) and collecting like terms in εw, we obtain the zeroth-order governing
equations and boundary conditions

∇2U (0) − ∇Q(0) − V̄(0)
x

∂U (0)

∂X
− U(0)

z
dV̄(0)

x

dZ
ex

= −10
3

πR−1/2
c γ

[
∂δ(R)

∂Z
ex + ∂δ(R)

∂X
ez

]
, (4.17a)

∇ · U (0) = 0, (4.17b)

U (0) = 0, at Z− = −1
2 R1/2

c (1 + Zp) and Z+=1
2 R1/2

c (1 − Zp), (4.17c)

U (0) = 0, X → ∞, (4.17d)

where Z− and Z+ denote the Z-coordinates of the average locations of the walls. The
first-order governing equations in εw take the form

∇2U (1) − ∇Q(1) − V̄(0)
x

∂U (1)

∂X
− U(1)

z
dV̄(0)

x

dZ
ex = V̄(1)

x
∂U (0)

∂X
+ V̄(1)

z
∂U (0)

∂Z

+
(

U(0)
x

∂V̄(1)
x

∂X
+ U(0)

z
∂V̄(1)

x

∂Z

)
ex +

(
U(0)

x
∂V̄(1)

z

∂X
+ U(0)

z
∂V̄(1)

z

∂Z

)
ez

+ 10
3

πR−1/2
c Re

⎡
⎢⎢⎣exp(iϕp)

⎧⎪⎪⎨
⎪⎪⎩

−ζ

[
∂δ(R)

∂Z
ex + ∂δ(R)

∂X
ez

]

+2αz

[
∂δ(R)

∂X
ex − ∂δ(R)

∂Z
ez

]
⎫⎪⎪⎬
⎪⎪⎭

⎤
⎥⎥⎦ , (4.18a)

∇ · U (1) = 0. (4.18b)

Similar to our strategy in (2.4), we transfer the boundary condition (4.15c) to the average
locations of the walls instead of enforcing U (1) = 0 at the wavy walls, such that U (1) = 0
is enforced at the wavy wall to the first order (Van Dyke 1975)

U (1) = ±1
2

∂U (0)

∂Z
R1/2

c Re{exp[i(ϕp + κX)]}, at R = (X, Y, Z±) (4.19a)

U (1) = 0, X → ∞, (4.19b)

where Z± = {Z−, Z+} denotes the Z-coordinates of the average locations of the walls.
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4.3. Matching inner and outer solutions
Matching the inner and outer solutions enables us to calculate the lift force on the particle
in the z-direction. From (4.1a,b) and (4.14a,b), we know that the perturbation velocity
component at the origin uz(R = 0), i.e. the lateral migration velocity of the particle relative
to the undisturbed flow, can be determined from the difference between ε3Uz(R = 0) and
εu1,z(R = 0). The migration velocity uz(R = 0) gives rise to an inertial lift force acting
on the particle in the z direction (Schonberg & Hinch 1989; Hogg 1994; Asmolov 1999)
(see derivations of the force balance in Appendix C). Given the characteristic force scale
μaU′

m, the dimensionless lift force on the particle FL,z is then

FL,z = 6πuz = 6πε3 lim
R→0

(Uz − ε−2u1,z). (4.20)

Since u1,z(R) has already been obtained in (4.13), we now provide a strategy to numerically
solve Uz. We first convert the partial differential equations (PDEs) (4.17) and (4.18) with

Fourier transforms, obtaining governing equations for Ũ
(0)

(kx, ky, Z) and Ũ
(1)

(kx, ky, Z),
where the tildes denote quantities in the frequency domain, and kx and ky are frequencies.
We further convert these PDEs into ordinary differential equations (ODEs) for Ũ(0)

z and
Ũ(1)

z , respectively. Numerically solving the ODEs for Ũ(0)
z and Ũ(1)

z and performing inverse
Fourier transforms will enable us to obtain FL,z at different orders of εw based on (4.20).
The detailed derivations for the ODEs are documented in Appendix D.1.

After solving Ũ(1a)
z and Ũ(1b)

z for arbitrary values of kx and ky, we further evaluate the
normalized lift force by performing the following inverse Fourier transform:

FL,z = F(0)
L,z + εwF(1)

L,z + O(ε2
w), (4.21a)

F(0)
L,z = 6πε3 Re

[∫ +∞

−∞

∫ +∞

−∞
Ũ(0)

z (kx, ky, 0) dkx dky

]
, (4.21b)

F(1)
L,z = 6πε3 Re

[∫ +∞

−∞

∫ +∞

−∞
Ũ(1)

z (kx, ky, 0) dkx dky

]
. (4.21c)

According to (D6)–(D7), Ũ(1)
z can be written in a form with the underlying parameters Xp

and Zp separated

Ũ(1)
z (kx, ky, 0) = 1

2 [exp(iϕp)Ũ(1a)
z (ǩx, ky, 0) + exp(−iϕp)Ũ(1b)

z (k̂x, ky, 0)], (4.22)

where ǩx = kx − κ , k̂x = kx + κ and the particle’s coordinate components Xp and Zp are
embedded in ϕp and Ũ(1a/b)

z , respectively. Compared with (4.20), (4.21) does not contain
any terms from u1,z(R = 0) (4.13), because the two-dimensional Fourier transform of a
strainlet velocity field is imaginary at the origin (Schonberg & Hinch 1989; Hogg 1994;
Asmolov 1999). Thus, FL,z is different from the outer solution Uz(R = 0) only by a factor
of 6πε3. Notably, FL,z is a function of Xp, Zp, ω, ε and εw.

It is important to note that the ODEs for Ũ(1a)
z and Ũ(1b)

z (D8)–(D12) reduce to the same
form in the limit of ω → 0, giving rise to Ũ(1a)

z (ǩx, ky, 0) = Ũ(1b)
z (k̂x, ky, 0). In this case,

one can show that F(1)
L,z is in phase with the sinusoidal profile of the wavy channel (4.22).

We compute F(0)
L,z, F(1)

L,z and FL,z across the channel based on (4.21) and present the results

in figures 6–8, respectively. Figure 6 shows ε−3R1/2
c F(0)

L,z as a function of Zp at varying Rc.
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Figure 6. Normalized zeroth-order lift force ε−3R1/2
c F(0)

L,z as a function of the Z-coordinate of the particle Zp

at varying channel Reynolds numbers Rc. For varying particle z-location Zp, the outer solution U(0)
z (R = 0) is

different from F(0)
L,z only by a factor of 6πε3 (4.21b).

The zeroth-order lift-force component F(0)
L,z points towards the wall, or outwards, when the

particle is in the inner part of the channel; F(0)
L,z points towards the centreline, or inwards,

when the particle gets close to the wall. As Rc increases, the equilibrium position of
F(0)

L,z shifts outwards, and the magnitude of ε−3R1/2
c F(0)

L,z decreases in the inner part of
the channel. Our computed zeroth-order lift force is consistent with the lift force reported
in Asmolov (1999).

The first-order lift force F(1)
L,z varies in both the x- and z-directions and is a function of the

channel Reynolds number Rc and the frequency ω. Figures 7(a) and 7(b) show the variation
of the normalized first-order lift force ε−3R1/2

c F(1)
L,z in a period of the channel for two pairs

of Rc and ω; due to the sharp variations close to the walls, we adopt a moderate range of
[−200, 200] for ε−3R1/2

c F(1)
L,z to better illustrate the variations in the bulk of the channel.

The lift force F(1)
L,z has a relatively low magnitude close to the centre of the channel, and its

magnitude increases sharply close to the walls. The sign of F(1)
L,z also varies with the phase

angle of the particle in the x-direction ϕp, where ϕp = ωXp. According to (4.21c), for any
particle location,

F(1)
L,z(Xp,Zp) = sin(ϕp)F

(1)
L,z(Xp = 0,Zp) + cos(ϕp)F

(1)
L,z

(
Xp = π

2ω
,Zp

)
. (4.23)

Thus, we present F(1)
L,z as a function of Zp at two phase angles in the x-direction, i.e. ϕp = 0

and ϕp = π/2 in figures 7(c) and 7(d), respectively. Figure 7(c) shows the influence of
Rc at ω = 2, and figure 7(d) shows the influence of ω at Rc = 100. Notably, increasing
Rc and decreasing ω have a similar effect on the Zp–F(1)

L,z relationship, as illustrated in
the resemblance in the variation of the curves between figures 7(c) and 7(d). Figure 7(d)
also shows a vanishing F(1)

L,z for ϕp = π/2 in the limit of ω → 0, which accords with our

observation that F(1)
L,z is in phase with the wavy channel.

By adding F(0)
L,z and F(1)

L,z, we show the variation of ε−3FL,z across the channel for two
pairs of Rc and ω in figures 8(a) and 8(b). We are interested in the locations where
FL,z = 0, i.e. the zero contour lines. Particles are unstable on the zero contour line at
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Figure 7. Normalized first-order (in εw) lift force. (a,b) Value of ε−3R1/2
c F(1)

L,z as a function of the Z-coordinate
of the particle Zp and the particle’s phase angle in the x-direction ϕp for (a) Rc = 10, ω = 2 and
(b) Rc = 100, ω = 0.02. Results for |Zp| > 1 are obtained by extrapolation. (c) Value of ε−3R1/2

c F(1)
L,z(ϕp = 0)

and ε−3R1/2
c F(1)

L,z(ϕp = π/2) as a function of Zp at varying Rc and ω = 2. Here, a scaling factor R1/2
c makes the

order of magnitude consistent for varying Rc. (d) Value of ε−3R1/2
c F(1)

L,z(ϕp = 0) and ε−3R1/2
c F(1)

L,z(ϕp = π/2)

as a function of Zp at varying ω and Rc = 100. Dashed lines in (d) represent numerical solutions for ω → 0.
For varying particle z-location Zp, the outer solution U(1)

z (R = 0) is different from F(1)
L,z only by a factor of

6πε3 (D6a) and (4.21c).
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Figure 8. Normalized lift force ε−3FL,z as a function of the Z-coordinate of the particle Zp and the phase
angle of the particle in the x-direction ϕp for (a) Rc = 10, ω = 2 and (b) Rc = 100, ω = 0.02. (c) Zero-lift-force
location Zp|FL,z=0 as a function of ϕp for varying Rc and ω = 2. (d) Zero-lift-force location Zp|FL,z=0 as a
function of ϕp for varying ω and Rc = 100. εw = 0.05 for all panels.

the centre because the nearby lift force points away from the centreline. In figure 8(a),
we also observe a pair of unstable zero contour lines along part of the channel close to
the walls (mostly within ϕp ∈ [π, 2π]). These near-wall zero contour lines arise because
F(0)

L,z and F(1)
L,z have different signs in these regions and F(1)

L,z has a large magnitude close to
the walls for Rc = 10, ω = 2 (figure 7c). Since previous studies report that the lift force
directs particles away from the walls (Asmolov 1999; Di Carlo et al. 2009), it is unlikely
that particles may be pushed toward the walls as they approach these unstable contour
lines. Note that we compute the undisturbed flow and the perturbation velocity up to the
first order in εw. Due to the sharp variations in the first-order flow and perturbation fields
near the walls, higher-order computations may be necessary for a better understanding
of the near-wall lift force, which is, however, beyond the scope of our current analyses.
The critical stable zero contour lines are close to Zp = ±0.6. The shapes of these stable
zero contour lines do not always follow the configuration of the channel. For a large Rc
and a small ω (figure 8b), the shape of the stable zero contour line is in phase with the
configuration of the wavy channel. As Rc decreases or ω increases, the shape of the stable
zero contour line gradually becomes out of phase, as shown in figures 8(c) and 8(d).

Finally, it is important to note that the zero-lift-force locations are generally different
from the focusing locations of particles in wavy channels. Unlike the situation in straight
channels where both types of locations coincide, the secondary flow in wavy channels
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makes particles move in the z-direction constantly. Thus, even if a particle finally stabilizes
in a wavy channel, it never truly reaches equilibrium. To resolve the focusing location, it
is necessary to analyse the particle trajectory, which we address in § 5.

5. Particle focusing locations

After obtaining the lift force on the particle, we here provide a strategy to predict the
focusing locations of the particle in the wavy channel. For this, we come back to the
laboratory frame (figure 3). We use R′

p(t) = (X ′
p(t),Z ′

p(t)) to denote the instantaneous
location of the particle centre. Instead of solving the fluid stress over the surface of the
particle and using Newton’s second law, we employ the modified Maxey–Riley equation
to analyse the trajectory of the particle (Maxey & Riley 1983; Ferry & Balachandar 2001)

mp
dU ′

p

dt′
= 6πaμ(V̄ ′ − U ′

p) + mf
DV̄ ′

Dt′
+ 1

2
mf

(
DV̄ ′

Dt′
− dU ′

p

dt′

)
+ (mp − mf )g′

+ 6πa2μ√
ν

d1/2

dt′1/2 (V̄ ′ − U ′
p) + F ′

L, (5.1)

where mp is the particle mass, mf is the fluid mass displaced by the particle, V̄ ′ =
V̄ ′(R̄′

p(t)) is the particle-free fluid velocity at the instantaneous particle centre, D/Dt′ is
the material derivative following a fluid parcel, g′ is the gravitational acceleration and μ is
the dynamic viscosity of the fluid. Additionally, dU ′

p/dt′ = a′
p is the particle acceleration

defined in § 3. The terms on the right-hand side of (5.1) represent the Stokes drag, fluid
acceleration, added mass, gravity, Basset force and lift force on the particle. For the scaling
analysis, we choose l as the characteristic length, U′

m as the characteristic velocity, l/U′
m as

the characteristic time and μaU′
m as the characteristic lift force. By comparing the forcing

terms, we neglect the Basset force and write (5.1) in the following dimensionless form:(
1 + 1

2
ρf

ρp

)
Stk

D
(
Up − V̄)

Dt
= − (Up − V̄)+

(
ρf

ρp
− 1
)

Stk
DV̄
Dt

+ Beg + 1
6π

F L,

(5.2)

where ρp is the particle density, B = 2a2(ρp − ρf )g′/(9μU′
m) is the buoyancy number, eg

is a unit vector in the direction of the gravitational force and Stk is the Stokes number.
Specifically, Stk is the ratio between the particle relaxation time tp and the characteristic
time of the flow tf , where tp = 2ρpa2/(9μ) and tf = l/U′

m. Since our asymptotic parameter
ε = R1/2

c a/l = (ρf U′
ml/μ)

1/2a/l, we have

Stk = 2
9

ρp

ρf
ε2 � 1. (5.3)

For a neutrally buoyant particle, (5.2) can be converted into a differential equation of the
particle location

1
3
ε2R̈p + Ṙp = V̄ + 1

3
ε2 DV̄

Dt
+ 1

6π
F L, (5.4)

where Ṙp and R̈p denote the velocity and acceleration of the particle, respectively. Here,
Ṙp = Up. With V̄ and F L solved in previous sections, we can simulate the trajectory of

968 A25-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

55
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.558


Particle focusing in a wavy channel

the particle based on (5.4). By holding Rc, ω, and εw constant, we find that the simulated
trajectory gradually stabilizes over time for any initial particle location. We regard the
stabilized trajectory in a period of the channel as particle focusing locations. Additionally,
the stabilized trajectory asymptotes to a constant shape as ε decreases; as indicated by the
stabilized range of the particle’s z-location (inset of figure 9b), the stabilized trajectory for
ε = 0.2 is not significantly different from that for ε = 0.1.

In figure 9(a), we show two sets of simulated particle trajectories in channels
with amplitudes εw = 0, 0.05 and 0.1 for Rc = 10, ω = 2 and ε = 0.2. The results in
figure 9(a-1) are based on both the zeroth-order and first-order lift forces, i.e. FL,z. For all
three values of εw, the particle is initially at Zp = 0.1 and gradually migrates towards the
stable focusing locations. When Xp = 2000, the movement of the particle is stabilized:
for the straight channel (εw = 0), Zp does not change over time and agrees with the
asymptotic solution based on Asmolov (1999); for the wavy channels (εw = 0.05 and 0.1),
Zp oscillates sinusoidally about an average level. As εw increases, the amplitude of Zp also
increases but is always lower than εw; additionally, the average focusing location shifts
slightly inwards. Interestingly, the channel length for particle focusing is independent of
εw, but is significantly impacted by ε (figure 9b). We notice that when ε becomes very
small, e.g. ε = 0.01, a significantly longer channel is required to achieve particle focusing.
Because F L ∼ O(ε3), a smaller ε gives rise to a smaller lift force, which causes the particle
to migrate more slowly.

To understand which part of the lift force contributes to the oscillation and shifting
of the focusing locations, we only keep the zeroth-order lift force F(0)

L,z and repeat the
simulations for the particle trajectories. By comparing the insets of figures 9(a-1) and
9(a-2), we find only slight differences in the average focusing locations for εw = 0.05 and
0.1. All other features of figures 9(a-1) and 9(a-2) are indistinguishable. The zeroth-order
lift force is thus the governing force for particle focusing in wavy channels. Despite its
sinusoidal characteristics, the first-order lift force F(1)

L,z plays an almost negligible role in
the oscillation of the particle in the steady state. Rather, the oscillation of the particle
stems from the interaction between F(0)

L,z and the periodic flow V̄ . Furthermore, due to its

sinusoidal characteristics, F(1)
L,z does not induce any variation in the length of the channel

for focusing in figure 9(a). F(1)
L,z mainly contributes to the slight variation in the average

focusing location in the z-direction Z̄p.
We now mathematically understand the role of F(1)

L,z in influencing Z̄p in the asymptotic
limit εw � 1 and ε � 1. Further neglecting the O(ε2) terms in (5.4), we obtain the
following equation for a neutrally buoyant particle:

− V s = 1
6π

F L, (5.5)

where V s = V̄ − Ṙp = V̄ − Up is the slip velocity defined in § 3, and −Vs,z corresponds
to the lateral migration velocity of the particle relative to the particle-free flow Ulateral.
Denoting the average slip velocity in the z-direction over time as Vs,z, then Vs,z(Zp(t)) = 0
represents the stable state. We have the stability condition

FL,z(Zp(t)) = 0. (5.6)
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Figure 9. (a) Simulated trajectories of a particle initially located at Zp = 0.1 in channels with varying
amplitude εw, where the lift forces are the zeroth- and first-order lift forces (a-1) and zeroth-order lift force only
(a-2). Here, Rc = 10, ω = 2 and ε = 0.2. (b) Influence of asymptotic parameter ε on the simulated trajectory
of a particle initially located at Zp = 0.1, where Rc = 10, ω = 2, εw = 0.05 and the lift force contains both the
zeroth- and first-order lift forces. (c) Average focusing location Z̄p as a function of channel Reynolds number
Rc for varying εw, where ω = 2. (d) Average focusing location Z̄p as a function of channel angular frequency
ω for varying εw, where Rc = 100.

Because εw is small, the particle does not deviate significantly from Z̄p. Thus, we can
expand FL,z(Zp(t)) into a Taylor series about Z̄p

FL,z(Zp) = FL,z(Z̄p) + (Zp − Z̄p
) dFL,z

dZp

∣∣∣∣
Zp=Z̄p

+ O((Zp − Z̄p)
2). (5.7)
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Particle focusing in a wavy channel

Neglecting high-order terms, the stability condition (5.6) becomes

FL,z(Z̄p) + (Zp − Z̄p
) dFL,z

dZp

∣∣∣∣
Zp=Z̄p

= 0, (5.8)

where Zp − Z̄p = ∫ (V̄z/V̄x) dXp. Evaluating (5.8) with results from (2.5) and (4.21) and
only keeping the leading-order terms in εw, we finally arrive at the following implicit
expression for Z̄p:

F(0)
L,z(Z̄p) − εw

ω(1 − Z̄2
p )

{
Re[V̂z(Z̄p)]

dF(0)
L,z

dZp

}∣∣∣∣∣Zp=Z̄p

+ ε2
w

2ω(1 − Z̄2
p )

⎧⎨
⎩Re[V̂z(Z̄p)]

∂F(1)
L,z

∂Zp

∣∣∣∣∣Zp=Z̄p,ϕp=π/2

+ Im[V̂z(Z̄p)]
∂F(1)

L,z

∂Zp

∣∣∣∣∣Zp=Z̄p,ϕp=0

⎫⎬
⎭ = 0. (5.9)

Clearly, the terms related to F(1)
L,z are of O(ε2

w), which explains the limited contribution of

F(1)
L,z to Z̄p. To interpret this result physically, the interaction between the first-order lift

force and the first-order particle-free flow is not comparable to the interaction between the
zeroth-order lift force and the first-order particle-free flow.

By repeating the simulations of particle trajectories with (5.4), we investigate the
influence of channel Reynolds number Rc and channel angular frequency ω on the average
focusing location Z̄p. Figure 9(c) shows Z̄p vs Rc for εw = 0, 0.05 and 0.1, where ω = 2.
As Rc increases, Z̄p shifts outwards for all three values of εw. For a constant Rc, Z̄p gets
closer to the centre of the channel as εw increases. In figure 9(d), we show the relationship
between Z̄p and ω for ω ∈ [0.02, 5] and Rc = 100. Z̄p does not vary monotonically with
ω. When ω approaches zero, particles behave as if in a straight channel; thus, Z̄p of
varying εw also approaches Z̄p in the straight channel. For ω > 2, Z̄p slightly increases
with ω. However, the influence of εw on Z̄p is much less obvious than that of Rc. These
results suggest that adjusting ω is not an effective strategy for altering the particle focusing
locations.

6. Experiments

In this section, we experimentally investigate particle focusing in wavy channels and
compare the results with those obtained from a straight channel. All channels have
the same width l, where l = 2h = 1.18 mm. The experimental set-up and procedures
are described in Appendix E. Briefly, we use two sizes of particles with average radii
a = 200 μm and 60 μm, which correspond to a/h = 0.17 and 0.05, respectively. The
particles are neutrally buoyant in our water–glycerol solution. We inject the particle
suspensions in the channels and observe particle behaviours at a fixed location. The
distance from the channel inlet and the observation location is denoted as L, where
L = 550 mm (figure 10a). It is important to note that our theoretical analyses are based
on ideal assumptions ε = R1/2

c a/l � 1, a/h � 1, εw � 1, and infinite channel depth w.
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(a)

(b)

L L / l = 466

εw = 0 εw = 0.093 εw = 0.249 εw = 0.490

l = 1.18 mm 

w = 6.6 mm 

Figure 10. (a) Schematics of the experimental set-up, where L denotes the distance between the channel inlet
and the fixed observation location. (b) Images of a polystyrene particle in channels with varying amplitudes.
All four channels have average width l = 1.18 mm. The scale bars denote 500 μm.

Since these parameters are finite in practice, in addition to testing our asymptotic theory,
we aim to experimentally characterize particle focusing when the real set-up deviates from
our ideal assumptions.

In figure 11, we present particle distributions at L/l = 466 in channels with varying
amplitude εw at varying Rc, where a/h = 0.17. For a constant εw, particles gradually get
focused as Rc increases. As predicted by our asymptotic theory, we observe that particles
are focused on two symmetric lines, which is a hallmark of a strong inertial lift effect. At
a small εw, e.g. εw = 0.093, the focusing locations are along two curves that are almost
parallel to the channel profiles. For a relatively large εw, e.g. εw = 0.249 or 0.490, the
focusing curves deviate from the channel profiles and flatten out as Rc increases. When
εw = 0.490 and Rc = 250, some particles even get trapped in the expanded sections of
the channels. To understand these variations, we compute the streamlines in the wavy
channels with Ansys Fluent. For all values of εw and Rc, the focusing curves overlap
two symmetric streamlines (figure 11), indicating that the particle trajectories follow the
particle-free streamlines. For a small εw or Rc, all streamlines mostly follow the shape
of the channels; however, when both εw and Rc are large enough, vortices appear in the
expanded section, and the continuous streamlines only appear in the middle part of the
channel. Consequently, most particles are focused along the flattened streamlines close
to the centre, but some particles are occasionally trapped in the vortices. Furthermore, to
probe the capability of our asymptotic theory in predicting particle focusing locations, we
present in figure 11 the simulated results based on the asymptotic lift force F(0)

L,z and (5.4).
Remarkably, although the assumptions ε � 1 and a/h � 1 are not strictly satisfied in
the experiments, the asymptotic theory provides fairly close estimates of the experimental
focusing locations.

Another takeaway from figure 11 is that wavy channels can help particles focus at a
slightly lower channel Reynolds number Rc than the straight channel while keeping the
average channel width l and observation position L/l constant. For Rc = 10, for instance,
particles are almost fully focused in the wavy channels, whereas little focusing is observed
in the straight channel. To rationalize these observations, we present in figure 12(a) the
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Rc = 5

Rc = 250

Rc = 100

Rc = 50

Rc = 25

Rc = 10 

εw = 0.093 εw = 0.249 εw = 0.490εw = 0

Experimental particle location

Flow from left to right in all panels

∗

∗ ∗ ∗ ∗

Asymptotic focusing location

Characteristic streamline

* Unfocused or little focused

Figure 11. Experimental and asymptotic particle focusing locations in channels with different amplitudes εw
at varying channel Reynolds numbers Rc. Asymptotic focusing locations are based on simulations in § 5, and
experimental focusing locations are measured at L/l = 466. (*) Asterisks denote little or no focusing at a low
Rc. Here, a/h = 0.17.

distributions of two sizes of particles at increasing Rc in the straight channel and the
wavy channel with εw = 0.093. The critical Rc for the focusing transition is of O(10)

for a/h = 0.17, and the critical Rc is of O(102–103) for a/h = 0.05. The variation in
the critical Rc with a/h can be explained by the asymptotic results: in figures 6 and 7,
we show that FL,z ∼ O(ε3R−1/2

c ). We can bring FL,z back into the dimensional format
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Figure 12. (a) Comparison of particle distributions in the wavy and straight channels at increasing channel
Reynolds number Rc, where εw = 0.093 for the wavy channel, and the normalized particle sizes a/h are 0.17
(left) and 0.05 (right). (b) Experimentally obtained average focusing location Z̄p as a function of Rc compared
with results based on the asymptotic theory. (c) Transition of the focusing states occurring as the channel
Reynolds number Rc increases from 5 to 25 at time t = 0. The upper panel shows the time required for the
particles to be focused in channels with varying amplitudes εw. This time is converted into the equivalent
normalized channel lengths L/l in the lower panel. Here, a/h = 0.17. The online supplementary movie 1
available at https://doi.org/10.1017/jfm.2023.558 shows particle focusing in a wavy channel occurring as the
channel Reynolds number increases from 5 to 25 at time t = 0.

F′
L,z = CμU′

mRca4/l3 with ε = R1/2
c a/l and F′

L,z = μaU′
mFL,z, where C is a constant.

Moreover, the lift force must be in balance with a drag force F′
D during

lateral migration, where F′
D = 6πμaU′

lateral. Since F′
L,z = F′

D, we obtain Lfocus/l =
U′

m/U′
lateral = (3π/4C)R−1

c h3/a3, where Lfocus is the length of the channel required for
particle focusing. For our fixed length L/l, the critical Rc for particle focusing thus follows
a power law with a/h

Rc,critical = 3π

4C
l
L

(a
h

)−3
, (6.1)

which coincides with the theories for a straight channel (Matas et al. 2004). We select
C = 0.1–1 and show the critical Rc as a function of a/h in figure 12(a).

The insets of figure 12(a) show that particles are focused at a slightly lower Rc
in the wavy channel, especially for a/h = 0.17; for the same Rc and l, it requires a
shorter distance for particles to be focused in a wavy channel. This finding, however,
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Particle focusing in a wavy channel

does not contradict the results in figure 9(a) based on the asymptotic theory. First, the
experimentally obtained Rc,critical is of the same order of magnitude in both types of
channels. Second, the difference in Lfocus is due to the deviation from the asymptotic
assumption a/h � 1 in our experiments. For a finite-sized particle, we can still decompose
FL,z into F(0)

L,z + εwF(1)
L,z. However, unlike the asymptotic case in which F(1)

L,z varies
sinusoidally along the x-direction at a constant Zp (4.21c), the symmetry is broken for a
finite a/h; F(1)

L,z of a finite-sized particle has a higher magnitude in the constricted sections
of the wavy channel than in the expanded sections. This is because the distance to the wall
is now finite relative to the particle size, and a stronger hydrodynamic interaction with the
wall gives rise to greater repulsion effects in the constricted section, leading to slightly
faster particle focusing in wavy channels. This effect becomes weaker as the particle size
approaches the asymptotic limit, e.g. a/h = 0.05 in figure 12(a). Third, when εw is even
larger, e.g. εw = 0.249 and 0.490 in figure 11, the flattening of the continuous streamlines
also causes the particles to experience stronger repulsion effects in the constricted sections.

Figure 12(b) shows the relationship between the average focusing location Z̄p and
Rc for the channels with εw = 0 and 0.093. As predicted by the asymptotic theory, the
measured Z̄p is positively related to Rc for a/h = 0.05. However, as the particle size
increases, the measured Z̄p gradually deviates from the asymptotic predictions and moves
towards the centre of the channel. This behaviour is consistent with previous experimental
observations in circular pipes (Matas et al. 2004) and square cross-section channels
(Di Carlo et al. 2009). Because the motion of a finite-size particle causes a significant
disturbance to the particle-free flow, it is well understood that the lift force is subject to a
different scaling law than O(ε3R−1/2

c ) and that the equilibrium positions move closer to
the centreline (Di Carlo et al. 2009; Hood et al. 2015). Additionally, the measured Z̄p in
the wavy channel is consistently lower than that measured in the straight channel, which
agrees with the asymptotic predictions (figures 9(c) and 11). Our experiments show that
Z̄p starts to decrease for Rc = 250 and εw = 0.093; by contrast, our asymptotic theory
demonstrates this phenomenon only at a higher εw (figure 11). This is because a finite-sized
particle moves closer to the channel centreline, and Z̄p decreases at Rc = 250 even for a
relatively small εw.

Finally, because the difference in the critical Rc for the focusing transition can be subtle
in figure 11, we here provide a second strategy to demonstrate that particles get focused
faster in wavy channels than in straight channels under the same conditions. Figure 12(c)
shows the response of the particle distribution at L/l = 466 in channels with varying εw as
Rc increases from 5 to 25 at time t = 0. The detailed experimental method is described in
Appendix E. When t < 0, we set Rc = 5 and particles are unfocused in all four channels.
As Rc increases to 25, the particles become focused after a certain time that decreases with
increasing εw. Since Rc = U′

ml/ν, where U′
m is twice the average velocity in the channel

U′
a, we can estimate the equivalent length required for the focusing transition Lfocus as

Lfocus = U′
at. Lfocus decreases with increasing channel amplitude.

7. Discussion

We begin this section by thanking J. Marshall (personal communication, April 2023) for
the following scaling analysis. As a hallmark of the inertial lift effect, particles focus on
two symmetric lines in our theory and experiments. By contrast, Hewitt & Marshall (2010)
observed that particles focus on the centreline of a corrugated tube in their lubrication
theory and discrete-element simulations. This discrepancy is resolved by the following

968 A25-27

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

55
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.558


X. Mao, I. Bischofberger and A.E. Hosoi

Case a/h εwω Rc R
A 0.06 0.628 40 6.580
B 0.01 0.628 400 39.478
C 0.01 0.314 400 9.870

Table 1. Values of ratio R for DEM simulations in Hewitt & Marshall (2010).

scaling analysis, which provides a strategy to estimate the relative importance of the
oscillatory straining and the inertial lift effects.

Our theory shows that the inertial lift force gives rise to a normalized lateral drift
velocity UD,lift relative to the particle-free flow, where UD,lift = U′

D,lift/U′
m. Under

the conditions a/h � 1, εw � 1, and ε � 1, the drift velocity UD,lift ∼ O(Rca3/h3).
Given the expression of the Stokes number Stk (5.3), we obtain

UD,lift = O
(

Stk
a
h

)
. (7.1)

Figure 6 indicates that the zeroth-order drift velocity in εw, U(0)
D,lift, is directed away from

the centreline for Zp < 0.6.
In the limit of a small channel Reynolds number (Rc � 1) and a small slope of the

waviness (εwω � 1), Hewitt & Marshall (2010) derived a normalized lateral drift velocity
UD,osc based on the oscillatory straining effect only

UD,osc = O(Stk ε2
wω2). (7.2)

The drift velocity UD,osc is always directed toward the centreline regardless of the values
of Zp. Thus, UD,lift and UD,osc compete against each other when a particle gets close
to the centre part of the channel (e.g. Zp < 0.6), and the particle’s focusing location
is determined by the relative importance of these two effects. Because UD,osc/UD,lift =
O(ε2

wω2/(a/h)), we introduce

R = ε2
wω2

a/h
. (7.3)

Although (7.1) and (7.2) are derived under a series of limiting conditions, the ratio R
can qualitatively characterize the relative importance of UD,lift and UD,osc when those
conditions are not strictly satisfied.

The discrepancy between our study and Hewitt & Marshall (2010) can be explained by
the different regimes of R the two studies explore. Tables 1 and 2 show the values of R
for the three cases based on the discrete-element method (DEM) reported in Hewitt &
Marshall (2010) and our experimental results in figure 11, respectively. The R-values are
significantly higher than unity in table 1, indicating that the oscillatory drift dominates
over the inertial lift drift. Thus, particles focus on the centreline in Hewitt & Marshall
(2010). In table 2, however, the R-values are lower than or close to unity for the cases with
εw = 0.093 and εw = 0.249. Consequently, the inertial lift drift plays an important role,
leading to separated focusing locations in figure 11. For εw = 0.490, the R-value is again
significantly higher than unity. Due to the strong vortices in the channel, the conditions for
both our asymptotic theory and the lubrication theory in Hewitt & Marshall (2010) break
down; therefore, the scaling estimates in (7.1)–(7.3) are not reliable.
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εw a/h εwω Rc R
0.093 0.17 0.186 5–250 0.204
0.249 0.17 0.498 5–250 1.459
0.490 0.17 0.980 5–250 5.649

Table 2. Values of ratio R for figure 11.

This scaling analysis also provides insight into the factors influencing the average
focusing locations of the particles Z̄p. If a/h is held constant, an increase in εwω results
in an enhanced oscillatory effect; thus, the separation between the two focusing lines
decreases (figures 11 and 12b). If εwω is held constant, the influence of a/h on Z̄p is more
complicated. As a/h decreases, an increased R gives rise to a stronger oscillatory effect
for inward drifting. However, a smaller a/h also leads to outward shifting in the absence
of waviness (Di Carlo et al. 2009). In our explored parameter regime, figure 12(b) shows a
prominent trend of outward shifting for a decreasing a/h. In future studies, a more accurate
scaling analysis may shed light on the sophisticated influence of the relative particle size
a/h on Z̄p.

8. Conclusions

We establish an asymptotic theory for particle focusing in wavy channels under the
assumptions that the asymptotic parameter ε = R1/2

c a/l � 1, the normalized waviness
amplitude εw = (εwh)/h � 1 and the ratio between the particle radius and the half
channel width a/h � 1 (where Rc = U′

ml/ν is the channel Reynolds number, and l = 2h
is the channel width; see figure 3), and we experimentally investigate particle focusing at
small-to-moderate ε, εw and a/h. Our experimental measurements are not only consistent
with our asymptotic theory but also demonstrate how the real focusing behaviour gradually
deviates from the asymptotic results as we move away from the asymptotic limit.

In comparison with previous asymptotic theories on particle focusing in straight
channels, we introduce a second asymptotic parameter εw and approximate the lift force
as F(0)

L,z + εwF(1)
L,z. The zeroth-order lift force F(0)

L,z is exactly the lift force obtained in a

parabolic flow field, and the first-order lift force F(1)
L,z stems from the interactions of the

particle with both the zeroth-order Poiseuille flow and the first-order flow due to the
waviness of the channel. We demonstrate that F(1)

L,z does not play a significant role in
determining either the focusing locations or the length of channels required for focusing
Lfocus. By inserting F(0)

L,z and the particle-free flow into the simplified Maxey–Reily
equation, we simulate particle trajectories and estimate the focusing locations of the
particles. We derive this method based on asymptotic assumptions; surprisingly, it also
provides reasonable estimates for more realistic situations with moderate ε, εw and a/h.
Consequently, one can predict the focusing locations with the zeroth-order lift force F(0)

L,z
and the particle-free flow in a wavy channel. This finding can be regarded as a synergy
between the inertial lift and the oscillatory straining effects because the particle-free flow
gives rise to the oscillatory straining effect. The relative importance of these two effects
is influenced by parameters including the waviness frequency ω, the amplitude εw and the
normalized particle size a/h. Under a stronger inertial lift effect, particles focus on two
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widely separated symmetric lines; however, these two lines move closer to the centreline
of the channel under a stronger oscillatory straining effect.

As in straight channels, the focusing locations of particles in wavy channels are
functions of Rc and a/h. The corresponding conclusions from straight channels, however,
may not be transferable to wavy channels. First, in straight channels, particles stabilize at
the locations where the lift force vanishes. By contrast, since the lift force varies in the
axial direction in wavy channels, the focusing locations are different from zero-lift-force
locations (figures 8 and 11). Second, when Rc increases or a/h decreases, the focusing
locations in straight channels simply shift outwards. This conclusion still holds true when
wavy channels have a relatively low εw. However, when εw is above the order of 0.1,
e.g. εw = 0.490 in figure 11, particles can move inwards as Rc increases. This phenomenon
is attributed to the variations in the shape of the streamlines in the particle-free flow.
When Rc is of order 100 or larger, vortices appear in the expanded sections of the
wavy channels, and particles occasionally get trapped in these vortices. As in straight
channels, the focusing locations of particles also shift outwards as a/h decreases.
Additionally, the average focusing location in the z-direction Z̄p is negatively related to
εw and not significantly influenced by ω.

Interestingly, our experiments reveal that particles focus slightly faster in wavy channels
than in straight channels. Namely, at the same Rc and average channel width l, it requires a
shorter channel length L for particles to be focused in wavy channels. Since this behaviour
cannot be explained by the asymptotic theory, we attribute it to the finite particle size and
the resultant unbalanced lift force in the expanded and contracted sections. This may shed
light on new strategies to accelerate particle focusing in channels.

Last but not least, the variety of the focusing behaviour stems from the secondary flow
introduced by the waviness. Our work lays the foundation for studying the influence of
secondary flows in more general periodic channels.

Supplementary movie. A supplementary movie is available at https://doi.org/10.1017/jfm.2023.558.
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Appendix A. Particle-free flow at infinitesimal channel Reynolds number

In this appendix, we calculate the first-order velocity components V̄(1)
x and V̄(1)

z at X =
0 in the Stokes-flow limit, i.e. Rc → 0. Because fluid inertia vanishes in this limit, the
left-hand sides of the momentum equations (2.5b) and (2.5c) become zero. To eliminate
the pressure terms, we differentiate (2.5b) with respect to Z , multiply (2.5c) with −iω and
then add these two equations together, obtaining

0 = −ω2 dV̂x

dZ + d3V̂x

dZ3 − i

(
−ω3V̂z + ω

d2V̂z

dZ2

)
. (A1)
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Particle focusing in a wavy channel

By introducing V̂z = iW , we rewrite (2.5a), (A1) and (2.5d) as

ωV̂x + dW
dZ = 0, (A2a)

−ω2 dV̂x

dZ + d3V̂x

dZ3 +
(

−ω3W + ω
d2W
dZ2

)
= 0, (A2b)

V̂x = −2 and W = 0 at Z = ±1. (A2c)

Solving (A2) with Mathematica, we have

V̂x = 4 cosh(ωZ) [−ω cosh(ω) + sinh(ω)] + 4ωZ sinh(ω) sinh(ωZ)

2ω − sinh(2ω)
. (A3)

Equation (2.6) can then be obtained by inserting (A3) into the ansatz V̄(1)
x =

Re[V̂x(Z) exp(iωX )]. Since V̂x is a real-valued function of Z , the component V̂z is
imaginary (2.5a) and V̄(1)

z (X = 0,Z) = 0.

Appendix B. Particle-free flow at infinitesimal waviness frequency

In this appendix, we analytically calculate the laminar particle-free velocity field at
an infinitesimal angular frequency of the waviness, i.e. ω′ → 0 (the lubrication limit).
Because the channel wavelength λ = 2π/ω′, we assume h � λ and introduce the
following dimensionless parameters:

εh = h
λ
, X̆ = X ′

λ
, Z̆ = Z ′

h
, V̆x = V̄ ′

x

U′
m

, V̆z = V̄ ′
z

εhU′
m

, and P̆ = P̄ ′h2

μU′
mλ

,

(B1a–f )

where εh � 1. The dimensionless Navier–Stokes equations and the continuity condition
take the following forms:

1
2
εhRc

(
V̆x

∂V̆x

∂X̆ + V̆z
∂V̆x

∂Z̆

)
= − ∂P̆

∂X̆ + ε2
h
∂2V̆x

∂X̆ 2
+ ∂2V̆x

∂Z̆2
, (B2a)

1
2
ε3

hRc

(
V̆x

∂V̆z

∂X̆ + V̆z
∂V̆z

∂Z̆

)
= −∂P̆

∂Z̆ + ε4
h
∂2V̆z

∂X̆ 2
+ ε2

h
∂2V̆z

∂Z̆2
, (B2b)

∂V̆x

∂X̆ + ∂V̆z

∂Z̆ = 0, (B2c)

respectively. We enforce the same no-slip boundary condition as in (2.2)

V̆x = V̆z = 0 at Z̆ = ±1 ± δ(X̆ ), (B3)

where δ(X̆ ) = −εw cos(ω̆X̆ ) and ω̆ = ω′λ. Assuming εh � εw � 1, we expand V̆x, V̆z
and P̆ into Taylor series in εh

V̆x = V̆{0}
x + εhV̆{1}

x + O(ε2
h), (B4a)

V̆z = V̆{0}
z + εhV̆{1}

z + O(ε2
h), (B4b)

P̆ = P̆{0} + εhP̆{1} + O(ε2
h), (B4c)
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and then solve (B2) and (B3) asymptotically. Note that the superscripts {0} and {1} denote
orders in εh. Here, we provide the derivation for the zeroth-order velocity in εh. Based on
(B2) we obtain the zeroth-order governing equations and boundary conditions

−∂P̆{0}

∂X̆ + ∂2V̆{0}
x

∂Z̆2
= 0, (B5a)

∂P̆{0}

∂Z̆ = 0, (B5b)

∂V̆{0}
x

∂X̆ + ∂V̆{0}
z

∂Z̆ = 0, (B5c)

V̆{0}
x = V̆{0}

z = 0, at Z̆ = ±1 ± δ(X̆ ). (B5d)

We first integrate the momentum equation (B5a) with respect to Z̆ , obtaining

V̆{0}
x = 1

2
dP̆{0}

dX̆ [Z̆2 − (1 + δ)2]. (B6)

Because of a constant flow rate Q, we integrate V̆{0}
x across the channel and obtain

dP̆{0}
/dX̆ = −3Q/[2(1 + δ)3]. After inserting δ = −εw cos (ω̆X̆ ) into (B6), we further

expand V̆{0}
x into Taylor series in εw

V̆{0}
x = (1 − Z̆2) + cos(ω̆X̆ )(1 − 3Z̆2)εw + O(εw)2, (B7)

where we have inserted Q = 4/3 because the zeroth-order term in εw has a magnitude of
1 for Z̆ = 0. We then integrate the continuity equation (B5c) with respect to Z̆ to obtain
V̆{0}

z , which is also expanded into Taylor series in εw

V̆{0}
z = ω̆ sin(ω̆X̆ )Z̆(1 − Z̆2)εw + O(εw)2. (B8)

Any higher-order velocity in εh is negligible compared with V̆ {0}
.

Finally, we derive (2.7a,b) based on (B7) and (B8). As εh → 0, the dimensionless

velocity V̆ reduces to V̆ {0}
. Given V̄ = V̄ ′/U′

m and (B1a–f ), one can convert the symbols
and find that

V̄x → (1 − Z2) + cos(ωX )(1 − 3Z2)εw + O(εw)2 and V̄z → 0. (B9a,b)

Inserting X = 0 into (B9a,b) and further collecting the first-order terms in εw gives rise
to (2.7a,b).

Appendix C. Force balance on neutrally buoyant particle

Herein, we establish the balance of forces acting on the particle. We start with the
laboratory frame, in which the acceleration of the particle is driven by the total force
including the gravitational force and the integrated fluid stress over the particle surface

mpa′ = −mpgeY +
∫
∣∣∣R′−R′

p

∣∣∣=a
n · (−P ′I + μ(∇′V ′ + (∇′V ′)T))dS′, (C1)

where n is the unit outward normal on the particle surface, P ′ is the disturbed
fluid pressure in the laboratory frame and V ′ is the disturbed fluid velocity in the
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Particle focusing in a wavy channel

laboratory frame. We assume the gravitational force is in the out-of-plane direction, −eY .
Again, the prime symbols denote quantities and operations in the dimensional space.

We now rewrite (C1) with symbols defined in the particle frame by inserting eY = ey,
P ′ = p′, V ′ = U ′

p + v′ and r′ = R′ − R′
p. Additionally, the spatial gradient ∇′ can be

used interchangeably for our two sets of dimensional coordinate systems. Introducing a
virtual force −mpa′ due to the acceleration of the frame, we have the following force
balance:

− mpgey +
∫

|r′|=a
n · (−p′I + μ(∇′v′ + (∇′v′)T))dS′ − mpa′ = 0. (C2)

To separate the contributions from the undisturbed flow and the perturbation due to the
particle, we further insert the perturbation velocity u′ = v′ − v̄′ and the perturbation
pressure q′ = p′ − p̄′ into (C2), obtaining

− mpgey +
∫

|r′|=a
n · (−p̄′I + μ(∇′v̄′ + (∇′v̄′)T))dS′

+
∫

|r′|=a
n · (−q′I + μ(∇′u′ + (∇′u′)T))dS′ − mpa′ = 0. (C3)

Under the assumption of a small particle, Maxey & Riley (1983) found that the first integral
in (C3) gives rise to a buoyancy force mf gey and the inertia of the fluid parcel that has
been spatially replaced by the particle, mf (D′V̄ ′

/D′t′), where D′V̄ ′
/D′t′ = a′ + D′v̄′/D′t′.

In the perturbation analysis by Maxey & Riley (1983), the momentum equation for u′
takes the form of an unsteady Stokes equation; thus, their perturbation field (corresponding
to the second integral in (C3)) yields a drag force, an added mass force and a Basset
force, where the latter two forces stem from the unsteadiness of the perturbation field. By
contrast, our momentum equation (3.4a) contains the Oseen corrections, which give rise
to an inertial lift force. Additionally, we neglect the time derivative in (3.4a) with a scaling
argument in § 4.2. Thus, the force balance in (C3) reduces to

mf

(
∂ ′v̄′

∂ ′t′
+ v̄′ · ∇′v̄′

)∣∣∣∣
r′=0

+ F ′
D + F ′

L = 0, (C4)

where the term within the parentheses represents the difference between the inertia of
the fluid parcel and that of the particle, and F ′

D and F ′
L denote the drag and lift forces,

respectively. With u′ = v′ − v̄′, v̄′ = V̄ ′ − U ′
p and v(r′ = 0) = 0, one can show that

u′(r′ = 0) = −v̄′(r′ = 0) = −V ′
s. Namely, in the particle frame, the perturbation velocity

is identical to the negative of the undisturbed velocity at the particle centre as well as
the negative of the slip velocity. Additionally, the drag force F ′

D = 6πaμ(V̄ ′(R′
p(t

′)) −
U ′

p) = 6πμav̄′(r′ = 0). Since the characteristic time t′ for the variation of the perturbation
flow is l2/ν, we non-dimensionalize (C4) with

V̄ = V̄ ′

U′
m

, v̄ = v̄′

U′
m

, ∇′ = 1
h
∇, F = F ′

μaU′
m

, and t = t′

l2/ν
, (C5a–e)

obtaining
8
3
π ε2

(
−1

2
R−1

c
∂u
∂t

− u · ∇V̄
)∣∣∣∣

r=0,R=Rp

− 6πu(r = 0) + F L = 0. (C6)

Note that we convert the spatial gradient with the identity ∇′v̄′ = ∇′V̄ ′ in deriving (C6).
Because the perturbation velocity u(r = 0) = O(ε3), the first term has a magnitude of
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O(ε5) and is negligible compared with −6πu(r = 0) for ε � 1. Consequently, the lift
force F L is given by

F L = 6πu(r = 0) + O(ε5), (C7)

which is consistent with previous work on particle focusing in a straight channel (Asmolov
1999; Matas et al. 2009). In principle, a lift force is perpendicular to the oncoming flow;
therefore, we only consider the z-component FL,z to determine the focusing locations in
the z-direction. Furthermore, the perturbation velocity component uz(r = 0) corresponds
to the drift velocity relative to the undisturbed flow, UD,lift in § 7.

Appendix D. Solving for Ũ (0)
z and Ũ (1)

z in Fourier domain

In this appendix, we discuss the details for deriving and solving the governing equations
for Ũ(0)

z (kx, ky, Z) and Ũ(1)
z (kx, ky, Z). We first derive the ODEs for Ũ(0)

z and Ũ(1)
z for

arbitrary values of frequencies kx and ky in § D.1. We then provide the asymptotic results
for Ũ(0)

z and Ũ(1)
z at large frequencies in § D.2.

D.1. Derivations of ODEs for Ũ(0)
z and Ũ(1)

z

To evaluate (4.20), we take a Fourier transform in X and Y in which any function ξ(X, Y, Z)

and its counterpart in the frequency domain ξ̃(kx, ky, Z) are related via

ξ̃(kx, ky, Z) = 1
4π2

∫ ∞

−∞

∫ ∞

−∞
ξ(X, Y, Z) exp(−i(kxX + kyY)) dX dY, (D1a)

ξ(X, Y, Z) =
∫ ∞

−∞

∫ ∞

−∞
ξ̃(kx, ky, Z) exp(i(kxX + kyY)) dkx dky. (D1b)

By transforming (4.17), we arrive at the transformed governing equations for
Ũ

(0)
(kx, ky, Z) and Q̃(0)(kx, ky, Z)

LŨ
(0) −

⎛
⎜⎜⎝

ikx
iky

d
dZ

⎞
⎟⎟⎠ Q̃(0) − ikxV̄(0)

x Ũ
(0) − dV̄(0)

x

dZ
Ũ(0)

z ex

= − 5
6π

R−1/2
c γ

[
dδ(Z)

dZ
ex + ikxδ(Z)ez

]
, (D2a)

ikxŨ(0)
x + ikyŨ(0)

y + dŨ(0)
z

dZ
= 0, (D2b)

Ũ
(0) = 0, at Z = Z±, (D2c)

where we have defined the operator L = d2/dZ2 − k2
x − k2

y . Equation (D2) can be further

transformed into an ODE for Ũ(0)
z . We first express Q̃(0) as a function of Ũ(0)

z with the
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x- and y-components of (D2a), and then insert the expression of Q̃(0) into the z-component
of (D2a), obtaining

L2Ũ(0)
z − ikxV̄(0)

x LŨ(0)
z + ikx

d2V̄(0)
x

dZ2 Ũ(0)
z = ikxγ R−1/2

c
5

6π

[
d2δ(Z)

dZ2 + k2δ(Z)

]
, (D3a)

Ũ(0)
z = dŨ(0)

z

dZ
= 0, at Z = Z±. (D3b)

The Dirac delta function and its derivative in (D3a) give rise to jump conditions at Z = 0
denoted by [·]0+

0−[
dŨ(0)

z

dZ

]0+

0−
= i

5
6π

kxγ R−1/2
c and

[
d3Ũ(0)

z

dZ3

]0+

0−
= i

5
2π

kxk2γ R−1/2
c . (D4a,b)

Equations (D2)–(D4a,b) take similar forms as those in Asmolov (1999), which solve the
focusing locations of an asymptotically small particle in a Poiseuille flow. Indeed, any
higher-order solution vanishes when εw → 0, and our problem reduces to particle focusing
in a straight channel.

As prerequisites for the first-order analysis in εw, the ODEs, boundary conditions and
jump conditions of Ũ(0)

x and Ũ(0)
y are as follows:

(
L − ikxV̄(0)

x

)
Ũ(0)

x =
(

ikxL + k2
x V̄(0)

x

k2
d

dZ
+ k2

y

k2
dV̄(0)

x

dZ

)
Ũ(0)

z

− 5
6π

k2
y

k2 γ R−1/2
c

dδ(Z)

dZ
, (D5a)

(
L − ikxV̄(0)

x

)
Ũ(0)

y =
(

ikyL + kxkyV̄(0)
x

k2
d

dZ
− kxky

k2
dV̄(0)

x

dZ

)
Ũ(0)

z

+ 5
6π

kxky

k2 γ R−1/2
c

dδ(Z)

dZ
, (D5b)

Ũ(0)
x = Ũ(0)

y = 0, at Z = Z±, (D5c)[
Ũ(0)

x

]0+
0−

= − 5
6π

γ R−1/2
c . (D5d)

where k = (k2
x + k2

y)
1/2. We now derive the ODE for Ũ(1)

z . Since V̄(1)
x and V̄(1)

z in (4.18a)
contain sinusoidal components, we propose the ansatz

U (1) = 1
2 U (1a) exp[i(ϕp + κX)] + 1

2 U (1b) exp[−i(ϕp + κX)], (D6a)

Q(1) = 1
2 Q(1a) exp[i(ϕp + κX)] + 1

2 Q(1b) exp[−i(ϕp + κX)] (D6b)

to separate variables Xp and Zp, i.e. U (1a)(X, Y, Z), U (1b)(X, Y, Z), Q(1a)(X, Y, Z) and
Q(1b)(X, Y, Z) are influenced by Zp only. The transformed version of (D6a) is

Ũ
(1)

(kx, ky, Z) = 1
2 exp(iϕp)Ũ

(1a)
(ǩx, ky, Z) + 1

2 exp(−iϕp)Ũ
(1b)

(k̂x, ky, Z), (D7)
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where ǩx = kx − κ and k̂x = kx + κ . Ũ
(1a)

(ǩx, ky, Z) and Ũ
(1b)

(k̂x, ky, Z) are governed by
two sets of ‘mirrored’ differential equations

LŨ
(1a)

(ǩx) −

⎛
⎜⎝

ikx
iky

d
dZ

⎞
⎟⎠ Q̃(1a)(ǩx) − ikxV̄(0)

x Ũ
(1a)

(ǩx) − dV̄(0)
x

dZ
Ũ(1a)

z (ǩx)ex

= R1/2
c

{(
iǩxV̂x + V̂z

d
dZ

)
Ũ

(0)
(ǩx) −

(
ikxV̂x0 + V̂z0

d
dZ

)
Ũ

(0)
(kx)

+
[

iκŨ(0)
x (ǩx) + Ũ(0)

z (ǩx)
d

dZ

]}(
V̂xex + V̂zez

)

+ 5
6π

R−1/2
c

[
ikxδ(Z) (−ζ ez + 2αzex) − dδ(Z)

dZ
(ζ ex + 2αzez)

]
, (D8a)

LŨ
(1b)

(k̂x) −

⎛
⎜⎝

ikx
iky

d
dZ

⎞
⎟⎠ Q̃(1b)(k̂x) − ikxV̄(0)

x Ũ
(1b)

(k̂x) − dV̄(0)
x

dZ
Ũ(1b)

z (k̂x)ex

= R1/2
c

{(
ik̂xV̂x + V̂z

d
dZ

)
Ũ

(0)
(k̂x) −

(
ikxV̂x0 + V̂z0

d
dZ

)
Ũ

(0)
(kx)

+
[
−iκŨ(0)

x (k̂x) + Ũ(0)
z (k̂x)

d
dZ

] (
V̂xex + V̂zez

)}

+ 5
6π

R−1/2
c

[
ikxδ(Z)

(−ζ̄ ez + 2αzex
)− dδ(Z)

dZ

(
ζ̄ ex + 2αzez

)]
, (D8b)

where V̂x/z = V̂x/z(2ZR−1/2
c + Zp) and V̂x/z0 = V̂x/z(Zp). Here, V̂x, V̂z, V̂x0, V̂z0, ζ̄ and αz

denote the complex conjugates of V̂x, V̂z, V̂x0, V̂z0, ζ and αz, respectively. Based on (4.18b)
and (D6), we obtain the continuity conditions in the frequency domain

ikxŨ(1a)
x (ǩx) + ikyŨ(1a)

y (ǩx) + d
dZ

Ũ(1a)
z (ǩx) = 0, (D9a)

ikxŨ(1b)
x (k̂x) + ikyŨ(1b)

y (k̂x) + d
dZ

Ũ(1b)
z (k̂x) = 0. (D9b)

By eliminating Ũ(1a)
x , Ũ(1b)

x , Ũ(1a)
y , Ũ(1b)

y , Q̃(1a) and Q̃(1b), we obtain the following ODEs
for Ũ(1a)

z and Ũ(1b)
z :

L2Ũ(1a)
z (ǩx) − ikxV̄(0)

x LŨ(1a)
z (ǩx) + ikx

d2V̄(0)
x

dZ2 Ũ(1a)
z (ǩx)

= R1/2
c

{[
κkx

(
V̂ ′

x + V̂x
d

dZ

)
− iκ

(
k2V̂z + V̂ ′

z
d

dZ
+ V̂z

d2

dZ2

)]
Ũ(0)

x (ǩx)
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− κky

(
V̂ ′

x + V̂x
d

dZ

)
Ũ(0)

y (ǩx) −
[(

ikxV̂x0 + V̂z0
d

dZ

)
L
]

Ũ(0)
z (kx)

+
[

iκk2V̂x − ikxV̂ ′′
x +

(
ikxV̂x + V̂z

d
dZ

+ V̂ ′
z

)
L
]

Ũ(0)
z (ǩx)

}
, (D10a)

L2Ũ(1b)
z (k̂x) − ikxV̄(0)

x LŨ(1b)
z (k̂x) + ikx

d2V̄(0)
x

dZ2 Ũ(1b)
z (k̂x)

= R1/2
c

{[
−κkx

(
V̂ ′

x + V̂x
d

dZ

)
+ iκ

(
k2V̂z + V̂ ′

z
d

dZ
+ V̂z

d2

dZ2

)]
Ũ(0)

x (k̂x)

+ κky

(
V̂ ′

x + V̂x
d

dZ

)
Ũ(0)

y (k̂x) −
[(

ikxV̂x0 + V̂z0
d

dZ

)
L
]

Ũ(0)
z (kx)

+
[
−iκk2V̂x − ikxV̂ ′′

x +
(

ikxV̂x + V̂z
d

dZ
+ V̂ ′

z

)
L
]

Ũ(0)
z (k̂x)

}
. (D10b)

The corresponding jump conditions are[
dŨ(1a)

z

dZ

]0+

0−
= i

5
6π

ζkxR−1/2
c ,

[
dŨ(1b)

z

dZ

]0+

0−
= i

5
6π

ζ̄kxR−1/2
c ,

[
d2Ũ(1a)

z

dZ2

]0+

0−
= 5

3π
αz

(
k2 + k2

x

)
R−1/2

c ,

[
d2Ũ(1b)

z

dZ2

]0+

0−
= 5

3π
αz

(
k2 + k2

x

)
R−1/2

c ,

[
d3Ũ(1a)

z

dZ3

]0+

0−
= iζ

5
2π

kxk2R−1/2
c ,

[
d3Ũ(1b)

z

dZ3

]0+

0−
= iζ̄

5
2π

kxk2R−1/2
c ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(D11a)

where k2 = k2
x + k2

y , V̂ ′
x/z = dV̂x/z(2ZR−1/2

c + Zp)/dZ and V̂ ′′
x = d2V̂x(2ZR−1/2

c + Zp)/

dZ2. The boundary conditions of Ũ(1a/b)
z and their first-order derivatives are also given

at the average locations of the walls

Ũ(1a)
z (ǩx, ky, Z±) = ±1

2 R1/2
c Ũ(0)′

z (ǩx, ky, Z)

∣∣∣
Z=Z±

,

Ũ(1a)′
z (ǩx, ky, Z±) = ±1

2 R1/2
c Ũ(0)′′

z (ǩx, ky, Z)

∣∣∣
Z=Z±

,

⎫⎪⎬
⎪⎭ (D12a)

Ũ(1b)
z (k̂x, ky, Z±) = ±1

2 R1/2
c Ũ(0)′

z (k̂x, ky, Z)

∣∣∣
Z=Z±

,

Ũ(1b)′
z (k̂x, ky, Z±) = ±1

2 R1/2
c Ũ(0)′′

z (k̂x, ky, Z)

∣∣∣
Z=Z±

.

⎫⎪⎬
⎪⎭ (D12b)

D.2. Asymptotic analysis at large frequency in Fourier domain
To numerically evaluate the double integrals in (4.21), we introduce polar coordinates
(k, θ) to replace the variables kx and ky, where kx = k cos θ and ky = k sin θ . As k → +∞,
Ũ(0)

z , Ũ(1a)
z and Ũ(1b)

z asymptote to the transformed strainlet velocity fields, and we can
analytically obtain their values at the origin.
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Herein, we provide an overview of the asymptotic analysis for Ũ(0)
x (k, θ, Z = 0),

Ũ(0)
y (k, θ, Z = 0) and Ũ(0/1)

z (k, θ, Z = 0) at a large k. We introduce an asymptotic
parameter ε = 1/k and rescale the Z-coordinate with η = Z/ε. We define Ũ(Z) = f (η)

and still use subscripts x/y/z and superscripts (0/1) to denote velocity components and
orders in εw, respectively. When k → +∞, we have ε → 0. Thus, we expand f in powers
of ε, e.g.

f (0)
z (η) = f (0)

z0 (η) + εf (0)
z1 (η) + ε2f (0)

z2 (η) + ε3f (0)
z3 (η) + O(ε4), (D13)

where the additional subscripts 0, 1, 2 . . . denote the orders in ε. The ODEs (D3), (D5)
and (D10) are then expanded in orders of ε and reformulated with variable η. Unless
ηwall = o(ε), i.e. the particle is extremely close to the walls, the boundary conditions of
these ODEs vanish. When solving the ODEs, we use the jump conditions at η = 0 to
determine the parameters of the solution.

We now provide the asymptotic results that are necessary for the calculation of FL,z
in (4.21). First, for the zeroth-order solution in εw, the transformed velocity at the origin is
of O(ε3)

f (0)
z (η = 0) = −ε3 15

8π
cos2 θγ R−1

c . (D14)

Since f (0)(η) is essential to the asymptotic analysis of the first-order problem in εw, the
leading-order approximations of f (0)(η) are given by

f (0)
z (η � 0) � −i 1

2 s cos θηe−η, f (0)
z (η < 0) � i 1

2 s cos θηeη, (D15a)

f (0)
x (η � 0) � 1

2 s(1 − cos2 θη)e−η, f (0)
x (η < 0) � −1

2 s(1 + cos2 θη)eη, (D15b)

f (0)
y (η � 0) � −1

2 s cos θ sin θηe−η, f (0)
y (η < 0) � −1

2 s cos θ sin θηeη, (D15c)

where s = −5γ R−1/2
c /(6π) is a constant. It is important to note that three different

frequencies appear in (D10), i.e. k, ǩ and k̂. Consequently, we replace (η, θ) in (D15)
with (η̌, θ̌ ) and (η̂, θ̂ ) when inserting f (0)(η) into (D10a) and (D10b), respectively. Here,

η̌ = δ̌η, η̂ = δ̂η, (D16a)

θ̌ = arccos[δ̌−1 (cos θ − εκ)], θ̂ = arccos[δ̂−1 (cos θ + εκ)], (D16b)

where δ̌ = √
1 − 2εκ cos θ + ε2κ2 and δ̂ = √

1 + 2εκ cos θ + ε2κ2. We calculate the
transformed velocity at the origin using Mathematica, yielding

f (1a)
z2 (η = 0) = 5

24π
γ V̂x0κ cos θ cos 2θ, (D17a)

f (1b)
z2 (η = 0) = − 5

24π
γ V̂x0κ cos θ cos 2θ, (D17b)

Ũ(1a)
z (Z) � ε2f (1a)

z2 (η) and Ũ(1b)
z (Z) � ε2f (1b)

z2 (η). (D17c)

Although the second-order solutions f (1a)
z2 (η = 0) and f (1b)

z2 (η = 0) are non-zero, they
cancel each other in (4.21). Thus, the first-order lift force in εw is determined by
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ε3f (1a)
z3 (η = 0) and ε3f (1b)

z3 (η = 0), where

f (1a)
z3 (η = 0) = 5

512π
R−1

c

[
−96ζ + 12βxγ − RcV̂x0γ κ2

+ 4
(
−24ζ + 3βxγ − 7RcV̂x0γ κ2

)
cos 2θ + 5RcV̂x0γ κ2 cos 4θ

]
,

(D18a)

f (1b)
z3 (η = 0) = 5

512π
R−1

c

[
−96ζ̄ + 12βxγ − RcV̂x0γ κ2

+ 4
(
−24ζ̄ + 3βxγ − 7RcV̂x0γ κ2

)
cos 2θ + 5RcV̂x0γ κ2 cos 4θ

]
.

(D18b)

Here, βx is a factor determined in (3.12).

Appendix E. Experimental methods

This appendix introduces our methods for particle focusing experiments. We use two types
of particles: polystyrene spherical particles (Maxi-Blast, PB-4) with an average diameter
of 200 μm and polyamide particles (LaVision) with an average diameter of 60 μm.
The standard deviations of the particle diameters are 12 μm and 10 μm, respectively.
The particles are suspended in water–glycerol solutions, and the volume fraction of the
particles is chosen to be 0.05 % to minimize interparticle interactions (for figure 11).
We match the densities of the suspensions to the particle densities, i.e. 1.05 kg m−3 for
polystyrene particles and 1.03 kg m−3 for polyamide particles by using water–glycerol
mixtures with volume fractions of water of 81 % and 88 %, respectively, at a room
temperature of 22 ◦C. 0.5 % v/v of Tween 20 (Sigma-Aldrich) is added to avoid clustering
of particles.

We fabricate the straight and wavy channels by laser cutting acrylic sheets (Universal
Laser Systems) and then seal the channels with 3M adhesive transfer tapes and epoxy
glue. Both channels have an average width l = 1.18 mm, depth w = 6.60 mm and a length
of 570 mm. The normalized amplitudes εw of the wavy channels are measured to be
0.093, 0.249 and 0.490. We hold the normalized frequency ω of the wavy channels to
be 2 (ω = ω′h, see (3.6)). Figure 10(a) shows the experimental set-up. The channel is
connected to one or two 60 ml syringes and a reservoir via tubes with an inner diameter of
3.18 mm. A syringe pump (Harvard PHD Ultra) drives the suspensions through the tubes
at a flow rate of no more than 100 ml min−1. To observe particle focusing, we choose
a location that is 550 mm downstream from the channel inlet. Depending on the flow
rate, we image the flow using either a digital camera (LUMIX DC-GH5) or a high-speed
camera (Phantom Miro M320S) mounted onto a microscope (Nikon Eclipse TE2000-U
equipped with a Plan Fluor 4X/0.13 NA objective). We choose the digital camera for flow
rates lower than 10 ml min−1; for flow rates higher than 10 ml min−1, we set the frame
rate of the high-speed camera to be 100–300 frames per second. Figure 10(b) shows four
examples of a polystyrene particle in the channels captured by the high-speed camera.
We analyse the images with ImageJ (NIH) to determine the locations of the particles and
channel boundaries. For figure 11, we analyse images that contain only one particle.

Figure 13 shows the experimental method to determine the time required for focusing
transition when the channel Reynolds number Rc is subject to a step function of time
(figure 12c). We choose polystyrene particles and increase the particle volume fraction to
be 0.2 % to guarantee a large enough number of particles for analysis. We set the focal
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Figure 13. Determination of the time required for focusing transition after the channel Reynolds number
increases from 5 to 25 at time t = 0. (a) Snapshots of the flow in different states in the wavy channel with
εw = 0.093. (b) Normalized number of particles captured by the camera over time. The time required for
focusing transition is the first time at which the normalized particle count reaches 0.4. (c) Standard deviation
of particle locations in the z-direction Zp vs time. The online supplementary movie 1 shows particle focusing
in a wavy channel occurring as the channel Reynolds number increases as a step function of time.

plane of the microscope at a height where particles will be focused at Rc = 25. When
Rc = 5, there is little or no focusing. Additionally, due to the low flow rate and the slight
difference in the densities between the particles and the solution, particles are out of focus
by the time they reach the observation location. Thus, the camera can only capture vague
images of particles, and ImageJ cannot identify the particle locations (figure 13a). After Rc
increases from 5 to 25, particles are gradually focused. We count the number of particles
identified within each second and normalize it with the maximal value (figure 13b). At
a certain moment, the normalized particle count increases sharply from almost zero to
the level of 0.5–1, and we determine the transition time with a normalized particle count
of 0.4. The fluctuation of the particle count after focusing transition is largely due to a
small interval of 1 s and the randomness of the particles. We further calculate the standard
deviation of the z-locations of the particles Zp over time (figure 13c). A stabilized standard
deviation indicates that particles are indeed focused at the transition time.
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