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Abstract

We consider positive linear operators of probabilistic type L,f acting on real functions / defined on the
positive semi-axis. We deal with the problem of uniform convergence of L,f to / , both in the usual
sup-norm and in a uniform Lp type of norm. In both cases, we obtain direct and converse inequalities in
terms of a suitable weighted first modulus of smoothness of/. These results are applied to the Baskakov
operator and to a gamma operator connected with real Laplace transforms, Poisson mixtures and Weyl
fractional derivatives of Laplace transforms.
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1. Introduction

Let Z := (Z,(x), t > 0, x > 0) be a double-indexed family of nonnegative random
variables such that, for each x > 0, Zt(x)/t converges weakly to x, as t -> oo. We
consider the family L := (L,, t > 0) of positive linear operators of the form

(1.1) L , / ( x ) : = £ j

where / is any real measurable function defined on [0, oo) for which the right-hand
side in (1.1) makes sense. Classical examples of operators of the form (1.1) can be
found in the book by Ditzian and Totik [8] (see also [3,6,9]).
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[2] Direct and converse inequalities 91

Let (S(u), u > 0) be a gamma process, that is, a process starting at the origin,
having independent stationary increments and such that, for each u > 0, S(u) has the
gamma density

In this paper, we introduce two families G and G* of gamma-type operators having
the form (1.1) and given, respectively, by

1 f°° /6\
(L2) = , ^ / f(-)e"e-ede, r > o ,

V(tx + 1) Jo \tj

and
(1.3) G*J(x) := G,f {^y\ , r > 0 , x > 0,
where [• ] stands for integral part. These operators differ from other gamma-type
operators considered in the literature, such as the operator introduced by Lupas and
Miiller [11] and investigated in subsequent papers (see, for instance, [10,14]) and the
operator introduced by Khan [9] (see also [3]).

We shall firstly mention some examples in which both operators arise in a natural
way (we refer to [ 1,2] for more details).

(a) Real Laplace transforms of signed measures. Let ^ be a signed measure
concentrated on [0, oo). Denote by F(x) := fi([0,x]), x > 0, and assume that
IFK*) = O (eyx) as x —*• oo, for some y > 0, where |F | stands for the total variation
of F. Then the real Laplace transform of /n, that is,

/•OO

4>(t) := / e-'edF{9)
Jo

is well-defined for t > y and we have the well-known inversion formula (see [15])

(—t)k

lim 2 J <P(k)0) = F(x), for every continuity point x of F.
k<tx

A simple integration by parts gives us for any k = 1 , 2 , . . . and t > y

and, therefore,

E ^ T T V ' W , X>O.
k<ix
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92 Jose A. Adell and Carmen Sangiiesa [3]

(b) Normalized Poisson mixtures. Mixtures of probability distributions play an
important role in applied probability (see, for instance, [2,16] and the references
therein). Here, we consider the following example: Let T be a nonnegative random
variable with probability distribution function F(x) := P(T < x), x > 0, and let
(N(0> t > 0) be a standard Poisson process independent of T. The random variable
f~'yV(rr) is called a normalized Poisson mixture with mixing distribution T. Using
the well-known formula

1 f°°
P(N(t)<n) = — / ene-9d9, t > 0, n = 0 ,1 ,2 , . . .

r(n +1) J,

and then integrating by parts, we obtain for any t > 0 and x > 0

( — — < * ) = / P(N(td)<[tx]dF(6)

F (-) e[u]e-e de

(c) Weyl fractional derivatives of real Laplace transforms. Let/ 6 C[0, oo) be
such that | / Qc)| = O (eyx), asjc —>• oo, for some y > 0. Consider the real Laplace
transform of/ given by

Jo
(1.4) S £ f { f ) : = \ e ~ w f ( 9 ) d 9 , t > y

Jo
and denote by D the differential operator D := —d/dt. Differentiating under the
integral sign in (1.4), we obtain

(1.5) G * / ( * )

If we replace usual derivatives by fractional derivatives on the right-hand side in
(1.5), the resulting expression is representable by the operator G,. To see this, let
g e C(a, oo) with a > 0. Let r > 0 and denote by v = [r] + 1 - r. Recall that (see
[13, Chapter VII]) the Weyl fractional integral of g of order v is defined by

I » Jo
W-Vg(t):=~- 9»-lg(t + 6)d8, t>a,

T(v) Jo

whenever this integral exists. If we assume, further, that such integral has [r] + 1
continuous derivatives, then the Weyl fractional derivative of g of order r is defined
by

WTg(t) := D[rl+1 W~vg(t), t > a.
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In the case at hand, it is not hard to see that for all 0 < v < 1 (or, equivalently, if
r is not a positive integer) the Weyl fractional integral W~vJ?f (t) is well-defined for
all t > y. Moreover, W~vJiff (t) has [r] + 1 continuous derivatives and we have

as it follows from Fubini's theorem. Thus, if tx is not a positive integer, we have

ftx + l

(1.6) G,f(x) = W'x3?f(t), x>0, t > y.
V{tx + 1)

We therefore conclude from (1.5) and (1.6) that usual derivatives and Weyl fractional
derivatives of real Laplace transforms can be represented in a unified way by means
of the operator G,.

In the setting of (1.1), the main purpose of this paper is to investigate the problem
of uniform convergence of L,f to / , as measured by

x>0

and

(1.7) Np(f;t):= sup El/P

x>0
/ -T^ -/(*>

Rates of convergence are given in terms of suitable weighted first moduli of smooth-
ness of / which satisfy the subadditivity property (see Section 2). The main results
are stated in Section 3. We firstly obtain direct inequalities (upper bounds) under
certain integrability assumptions on Z (Theorem 1). Converse inequalities (lower
bounds) are given in Theorems 2 and 3. With respect to the Lp type of norm in
(1.7), our results apply to the largest possible set of continuous functions, whilst, with
respect to the sup-norm, they apply to a smaller set of functions. In any case, to
obtain converse inequalities, we need to make some smoothness assumptions on the
marginal distributions of Z which imply, in particular, that L,f is differentiable for
any bounded function / . Obviously, this condition is not satisfied by the operator G*
defined in (1.3). However, since G* is asymptotically close to G,, G* inherits from
G, its approximation properties (Theorem 4 in Section 4). Finally, the last section is
devoted to illustrating the preceding results by considering the aforementioned gamma
operators and the Baskakov operator.
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94 Jose A. Adell and Carmen Sangiiesa [5]

2. Weight functions

For any real numbers x and y, denote by x Ay =min(x, y),xvy = max (x, y) and
x+ = x v 0. A nondecreasing function q> defined on [0, oo) is called a weight function
if <p{x) > 0, whenever x > 0. The first modulus of smoothness of/ e C[0, oo) with
step-weight function <p is defined by

co(f;<p;S) :=sup{\f(x+<p(x)h)-f(x)\ : x > 0, 0 < h < 8], 8 > 0.

These definitions are more restrictive than those considered in [7,8]. However, they
guarantee the subadditivity of a> (f; <p; •), as it is stated in the following

LEMMA 1. Let f e C[0, oo) and let <p and ty be weight functions. Then

(a) u> (f; (p; •) is subadditive. Therefore, ifcp(O) > 0, then

\ f ( y ) - f ( x ) \ < ( l + J y X \ ) a > ( f ; < p ; 8 ) , x , v > 0 , 8 > 0 .
V 8(p(xAy)J

(b) a)(f;(pVrl/;-) = a>(f;<p;-)\/a)(f•,$;•).

Let a be a weight function. We define the weight functions

(2.1) a , ( x ) : = V t o - ( x ) v 1 , x > 0 , t > 0

and the set

J((o) : = { / € C[0, oo) : co(f;a V 1; 1) < oo }.

As an immediate consequence of Lemma 1, we have

LEMMA 2. Iff e J({o), then

(a) | / (JC)| < C(JC V 1), x > 0, for some constant C > 0.

(b) W(/ ;CT, ;S) =a)(/;CT;Sy7) v<u( / ; l ;S) < °° , 5 > 0, f > 0.

If CT is a weight function such that 1 /CT is locally integrable at the origin, we define

(2.2) g(x):= I -^rrdd, x > 0.
Jo a\V)

With these notations, we state

LEMMA 3. For any 8 > 0 and t > 0, we have

(sVt r(8VO) v g(8) < oo (g; a,; 8) < 8^/t v g(8),

where

r{9) = sup °{X) 0>O.
x>o a(x +a(x)9)

Therefore, r(6) -*• 1 as 9 -> 0.
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3. Direct and converse inequalities

Let L be a family of positive linear operators represented by a double-indexed
family Z of random variables as in (1.1). For any p > 1 and t > 0, we introduce the
constants

(3.1)

c,(p) := s u p El/P I \Z,(x) - t x \ \ a , ( ^ - A x j \ j , c(p) : = s u p c , ( p ) ,

where o,{x) is defined in (2.1). Observe that, if c,(p) is finite, then

< 00.

This, together with Lemma 2(a), implies that, for any / € J({p), L,\f\{x) < oo,
x >0 .

Recalling the notations in (1.7), we state

THEOREM 1. (Direct inequalities). Let f e ^(a), p > 1 and t > 0.

(a) 7/"c,(l) < oo,

(b) Ifc,{p) < oo,

PROOF. Let q> be a weight function such that ^(0) > 0. Let x > 0 and S > 0.
Applying Lemma l(a) and the inequality

(3.2) (a + b)q <2u>-V)+{aq + bq), a,b>0, q > 0,

we have for any p > 1

-fix)

\Z,(x)-tx\

Statements (a) and (b) follow by taking expectations in this last inequality, with S = t~l

and <p = a, and then applying (3.2). •
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96 Jose A. Adell and Carmen Sangiiesa [7]

REMARK 1. Assume that the constants c(p) defined in (3.1) are finite for all p > 1.
Then, for any t > 1, we can restate Theorem 1 in such a way that the upper constants
only depend upon p.

To show converse inequalities, we need to make additional assumptions on Z and
a. Let t > 0 be fixed. Denote by /J, the measure on [0, oo) defined by d^,(9) :=
(6 v \)dX{9), where X stands for the Lebesgue measure. Let B, c [0, oo) be a Borel
set such that X ([0, oo) \ B,) = 0. For any x > 0, let Ix be a neighborhood of x and
let ht,x be a nonnegative /x-integrable function. We make the following assumption
on Z.

(H) For each x > 0, the random variable Z,(x) has a density d,(x, •) such that for
any 9 e B,, d,(x,9) has a continuous partial derivative d,(x, 9) with respect
to x and

\d',(y,e)\<h,AB), ye I*, 6 e B,.

By Lemma 2(a) and [4, p.215], assumption (H) implies the following. For any
/ € ^t(o), L,f has a continuous derivative L'J given by

/

° 9v

" "' - " x > 0 .

This formula can be rewritten as

(3.3) L'J(x) = E(f (~A ~ f (x)) V,(x), x > 0,

where V,(x) is a zero-mean random variable defined by

x > 0.

Observe that, for each x > 0, the set where the quotient in (3.4) is not defined is a null
set with respect to the probability measure of Z,(x).

From now on, we assume that the weight function a is such that

(3.5) liminf —-^ = C > 0,

for some (possibly infinite) constant C. Finally, for any q > 1 and / > 0, we consider
the constants

(3.6) fc,(g) :=sup£1 / 4 =̂ , k(q):-supk,(q).
x>0 \ V f

We are in a position to state
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THEOREM 2. (Converse inequality). Let f e J((o) and t > 0. Assume that Z
satisfies (H) and that the weight function a satisfies (3.5). Assume, further, that the
constants c,(p) defined in (3.1) are all finite, for any p > 1, and that k,(q) is finite
for some q > 1. Then

C,co(f;ot;-\<Nx(f\t)<Np(f;t), p>\,

for some positive constant C, not depending on f.

PROOF. Let x > 0, t > 0 and 0 < h < t~l. By the triangular inequality and (3.3),
we have

\f(x+a,(x)h)-f(x)\
»x+a,(x)h

(3.7) <2Ni(f;t) -f(0) \V,(6)\de.

Choose qt e (l,q) and denote by pt the conjugate exponent of q*. Denote by / (•) the
indicator function. By Holder's inequality and (3.6), the integrand in (3.7) is bounded
above, for any arbitrary a > 0, by

* Â  (f • ri
a a ( 0 ) " " l v " ' • ff(0) v" V " x ~ ' " y P* '

Let g be the function defined in (2.2). From (3.7) and (3.8), we have

(3.9)

By (3.5) and Lemma 3, we see that

(3.10) Jico

Therefore, the conclusion follows by applying Theorem l(b) and choosing a in (3.9)
small enough. •

REMARK 2. In the setting of Theorem 2, assume, in addition, that c(p) < oo, for
all p > 1, and that k(q) < oo, for some q > 1. Then

sup C, < oo,
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98 Jose A. Adell and Carmen Sangiiesa [9]

thus obtaining a constant not depending upon t. This follows from (3.9) by observing
that Ni(f;t), NPt(f;t) and the term in (3.10) can be uniformly bounded in t > 1,
using Theorem l(b) and Lemma 3, respectively.

Let a be a weight function satisfying (3.5). For any / e J((p), we denote by

t > 0.

Observe that by Lemma 2(b), if/ is non-constant, then liminf^oo/t/;?) = a e
(0, oo]. Therefore, it follows from Theorems 1 and 2 that the best possible rate of
convergence of Np (f; t) is t~i/2. On the other hand, for smooth functions/ e M{o),
we cannot expect a converse inequality in the sup-norm similar to that given in
Theorem 2. Indeed, taking/ (x) = e~x, x > 0, it can be seen in many examples that

— and \\L,f -f\\ % - , as t -» oo.

For this reason, we restrict the set of functions under consideration in the following
sense. For any/ e M(a), denote by

We consider the set of functions

J!.{o) := / € JK{a) : sup/,(/"; A) = oo

Observe that every func t ion / e ^#(cr ) such that the lower Karamata index of / ( / ; - ) i s

strictly positive is in ^#»(CT) (see Bingham, Goldie and Teugels [5]). However, ^ « ( C T )

does not contain the functions / € - # ( c r ) for which co(f ;a;8) « a > ( / ; l ; < S ) %<5,as

S-+ 0.

THEOREM 3. (Converse inequality). Let f € ^#,(CT). A^MWC f/iaf Z satisfies (H)
f/iaf a satisfies (3.5). A/50, assume that the constants c(p) defined in (3.1) are

finite, for any p > 1, and that k{q), as defined in (3.6), is finite for some q > 1. 77ien
exist positive constants K and t0 > 1, depending on f, such that

Kco(f-ot\-\<\\L,f -f\\, t>t0.
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PROOF. Lets > t >l,x > 0,t > 0 and 0 < h < s~l. As in the proof of Theorem

2, we have

\f (x + as(x)h) - f (x)\

/

x+as(x)h (Q\
-f(0) \v,(0)\de.

Let p0 be the conjugate exponent of q. By Holder's inequality and Theorem l(b), we
can bound the integrand in (3.11) by

2(1 + c(Po))co(f ;a,;-)El/"\V,(e)\" < 2k(q)(l
V t) t/a(6)

Therefore, we obtain from (3.11)

^cv(f;as;l/s) ^^ [J \\L,f-f\\ , v r ( 1
(3.12) —= < 2. r- AiViw I jejcr,; -

where /fi = Ki(p0, q) is an absolute constant and g is denned in (2.2). Choosing
s = kt in (3.12), with k > 1, and recalling Lemma 3 and (3.5), we obtain

(3.13) h(f;k)< 2VXliminf "f/ ~ f " + K2,
i->°° u>(f ;a,; \/t)

for some absolute constant K2. S ince / e ^ . ( c r ) , the conclusion follows from (3.13)
by choosing A. in such a way that /»( / ; k) > K2. D

Finally, as an immediate consequence of Theorems 1-3 and Remarks 1 and 2, we
state

COROLLARY 1. Let f e ^(a). Assume that Z satisfies (H) and that a satisfies
(3.5). A/50, assume that c(p) < 00, for any p > 1, and that k(q) < 00, for some
q > 1. Then, for any a € (0, 1], the following assertions are equivalent:

(a) co I / ; C T , ; - I % — — i as ? —>• 00.

(b) Np(f;t)^—, as t -+ 00, /or any p > 1.

7/"or e (0, 1), statement (a) is also equivalent to

1
(c) f zJVAo) and \\L,f - f II % —- a s r ^ - o o .

REMARK 3. Let N be the set of nonnegative integers. Suppose that, for each x > 0
and/ > 0, the random variable Z, (x) takes values in N with P (Z,(x) = k) = p,{x, k),
k = 0 , 1 , 2 , . . . . Then, all the preceding results hold true if in assumption (H) we
replace the Lebesgue measure k by the counting measure on N and the density d,(x, •)
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4. Examples

To illustrate the preceding results, we consider the family G of gamma operators
defined in (1.2) and the family B of Baskakov operators. Their corresponding random
variables are absolutely continuous in the first case and discrete in the second. We
check that all the assumptions made in Section 3 are satisfied in both cases. The
weight functions considered are closely related to the standard deviations of the
random variables involved. We also consider the family G* of gamma operators
defined in (1.3) and show that the behavior of G * is similar to that of G, although G *
does not satisfy the aforementioned assumptions.

(a) The gamma operator G,. Let G, be the operator defined in (1.2) and repre-
sented by a gamma process (S(u), u > 0). Denote by *I> the psi function (see [12, p.
11]), that is,

It follows from [12, p. 13] that

(4.1) *'(«) = V 1 < \ + - , u>0.
^—£ (u + n)2 u2 u

Consider the weight function a(x) = y/x, x > 0. In this case, the constant c(p) in
(3.1) is given by

p (
u>o \ 1

is{u)'u] y
VS(H + 1) A M /

P >

As it follows by calculus, c(p) is finite for any p > 1. On the other hand, the random
variable V,(x) defined in (3.4) has the form

V,(x) = t (log S(tx + 1) - V(tx + 1)), x > 0, t > 0.

Hence, the constant k(2) in (3.6) is given by

Jfc(2) = sup yfu El/2 (log 5(M + 1) - *(w + I))2

u>0

< 00,

as it follows for (4.1).
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(b) The gamma operator G*. Since the operator G* defined in (1.3) does not
produce differentiable functions, we cannot directly apply Theorems 2 and 3 in this
case. However, G* is asymptotically close to G,, so that G* inherits from G, its
approximation properties.

Let a be as in example (a). According to (1.7), we denote for any/ € ^Z{a)

N*{f ;t) := supEWp f I )— f (x) , p > 1, t > 0.
x>0 \ t )

The following result shows that all the statements in Theorems 1-3 and Corollary 1
hold true for G*.

THEOREM 4.Letf€ Jt{o), p > 1 and t > 0. Then

(a) \\G,f - / || < 9||G;/ - / II < 9 (||G,/ - / II + a, (f; 1; ^j ;

(b) Np(f;t)<KpN;(f;t)<2Kp

where Kp = 18+ 16r1/p(p + 1).

PROOF. Let x > 0 and t > 0. We claim that

(4.2) (

Indeed, if [tx] < ty < [tx] + 1, it follows from the triangular inequality and the
continuity of/ that \f (y) - f (x)\ < 2\\G*f - / ||. If [tx] + 1 < ty < [tx] + 2,
then (4.2) follows from the triangular inequality and the preceding estimate.

On the other hand, the subadditivity of co (f; 1; •) implies that

(4.3) | G , / ( J C ) - / ( X ) | < \\G*f -f\\ + (l

where we have used that the gamma process has nondecreasing paths and stationary
increments. Thus, the first inequality in (a) follows from (4.2) and (4.3). The remaining
inequalities are shown in a similar way. •

(c) The Baskakov operator Bt. The family B := (B,, t > 0) of Baskakov opera-
tors is defined by (see, for instance [3,6])

B,J (x) = tj I ]

x > 0, t > 0,
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102 Jose A. Adell and Carmen Sangiiesa [13]

where (N(u), u > 0) is a standard Poisson process independent of the gamma process
(S(«), M > 0). We consider the weight function a{x) = y/x(\ + x), x > 0. Taking
into account Remark 3, it is readily seen that

N(xS(t))-tx
V,(x) = —-—-—, x > 0, t > 0.

Jt(l +x)

On the other hand, it follows by calculus that

= it, (2) = sup £ ' I | = 1 , t > 0.

In this case, the constants defined in (3.1) are not finite. However, it can be checked
that the constants sup,>2rA>1+1 c,(p), where fpl denotes the first integer not less than
p, are finite for any p > 1 and, therefore, all the results in Section 3 hold true with
minor modifications.
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