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SINGULAR INVARIANT HYPERFUNCTIONS

ON THE SQUARE MATRIX SPACE AND

THE ALTERNATING MATRIX SPACE

MASAKAZU MURO∗

Abstract. Fundamental calculations on singular invariant hyperfunctions on
the n×n square matrix space and on the 2n× 2n alternating matrix space are
considered in this paper. By expanding the complex powers of the determinant
function or the Pfaffian function into the Laurent series with respect to the
complex parameter, we can construct singular invariant hyperfunctions as their
Laurent expansion coefficients. The author presents here the exact orders of the
poles of the complex powers and determines the exact supports of the Laurent
expansion coefficients. By applying these results, we prove that every quasi-
relatively invariant hyperfunction can be expressed as a linear combination
of the Laurent expansion coefficients of the complex powers and that every
singular quasi-relatively invariant hyperfunction is in fact relatively invariant
on the generic points of its support. In the last section, we give the formula of
the Fourier transforms of singular invariant tempered distributions.

§1. Introduction

Let V := Matn(R) be the real vector space of n×n real matrices. The

real connected algebraic group G := GLn(R)+ × SLn(R) acts on Matn(R)

algebraically by

(1) (g, x) 7−→ g · x := g1x
tg2

with g := (g1, g2) ∈ G and x ∈ V . Here, GLn(R)+ := {g ∈ Matn(R) |
det(g) > 0} and SLn(R) := {g ∈ Matn(R) | det(g) = 1}. Then the

pair (G,V ) is a regular prehomogeneous vector space with an irreducible

relative invariant P (x) := det(x) and V decomposes into a finite number

of G-orbits. This is the first object of this paper. Next, let V := Alt2n(R)
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20 M. MURO

be the real vector space of 2n × 2n real alternating matrices. The real

connected algebraic group G := GL2n(R)+ acts on Alt2n(R) algebraically

by

(2) (g, x) 7−→ g · x := gx tg

with g ∈ G and x ∈ V . Then the pair (G,V ) is a regular prehomogeneous

vector space with an irreducible relative invariant P (x) := Pf(x) and V

decomposes into a finite number of G-orbits. Here Pf(x) stands for the

Pfaffian of the alternating matrix x which is a polynomial on Alt2n(R)

given as a square root of det(x) taking the value Pf(Jn) = (−1)n(n−1)/2 for

Jn :=
(

0n In

−In 0n

)
. This is the second object in this paper.

These two prehomogeneous vector spaces have some common proper-

ties. Both of two have two open G-orbits, one is V + := {x ∈ V | P (x) > 0}
and the other is V − := {x ∈ V | P (x) < 0}. We define the complex power

of the relative invariant P (x) by

(3) |P (x)|s± :=

{
|P (x)|s if x ∈ V ±,

0 if x 6∈ V ±,

for s ∈ C. Then it is well known that the integral
∫
|P (x)|s±f(x) dx is

absolutely convergent for all the rapidly decreasing function f(x) provided

that the real part <(s) of s ∈ C is non-negative. In addition, |P (x)|s± can

be regarded as a tempered distribution — and hence a hyperfunction —

on V with a holomorphic parameter s ∈ C and it is extended to the whole

complex plane as a meromorphic function in s ∈ C. The poles of P [~a,s](x)

belong to the set Z<0 := {−1,−2, . . . }. We define the linear combination

of |P (x)|s± by

(4) P [~a,s](x) := a+|P (x)|s+ + a−|P (x)|s−
for ~a := (a+, a−) ∈ C

2 and s ∈ C, which is a relatively invariant hyperfunc-

tion under the action of G. Namely we have

(5) P [~a,s](g · x) = χ(g)sP [~a,s](x)

for all g ∈ G with χ(g) = det(g1) when V = Matn(R) or with χ(g) =

det(g) when V = Alt2n(R). For a fixed complex number λ ∈ C, we call a

hyperfunction f(x) χλ-invariant if it satisfies

(6) f(g · x) = χ(g)λf(x)
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SINGULAR INVARIANT HYPERFUNCTIONS 21

for all g ∈ G. If λ 6∈ Z<0, then P [~a,λ](x) is well-defined and it is a χλ-

invariant hyperfunction.

Let G
1 := {g ∈ G | P (g · x) = P (x)}. Then P [~a,s](x) is a G

1-invariant

hyperfunction. Namely G
1 = SLn(R) × SLn(R) for V = Matn(R) and

G
1 = SL2n(R) for V = Alt2n(R). If P [~a,s](x) has a pole at s = s0, then

hyperfunctions appearing as Laurent expansion coefficients in the principal

part of the Laurent expansion of P [~a,s](x) at s = s0 are G
1-invariant and

their supports are contained in the singular set S := {x ∈ V | P (x) = 0}.
A hyperfunction is called singular if its support is contained in S. We can

prove that any singular G
1-invariant tempered distribution is written as a

finite linear combination of the Laurent expansion coefficients of negative

degree of P [~a,s](x) (see Propositions 4.1 and 4.2) by using the results in

Muro [9] and Muro [10].

The purpose of this paper is to investigate some properties of hyper-

functions — especially singular ones — on V which are invariant under the

action of G
1 via the hyperfunctions appearing as Laurent expansion coeffi-

cients of P [~a,s](x) — especially of negative degree — and give the formula of

Fourier transforms. More concretely we shall give answers to the following

problems in this paper.

Problem 1.1. (Fundamental problems) We call the following problems

fundamental problems for a complex power function P [~a,s](x).

1. Give the exact orders of poles of P [~a,s](x) (Theorems 6.3 and 6.4 in

Section 6).

2. Give the exact supports of the hyperfunctions appearing in the Lau-

rent expansion coefficients of P [~a,s](x) especially of negative degree (Theo-

rems 7.1 and 7.2 in Section 7).

3. Give a basis of singular invariant hyperfunctions by using the Lau-

rent expansion coefficients appearing in the principal parts of the Laurent

expansion coefficients at poles of P [~a,s](x).

4. Give explicit formulas of the Fourier transforms of singular G
1-

invariant tempered distributions (Theorems 9.3, 9.4, 9.7 and 9.8 in Sec-

tion 9).

Through the precise investigation of the properties of Laurent expan-

sion coefficients of P [~a,s](x), we have discovered some interesting facts about

singular invariant hyperfunctions as by-products. Namely every hyperfunc-

tion appearing as a Laurent expansion coefficient of P [~a,s](x) at s = λ is
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a quasi-χλ-invariant hyperfunction (Proposition 3.3). For the definition of

quasi-χλ-invariance, see Definition 2.1. Conversely, we see that any quasi-

χλ-invariant hyperfunction is given as a linear combination of Laurent ex-

pansion coefficients at s = λ, and in particular, any singular quasi-χλ-

invariant hyperfunction is a linear combination of Laurent expansion coef-

ficients at s = λ of negative degree (Theorem 8.1). In addition, we prove

that a singular quasi-χλ-invariant hyperfunction is in fact χλ-invariant at a

point near which the support is a non-singular variety (Theorem 8.2).

Furthermore, we investigate bi-singular G
1-invariant tempered distri-

butions on Matn(R). We say that a G
1-invariant tempered distribution

f(x) is bi-singular if both f(x) and its Fourier transform f(x)∨ :=
∫

f(x)

exp(−
√
−1 〈x, y〉) dx are singular. It is known that a G

1-invariant measure

on a single singular orbit (i.e., a G-orbit in S) on Matn(R) can be viewed

as a tempered distribution and its Fourier transform is also a G
1-invariant

measure on a singular orbit provided that it is not a delta-function sup-

ported on the origin, and hence it is a bi-singular G
1-invariant tempered

distribution (see, for example, Rubenthaler [17]). As a corollary to the

formulas of the Fourier transforms, we prove that there are bi-singular G
1-

invariant tempered distributions on V = Matn(R) and we can determine

all of them in Corollary 9.5, which shows that there are many other bi-

singular G
1-invariant tempered distributions on V = Matn(R). In partic-

ular, we see in Corollary 9.6 that every χλ-invariant tempered distribution

on V = Matn(R) is singular if λ = −2,−3, . . . ,−n and hence it is bi-

singular if λ = −2,−3, . . . ,−n+2. On the other hand, it is seen that there

are no bi-singular G
1-invariant tempered distributions on V = Alt2n(R) in

Corollary 9.9.

Hyperfunctions given as complex powers of polynomials are often called

“local zeta functions” or “local zeta distributions” (for example, see Sato-

Shintani [20], Shintani [21], Satake [19], Igusa [5]) and, in particular number

theorists have been studying these objects especially on non-archimedean

fields (for example, see Igusa [5], Saito [18]). Fundamental problems for zeta

functions are the computations of functional equations, the determination

of the poles and the computation of the principal part of the poles. We may

say that this paper gives solutions to the fundamental problems of the local

zeta functions on the archimedean field R for two examples studied here.

The author thinks that exact analysis of invariant hyperfunctions never

has been fully developed. Further examples will be given in the future pa-
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SINGULAR INVARIANT HYPERFUNCTIONS 23

pers. Micro-local analysis seems to be inevitable to the calculus of invariant

hyperfunctions and it enables us to give a definite answer to the fundamen-

tal problems.

Acknowledgement. The author expresses his sense of gratitude to
Professor A. Gyoja for his kindhearted advices.

§2. Quasi-relatively invariant hyperfunctions

In this section we describe some fundamental properties of the preho-

mogeneous vector spaces that we will analyze in this paper. We consider

the prehomogeneous vector space

(G,V ) := (GLn(R)+ × SLn(R),Matn(R))

(resp. (G,V ) := (GL2n(R)+,Alt2n(R))).

The algebraic group G acts on V by

(g, x) 7−→ g · x := g1x
tg2

(resp. (g, x) 7−→ g · x := gx tg)
(7)

for (g, x) ∈ G×V . The Lie algebra G of G is gln(R)⊕sln(R) (resp. gl2n(R))

and the Lie algebra G1 of G
1 is sln(R) ⊕ sln(R) (resp. sl2n(R)), where

gln(R) and sln(R) are Lie algebras of GLn(R) and SLn(R), respectively.

The infinitesimal action of (7) is

(A, x) 7−→ A · x := A1x + x tA2

(resp. (A, x) 7−→ A · x := Ax + x tA)
(8)

with A = (A1, A2) ∈ G = gln(R) ⊕ sln(R) (resp. A ∈ G = gl2n(R)). Let

V
∗ be the dual space of V . We define the canonical bilinear form on

(x, y) ∈ V × V
∗ by

(9) 〈x, y〉 := tr(x ty) (resp. 〈x, y〉 := 1
2 tr(x ty)).

We can identify V and V
∗ by 〈−,−〉. The contragredient representation

with respect to 〈−,−〉 is given by

(g, y) 7−→ g∗ · y := tg−1
1 yg−1

2

(resp. (g, y) 7−→ g∗ · y := tg−1yg−1)
(10)
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and its infinitesimal action is

(A, y) 7−→ A∗ · y := − tA1y − yA2

(resp. (A, y) 7−→ A∗ · y := − tAy − yA)
(11)

The vector space V decomposes into a finite number of G-orbits.

Among these orbits,

V + := {x ∈ V | P (x) > 0}, V − := {x ∈ V | P (x) < 0}

are open G-orbits. The set S := {x ∈ V | P (x) = 0} is a G-invariant

subset of V and it decomposes into

S :=

n⊔

i=1

Si

where

(12) Si := {x ∈ V | rank(x) = n − i}

when V is a square matrix space, and

(13) Si := {x ∈ V | rank(x) = 2(n − i)}

when V is an alternating matrix space. It is easily seen that each S i is

a G
1-orbit for i = 1, 2, . . . , n. The open set V − S is sometimes denoted

by S0.

The continuous characters of G to C
× are given by

(14) χs(g) := det(g1)
s (resp. χs(g) := det(g)s)

with s ∈ C. The infinitesimal character δχ(A) := dχ(exp(tA))/dt|t=0 of χ

is

δχ(A) = tr(A1) (resp. δχ(A) = tr(A)).

Definition 2.1. (relative invariance) Let v(x) be a hyperfunction on
V and let χs be the character defined by (14) with a complex number s ∈ C.

1. We say that v(x) is χs-invariant if it satisfies

(15) v(g · x) = χ(g)sv(x)
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SINGULAR INVARIANT HYPERFUNCTIONS 25

for all g ∈ G. A hyperfunction which is χs-invariant with some complex
number s ∈ C is called relatively invariant and we say that the character χs

is the corresponding character. This condition is equivalent to saying that
v(x) satisfies the equations of infinitesimal equations:

(16) (〈A · x, ∂〉 − sδχ(A))v(x) = 0

for all A ∈ G.

2. We say that v(x) is quasi-χs-invariant if there exists a non-negative
integer k and it satisfies

(17) (〈A0 · x, ∂〉 − sδχ(A0)) · · · (〈Ak · x, ∂〉 − sδχ(Ak))v(x) = 0

for all A0, A1, . . . , Ak ∈ G. A hyperfunction which is quasi-χs-invariant
with some complex number s ∈ C is called quasi-relatively invariant and
χs is called the corresponding character. We call the complex number s
the relative-degree. If v(x) satisfies (17) then we say that v(x) is a quasi-
χs-invariant hyperfunction of quasi-relative-degree k. In addition, if v(x)
satisfies

(〈A0 · x, ∂〉 − sδχ(A0)) · · · (〈Ak−1 · x, ∂〉 − sδχ(Ak−1))v(x) 6= 0,

for some A0, A1, . . . , Ak−1 ∈ G, then we say that v(x) has proper quasi-

relative-degree k.

Proposition 2.1. A hyperfunction v(x) on V is quasi-χλ-invariant

of quasi-relative-degree k ∈ Z≥0 if and only if v(x) is G1-invariant, i.e.,

〈A · x, ∂〉v(x) = 0 for all A ∈ G1, and

(18) (〈A0 · x, ∂〉 − λδχ(A0))
k+1v(x) = 0

for some A0 ∈ G with δχ(A0) 6= 0. In particular, v(x) has proper quasi-

relative-degree k if and only if

(19) (〈A0 · x, ∂〉 − λδχ(A0))
kv(x) 6= 0,

holds in addition to (18).

Proof. We denote by ϑλ(A) := (〈A · x, ∂〉 − λδχ(A)). Then it is easily
checked that

[ϑλ(A), ϑλ(B)] = ϑλ([A,B]) = 〈[A,B] · x, ∂〉
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for all A,B ∈ G since δχ([A,B]) = 0 for [A,B] ∈ G1.
First we prove that v(x) is G1-invariant and satisfies (18) if v(x) is

quasi-χλ-invariant of quasi-relative-degree k. Let A ∈ G1. Since G1 is a
semi-simple Lie algebra, we have G1 = [G1,G1]. Then there exist a finite
number of Bi, Ci ∈ G1 satisfying A =

∑
i[B

i, Ci]. Then we have

ϑλ(A) = ϑλ

(∑

i

[Bi, Ci]
)

=
∑

i

ϑλ([Bi, Ci]) =
∑

i

[ϑλ(Bi), ϑλ(Ci)].

Therefore, we see that there exist a finite number of Aj
1, A

j
2 ∈ G1 satisfying

ϑλ(A) =
∑

j

ϑλ(Aj
1)ϑλ(Aj

2).

Repeating this operation to ϑλ(Aj
i ) on the right hand side k times, we see

that ϑλ(A) is written as the form

ϑλ(A) =
∑

j

ϑλ(Aj
1) · · · ϑλ(Aj

k+1)

by using a finite number of Aj
1, . . . , A

j
k+1 ∈ G1. Then, for all A ∈ G1, we

have
ϑλ(A)v(x) =

∑

j

ϑλ(Aj
1) · · · ϑλ(Aj

k+1)v(x) = 0

if v(x) is quasi-χλ-invariant of quasi-relative-degree k. This shows that v(x)
is G1-invariant. The equation (18) is clear from the definition.

Next we prove the converse. We have only to show that

ϑλ(A1) · · · ϑλ(Ak+1)v(x) = 0

for all A1, . . . , Ak+1 ∈ G under the assumption that v(x) is G1-invariant and
(18) holds. For each Ai (i = 1, . . . , k + 1), there exist ci ∈ R and Bi ∈ G1

satisfying Ai = ciA0 +Bi. Indeed, we have only to put ci := δχ(Ai)/δχ(A0)
and Bi := Ai − ciA0. Then we have

ϑλ(A1) · · · ϑλ(Ak+1) =
k+1∏

i=1

ϑλ(ciA0 + Bi) =
k+1∏

i=1

(ciϑλ(A0) + ϑλ(Bi)).

By expanding the right hand side and arranging it, we can write as

ϑλ(A1) · · · ϑλ(Ak+1) =
( k+1∏

i=1

ci

)
ϑλ(A0)

k+1 +
∑

j

Uj(x, ∂)ϑλ(Fj)
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where {Fj} is a basis of G1. Since v(x) is G1-invariant and (18) holds from
the assumption, we have ϑλ(Fj)v(x) = 0 and ϑλ(A0)

k+1v(x) = 0, and hence
we have ϑλ(A1) · · ·ϑλ(Ak+1)v(x) = 0.

(19) can be proved in the same way.

Typical relatively invariant hyperfunction is the complex power func-

tion P [~a,s](x) defined by (4). If λ is not a negative integer, then P [~a,s](x)|s=λ

= P [~a,λ](x) is a χλ-invariant hyperfunction. More generally, for any com-

plex number λ ∈ C, each Laurent expansion coefficient of P [~a,s](x) at s = λ

is a quasi-χλ-invariant hyperfunction (see Proposition 3.3).

We define odd and even invariant hyperfunctions on V . We consider

the case of the square matrix space V = Matn(R) (resp. the alternating

matrix space V := Alt2n(R)). We set

g0 :=

(
In−1 0

0 −1

)
× In ∈ GLn(R) ×GLn(R)

(
resp. g0 :=

(
I2n−2 0

0 0 1
1 0

)
∈ GL2n(R)

)
.

Definition 2.2. (even and odd functions) For a G
1-invariant hyper-

function f(x), we say that f(x) is even if f(g0 · x) = f(x) and that f(x) is
odd if f(g0 · x) = −f(x).

Let f(x) be a G
1-invariant hyperfunction. Defining even and odd func-

tions by

f+(x) :=
1

2
(f(x) + f(g0 · x)) and f−(x) :=

1

2
(f(x) − f(g0 · x)),

respectively, we have

(20) f(x) = f+(x) + f−(x).

Namely we have the following proposition.

Proposition 2.2. Any G
1-invariant (resp. quasi-relatively invariant)

hyperfunction is written as a sum of an odd G
1-invariant (resp. quasi-

relatively invariant) hyperfunction and an even G
1-invariant (resp. quasi-

relatively invariant) hyperfunction uniquely.
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§3. Some properties of complex powers of the relative invariants

In this section we shall study the hyperfunction P [~a,s](x), which is in-

troduced by (4) and is called complex powers of the relative invariant P (x).

By defining the two dimensional vectors

~e+ :=

(
1
0

)
, and ~e− :=

(
0
1

)
,

we have

P [~e+,s](x) = |P (x)|s+, and P [~e−,s](x) = |P (x)|s−,

We define the two vectors

−−→even :=

(
1
1

)
= ~e+ + ~e−,

−−→
odd :=

(
1
−1

)
= ~e+ − ~e−

and the two linear combinations of complex powers

|P (x)|seven := P [−−→even,s](x) = |P (x)|s+ + |P (x)|s−,

|P (x)|sodd := P [
−−→
odd,s](x) = |P (x)|s+ − |P (x)|s−.

Then it is easy to see that |P (x)|seven is an even χs-invariant hyperfunction

and that |P (x)|sodd is an odd χs-invariant hyperfunction.

Remember the well-known formulas

det(∂) det(x)s+1 = (s + 1)(s + 2) · · · (s + n) det(x)s

on V = Matn(R), and

Pf(∂) Pf(x)s+1 = (s + 1)(s + 3) · · · (s + 2n − 1)Pf(x)s

on V = Alt2n(R). Here det(∂) is the determinant of the n × n matrix

whose (i, j)-entry is ∂/∂xij , and Pf(∂) is the Pfaffian of the 2n × 2n alter-

nating matrix whose (i, j)-entry is ∂/∂xij . They are proved originally as

the Capelli’s identity (see Weyl [22], Rais [15]). By using these formulas,

we have the following proposition, which is proved in a well-known way in

the theory of analytic continuation of complex powers of polynomials. See

for example Bernstein [1] or Igusa [5, Theorem 5.3.1].
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Proposition 3.1. We have:

1. P [~a,s](x) is an absolutely convergent tempered distribution with a

holomorphic parameter s ∈ C if the real part <(s) is non-negative.

2. The poles of P [~a,s](x) are located at s ∈ Z<0 := {−1,−2, . . . }.
3. Let

(21) PHO(λ) :=





k at λ = −k (k = 1, 2, . . . , n − 1),

n at λ = −k (k = n, n + 1, . . . ),

0 otherwise,

if V = Matn(R), and let

(22) PHO(λ) :=





b k+1
2 c at λ = −k (k = 1, 2, . . . , 2n − 2),

n at λ = −k (k = 2n − 1, 2n, . . . ),

0 otherwise,

if V = Altn(R). We call PHO(λ) the possible highest order of the pole of

P [~a,s](x) at s = λ and the order of pole of P [~a,s](x) at s = λ is at most

PHO(λ).

We define the Laurent expansion coefficients of the Laurent expansion

of P [~a,s](x) with respect to the complex parameter. It is a crucial object of

this paper.

Definition 3.1. (Laurent expansion coefficients) Let P [~a,s](x) be the
hyperfunction defined by (4) with a meromorphic parameter s ∈ C and let
λ ∈ C be a fixed point.

1. For a two dimensional non-zero complex vector ~a ∈ C
2, we define

o(~a, λ) ∈ Z by

(23) o(~a, λ) := the order of pole of P [~a,s](x) at s = λ,

and we define o(~0, λ) = −∞.

2. For a fixed ~a ∈ C
2 and λ ∈ C, we denote by

(24) P [~a,s](x) =
∑

k∈Z

P
[~a,λ]
k (x)(s − λ)k

the Laurent expansion of P [~a,s](x) at s = λ and we call P
[~a,λ]
k (x) the Lau-

rent expansion coefficient of degree k of P [~a,s](x) at s = λ. In particular,
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P
[~a,λ]
−o(~a,λ)(x) is the lowest degree non-zero term among the Laurent expansion

coefficients of P [~a,s](x) at s = λ.

Then the following proposition is easily verified and we omit the proof.

Proposition 3.2. Let P
[~a,λ]
k (x) be the Laurent expansion coefficient

of degree k of P [~a,s](x) at s = λ, which is defined in (24).

1. Each P
[~a,λ]
k (x) is a G

1-invariant hyperfunction.

2. Each P
[~a,λ]
k (x) is real analytic on V − S.

3. For any λ ∈ C and k ∈ Z, P
[~a,λ]
k (x) is linear with respect to ~a.

4. If P
[~a,λ]
k (x0) 6= 0 for some point x0 ∈ V + (resp. V −), then it is

non-zero at every point in V + (resp. V −).

5. Supp
(
P

[~a,λ]
k (x)

)
⊂ S if k < 0.

6. P
[~a,λ]
k (x) = 0 if k < −o(~a, λ).

Now we prove that the Laurent expansion coefficients P
[~a,λ]
k (x) (k ∈ Z)

are quasi-relatively invariant hyperfunctions.

Proposition 3.3. Let λ be a complex number and let P
[~a,λ]
k (x) be the

Laurent expansion coefficient of degree k of P [~a,s](x) at s = λ defined by

(24). Then, for an integer q = 0, 1, 2, . . . ,

P
[~a,λ]
−o(~a,λ)+q(x)

is a non-zero quasi-χλ-invariant hyperfunction of proper quasi-relative-de-

gree q.

Proof. Consider the Laurent expansion

P [~a,s](x) =
∑

k∈Z

P
[~a,λ]
k (x)(s − λ)k.

Let A0 be an element of G with δχ(A0) = 0. Then we have

(〈A0 · x, ∂〉 − λδχ(A0))P
[~a,s](x) = 〈A0 · x, ∂〉P [~a,s](x) = 0,

and hence we have

(〈A0 · x, ∂〉 − λδχ(A0))P
[~a,λ]
k (x) = 0,
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for all A0 ∈ G with δχ(A0) = 0 and for all k ∈ Z. Next, let A0 be
an element of G satisfying δχ(A0) 6= 0 (for example, the identity matrix
operator). Then we have

δχ(A0)
−1(〈A0 · x, ∂〉 − λδχ(A0))P

[~a,s](x)

=
∑

k∈Z

δχ(A0)
−1(〈A0 · x, ∂〉 − λδχ(A0))P

[~a,λ]
k (x)(s − λ)k

= (s − λ)P [~a,s](x)

=
∑

k∈Z

P
[~a,λ]
k (x)(s − λ)k+1

and hence we have

(25) δχ(A0)
−1(〈A0 · x, ∂〉 − λδχ(A0))P

[~a,λ]
k (x) = P

[~a,λ]
k−1 (x).

This means that P
[~a,λ]
k (x) 6= 0 if P

[~a,λ]
k−1 (x) 6= 0.

On the other hand, we see from the definition that

P
[~a,λ]
−o(~a,λ)(x) 6= 0 and P

[~a,λ]
−o(~a,λ)−1(x) = 0.

Then we have

(
δχ(A0)

−1(〈A0 · x, ∂〉 − λδχ(A0))
)q

P
[~a,λ]
−o(~a,λ)+q(x) = P

[~a,λ]
−o(~a,λ)(x) 6= 0

and

(
δχ(A0)

−1(〈A0 · x, ∂〉 − λδχ(A0))
)q+1

P
[~a,λ]
−o(~a,λ)+q(x) = P

[~a,λ]
−o(~a,λ)−1(x) = 0.

This shows that P
[~a,λ]
−o(~a,λ)+q(x) is a non-zero quasi-χλ-invariant hyperfunc-

tion of proper quasi-relative-degree q.

The converse of this proposition is true and the proof will be given in

Theorem 8.1.

§4. Holonomic systems characterizing relatively invariance

In this section, we introduce the holonomic system Mλ whose solutions

are χλ-invariant hyperfunctions on V and describe the structure of the

characteristic variety ch(Mλ). We omit the proof here since they are easily

verified in the same way as the proof of the calculation of the characteristic

varieties in Muro [8] and Muro [10].
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We denote the system of linear differential equations by

(26) Mλ : (〈A · x, ∂〉 − λδχ(A))f(x) = 0 for all A ∈ G.

Then Mλ is a holonomic system, for the characteristic variety of Mλ is

given by

(27) ch(Mλ) =

n⋃

i=0

Λi

where Λi := T ∗
Si

V . Here, T ∗
Si

V means the closure of the conormal bundle of

the variety Si. Each Λi is an irreducible G-invariant Lagrangian subvariety

in T ∗
V = V × V

∗, on which the group G acts in the manner given by (7)

and (10). Each Λi has the following two G-orbits Λ±
i . When V = Matn(R),

they are

(28) Λ±
i := G ·

((In−i

0i

)
,

(
0n−i

I±i

))

where Ii = I+
i is the i × i identity matrix and I−

i :=
(

Ii−1

−1

)
. When

V = Alt2n(R), they are

(29) Λ±
i := G ·

((Jn−i

02i

)
,

(
02(n−i)

J±
i

))

where Ji = J+
i :=

(
0i Ii

−Ii 0i

)
and J−

i :=
(

0i I−
i

−I−
i

0i

)
. The subset Λ◦

i :=

Λ+
i tΛ+

i = Λi −
⋃

i6=j Λj is a dense subset in Λi. If |i− j| = 1, then Λi and

Λj has an intersection of codimension one. If |i − j| > 1, then Λi and Λj

has an intersection of codimension > 1. The intersection Λi ∩ Λi+1 has a

dense G-orbit in it, which is generated by

((In−i−1

0i+1

)
,

(
0n−i

Ii

))
when V = Matn(R),

((Jn−i−1

02i

)
,

(
02(n−i)

Ji

))
when V = Alt2n(R).

(30)

The following propositions were proved in Muro [10, Theorem 5.6] and

Muro [10, Theorem 5.7], respectively.
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Proposition 4.1. Let λ be an arbitrary complex number. Then any

hyperfunction solution to Mλ belongs to the vector space generated by

(31)
{
P

[~a,λ]
−o(~a,λ)(x)

∣∣ ~a ∈ C
2
}
.

(Here, we define P
[~0,λ]

−o(~0,λ)
(x) := 0 since P [~0,s](x) ≡ 0.)

Proposition 4.2. Any singular G
1-invariant tempered distribution is

written as a linear combination of Laurent expansion coefficients of P [~a,s](x)
of negative degree at s = −1,−2, . . . .

§5. Principal symbols of the hyperfunction solutions to Mλ

In this section we review the real principal symbol σΛε

i
(u(s, x)) on each

Lagrangian orbit Λε
i — or we simply call principal symbol — of a hyperfunc-

tion u(s, x) with a meromorphic parameter s ∈ C provided that u(s, x)|s=λ

— or (s − λ)ku(s, x)|s=λ if u(s, x) has a pole of order k at s = λ — is a

solution to the holonomic system Mλ for each complex number λ ∈ C. We

present it by using the coefficient function cε
i(s), which is a meromorphic

function in s ∈ C. Then the computation of the poles and the Laurent

expansion coefficients of the coefficient function vector (cε
i(s))i=0,1,...,n, ε=±

is equivalent to the computation of those of u(s, x). The situation is almost

the same as that of the case of invariant hyperfunctions on the real sym-

metric matrix space, which we considered in Muro [11]. We give here some

results on the relations between the hyperfunction solution u(s, x) and its

principal symbol σΛε

i
(u(s, x)) without proof since the proof is almost the

same as the one in Muro [11].

We shall give a canonical basis of the principal symbol following the

theory in Kashiwara-Miwa [7] and Muro [8]. Let Λ◦
i be the open subset

defined above and let Λε
i (ε = ±) be a connected component of Λ◦

i . We

define a non-zero real analytic section Ωε
i(s) (ε = ±) of the sheaf of half

volume element on Λε
i by

(32) Ωε
i(s) := |PΛε

i
(x, y)|s

√
|ωΛε

i
(x, y)|.

Then the section Ωε
i(s) depends on s ∈ C holomorphically. Here, we set

PΛε

i
(x, y) := P (πW (x, y))/(σ(x, y)|W )

mΛ
i |Λε

i
,(33)

ωΛε

i
(x, y) :=

π−1
W (|dx|) ∧ dσ(x, y)

σ(x, y)
µΛ

i

/
dσ(x, y)

∣∣∣∣
Λε

i

,(34)
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where σ := σ(x, y) is a function on V ×V
∗ defined by σ := 〈x, y〉/n; πW is

the projection map from the subvariety

(35) W := {(x, y) ∈ T ∗
V | 〈Ax, y〉 = 0 for all A ∈ G1} ⊂ V × V

∗

to V , where G1 := {A ∈ G | δχ(A) = 0}; mΛ
i

and µΛ
i

are the constants

such that (33) and (34) are non-zero on Λε
i , respectively. We define P (x) :=

det(x) (resp. P (x) := Pf(x)) and |dx| is a non-zero volume element on V

defined by

|dx| :=

∣∣∣∣
∧

1≤i,j≤n

dxij

∣∣∣∣
(
resp. |dx| :=

∣∣∣∣
∧

1≤i<j≤2n

dxij

∣∣∣∣
)(36)

with

x =




x11 x12 · · · x1n

x21 x22 · · · x2n
...

...
. . .

...
xn1 xn2 · · · xnn


 ∈ V

(
resp. x =




0 x1,2 · · · x1,2n

−x1,2 0 · · · x2,2n
...

...
. . .

...
−x1,2n −x2,2n · · · 0


 ∈ V

)

(37)

when V is the n×n square matrix space (resp. the 2n×2n alternating matrix

space). We have mΛ
i
= i and µΛ

i
= i2 (resp. mΛ

i
= i and µΛ

i
= i(2i − 1))

in the case of square matrices (resp. alternating matrices). We call the

homogeneous degree of (32) with respect to y the order of Ms on Λi and

denote it by orderΛi
. In our cases, we have

(38) orderΛi
=

{
−is − (i2/2) when V = Matn(R),

−is − i(2i − 1) when V = Alt2n(R).

Proposition 5.1. Let u(s, x) be a microfunction with a meromorphic

parameter s ∈ C. We suppose that u(s, x)|s=λ — or (s − λ)ku(s, x)|s=λ if
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u(s, x) has a pole of order k at s = λ — is a solution to the holonomic sys-

tem Mλ for each complex number λ ∈ C. Let Λε
i be a connected component

in Λ◦
i . Then we have:

1. The principal symbol σΛε

i
(u(s, x)) is written as a constant multiple

of the real analytic section of Ωε
i(s)/

√
|dx|:

(39) σΛε

i
(u(s, x)) = cε

i(s) · Ωε
i(s)/

√
|dx|.

Conversely, if every constant multiplication term cε
i(s) is given on each

Λε
i , then the corresponding microfunction solution u(s, x) satisfying (39) is

determined uniquely provided that it exists.

2. Each cε
i(s) is a holomorphic (resp. meromorphic) function in s ∈ C,

if and only if u(s, x) depends on s ∈ C holomorphically (resp. meromorphi-

cally) on each Λε
i .

Remark 5.1. The definition and some fundamental properties of hy-
perfunctions (resp. microfunctions) with a meromorphic parameter s ∈ C

is given in Kashiwara, Kawai and Kimura [6, Chapter 3, Section 8]. In
short, it is a hyperfunction (resp. microfunction) which satisfies the Cauchy-
Riemann equation with respect to s ∈ C after regularizing the poles. For
example, P [~a,s](x) is a typical hyperfunction with a meromorphic parameter
s ∈ C.

Proof. The proof is the same as the proof of Muro [11, Proposition 3.3].

We consider hyperfunction solutions to M∫ of the form

(40) P [~a,s](x) := a+|P (x)|s+ + a−|P (x)|s−

introduced in (4). Since P [~a,s](x) is a hyperfunction with a meromor-

phic parameter s ∈ C, the microfunction image sp(P [~a,s](x)), where sp

is the isomorphic map sp : BV ' π∗(CV ), and its principal symbols

σΛε

i
(sp(P [~a,s](x))) depend on s ∈ C meromorphically. Here, BV and CV

are the sheaves of hyperfunctions on V and microfunctions on T ∗
V , re-

spectively, and π∗(CV ) is the direct image of the sheaf of microfunctions on

T ∗
V to V . We often denote the principal symbol by σΛε

i
(P [~a,s](x)) instead

of σΛε

i
(sp(P [~a,s](x))) for the simplicity.
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Definition 5.1. (Coefficient functions) Let

(41) σΛε

i
(P [~a,s](x)) := cε

i(~a, s)Ωε
i(s)/

√
|dx|

with cε
i(~a, s) being a meromorphic function in s ∈ C. We call cε

i(~a, s) a
coefficient function or simply a coefficient of P [~a,s](x) on Λε

i with respect to
the canonical basis

(42) Ωε
i(s)/

√
|dx|.

In particular, we see easily cε
0(~a, s) = aε (ε = ±). It is easily checked that

the coefficient functions cε
i(~a, s) depend on ~a ∈ C

n+1 linearly and on s ∈ C

meromorphically.

We give the analytic relations (43) and (44) combining the coefficient

functions of a hyperfunction solution with a meromorphic parameter s ∈ C.

Proposition 5.2. The coefficient functions on Λ◦
i−1 and Λ◦

i have the

following relation for i = 1, 2, . . . , n.

1. (the case of square matrices)

[
c+
i (~a, s)

c−i (~a, s)

]
=

Γ(s + i)√
2π

×
[
exp(− π

2

√
−1(s + i)) exp(+ π

2

√
−1(s + i))

exp(+ π
2

√
−1(s + i)) exp(− π

2

√
−1(s + i))

][
c+
i−1(~a, s)

c−i−1(~a, s)

]
.

(43)

2. (the case of alternating matrices)

[
c+
i (~a, s)

c−i (~a, s)

]
=

Γ(s + 2i − 1)√
2π

×
[
exp(− π

2

√
−1(s + 2i − 1)) exp(+ π

2

√
−1(s + 2i − 1))

exp(+ π
2

√
−1(s + 2i − 1)) exp(− π

2

√
−1(s + 2i − 1))

]

×
[
c+
i−1(~a, s)

c−i−1(~a, s)

]
.

(44)

Proof. Consider the intersections of codimension one among the irre-
ducible Lagrangian subvarieties in ch(Ms). Then only Λi−1 and Λi have
an intersection of codimension one for i = 1, 2, . . . , n. From Kashiwara’s
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formula (Kashiwara-Miwa [7, Formula 3.6 in p. 142]), we have the relation
of the coefficient functions cε

i−1(~a, s) and cε
i(~a, s), which is given by

[
c+
i (~a, s)

c−i (~a, s)

]
=

Γ(α(s))√
2π

[
exp(− π

2

√
−1(α(s))) exp(+ π

2

√
−1(α(s)))

exp(+ π
2

√
−1(α(s))) exp(− π

2

√
−1(α(s)))

]

×
[

exp(− π

4

√
−1(τ(Λ+

i−1
)−τ(Λi−1∩Λi))) 0

0 exp(− π

4

√
−1(τ(Λ−

i−1
)−τ(Λi−1∩Λi)))

]

×
[
c+
i−1(~a, s)

c−i−1(~a, s)

]
,

(45)

where

α(s) = orderΛi−1
− orderΛi

+
1

2
=

{
s + i when V = Matn R,

s + 2i − 1 when V = Alt2n R,

and

τ(Λε
i−1) = sgnA∈G(〈A · xε

i−1, A
∗ · yε

i−1〉),
τ(Λi−1 ∩ Λi) = sgnA∈G(〈A · x0, A

∗ · y0〉).
(46)

In this formula, sgnA∈G(−) means the signature of the quadratic form on
A ∈ G, i.e., the difference of the number of positive eigenvalues and that
of negative eigenvalues of the symmetric matrix representing the quadratic
form; (xε

i−1, y
ε
i−1) ∈ Λε

i−1 given by (28) and (29); and (x0, y0) is the point
given by (30) in the dense G-orbit of Λi−1∩Λi. We see easily that τ(Λε

i−1) =
0 and τ(Λi−1 ∩ Λi) = 0, then we have the formulas (43) and (44).

Thus, we can compute all the coefficients cε
i(~a, s) (0 ≤ i ≤ n and ε = ±)

from the base coefficients cε
0(~a, s) = aε (ε = ±) by using the formula (43)

and (44). By computing the exact orders of poles of all the coefficient

functions in the set {cε
i(~a, s) | 0 ≤ i ≤ n, ε = ±}, we can determine the

exact orders of poles of P [~a,s](x). Namely we have the following proposition,

which will be used in Section 6.

Proposition 5.3. The following two conditions are equivalent.

1. P [~a,s](x) has a pole of order p at s = s0.

2. All the coefficient functions in {cε
i(~a, s) | 0 ≤ i ≤ n, ε = ±} have

poles of order not greater than p at s = s0 and at least one coefficient of

them has a pole of order p at s = s0.
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Proof. The proof is carried out in the same way as Muro [11, Propo-
sition 3.7].

Next, we consider the Laurent expansion coefficients of the Laurent

series expansion of P [~a,s](x) at s = s0. We can determine the exact support

of the Laurent expansion coefficients by computing the orders of poles of

the coefficient functions. Suppose that the complex power function P [~a,s](x)

has a pole of order p at s = s0. We give the Laurent expansion of P [~a,s](x)

at s = s0 by

(47) P [~a,s](x) =

∞∑

w=−p

P [~a,s0]
w (x)(s − s0)

w.

Here, P
[~a,s0]
w (x) is called the Laurent expansion coefficient of degree w of

P [~a,s](x). We can express the support of P
[~a,s0]
w (x) in terms of the order of

poles of cε
i(~a, s). Namely, we have the following proposition, which will be

used in Section 7.

Proposition 5.4. Suppose that P [~a,s](x) has a pole of order p at s =
s0. Let (47) be the Laurent expansion of P [~a,s](x) at s = s0 and let cε

i(~a, s)
be the coefficient function defined by (41) and ords=s0

(cε
i(~a, s)) stands for

the order of pole of cε
i(~a, s) at s = s0. Then, when w < 0, we have

(48) Supp
(
P [~a,s0]

w (x)
)

=
⋃

i∈L

Si

with L := {i ∈ Z | ords=s0
(cε

i(~a, s)) ≥ −w for ε = + or ε = −}. When w =
0, we have

(49) Supp
(
P

[~a,s0]
0 (x)

)
=
⋃

aε 6=0

V ε.

Proof. The proof is carried out in the same way as Muro [11, Propo-
sition 3.8].

§6. Exact orders of the poles of the complex powers

In this section we give the answer to the first problem in Problem 1.1

in Section 1. We begin with the definitions about some special subspaces

of C
2
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Definition 6.1. 1. Let q ∈ Z. We define a vector subspace A(λ, q) of
C

2 by

(50) A(λ, q) := {~a ∈ C
2 | o(~a, λ) ≤ q},

which consists of the vectors ~a such that P [~a,s](x) has a pole of order at
most q at s = λ. Here o(~a, λ) has been defined by (23).

2. We define

Aodd := {~a ∈ C
2 | a+ + a− = 0},

Aeven := {~a ∈ C
2 | a+ − a− = 0}.

Then P [~a,s](x) is an odd (resp. even) function if ~a ∈ Aodd (resp. ~a ∈ Aeven).

Then the following proposition is easily verified from the definition.

Proposition 6.1. Let A(λ, q) be the vector subspace of C
2 defined by

(50). Then A(λ, q) has the following properties.

1. For any q ∈ Z, we have

A(λ, q) ⊂ A(λ, q + 1).

If q ≤ −1, then A(λ, q) = {0}. If q ≥ PHO(λ), then A(λ, q) = C2.

2. We define, for each q ∈ Z,

A(λ, q) := A(λ, q)/A(λ, q − 1).

Then we have A(λ, q) = {0} if q > PHO(λ) or q < 0.

By determining the subspaces A(λ, q) for each λ ∈ C and q ∈ Z, we

can compute the exact order of the pole of P [~a,s](x) at s = λ. Namely, the

exact order of the pole of P [~a,s](x) at s = λ is q if and only if ~a ∈ A(λ, q)

and the representative [~a] 6= 0 in A(λ, q).

If λ 6∈ Z<0, then A(λ, q) is easily determined for each q ∈ Z since

P [~a,s](x) is holomorphic at s = λ for all ~a ∈ C
2. Namely we have the

following theorem.

Theorem 6.2. Let V be Matn(R) or Alt2n(R). Suppose that λ 6∈ Z<0.

Then we have

(51) A(λ, q) =

{
C

2 if q ≥ 0,

{0} if q < 0,
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and hence

(52) A(λ, q) =

{
C

2 if q = 0,

{0} if q 6= 0,

for each q ∈ Z.

For the square matrix space V = Matn(R), we can determine A(λ, q)

for each λ ∈ Z<0 and q ∈ Z in the following theorem.

Theorem 6.3. (square matrices) Let V be the space of n × n square

matrices and let λ be a negative integer.

1. We suppose that −n + 1 ≤ λ ≤ −1. When λ is an even integer,

(53) A(λ, q) =

{
C

2 if q ≥ − λ
2 ,

{0} if q < − λ
2 ,

and hence

(54) A(λ, q) =

{
C

2 if q = − λ
2 ,

{0} if q 6= − λ
2 .

When λ is an odd integer,

(55) A(λ, q) =





C
2 if q ≥ −λ−1

2 + 1,

Aodd ' C if q = −λ−1
2 ,

{0} if q ≤ −λ−1
2 − 1,

and hence

(56) A(λ, q) =

{
C if q = −λ+1

2 , −λ−1
2 ,

{0} if q 6= −λ+1
2 , −λ−1

2 .

2. We suppose that λ ≤ −n. When n is an even integer,

(57) A(λ, q) =

{
C

2 if q ≥ n
2 ,

{0} if q < n
2 ,

and hence

(58) A(λ, q) =

{
C

2 if q = n
2 ,

{0} if q 6= n
2 .
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When n is an odd integer,

(59) A(λ, q) =





C
2 if q ≥ n−1

2 + 1,

Aeven ' C if q = n−1
2 and λ is even,

Aodd ' C if q = n−1
2 and λ is odd,

{0} if q ≤ n−1
2 − 1,

and hence

(60) A(λ, q) =

{
C if q = n+1

2 , n−1
2 ,

{0} if q 6= n+1
2 , n−1

2 .

Proof. According to Proposition 5.3, the order of the pole of P [~a,s](x)
at s = λ is determined by the maximum of the orders of poles of coefficient
functions cε

i(~a, s) (0 ≤ i ≤ n and ε = ±). By using the formula (43)
repeatedly, we have

(61) ~cm(~a, s) :=

[
c+
m(~a, s)

c−m(~a, s)

]
= (2π)−m/2

m∏

i=1

Ui(s)~a

where

(62) Ui(s) := Γ(s + i) ×
[
exp(− π

2

√
−1(s + i)) exp(+ π

2

√
−1(s + i))

exp(+ π
2

√
−1(s + i)) exp(− π

2

√
−1(s + i))

]

and ~a =
( a+

a−

)
=
[

c+0 (~a,s)

c−0 (~a,s)

]
∈ C

2. Then we can see easily that

(2π)m/2~cm(−−→even, s) =

m∏

i=1

Ui(s)(
−−→even) = Fm(−−→even, s)(−−→even)

(2π)m/2~cm(
−−→
odd, s) =

m∏

i=1

Ui(s)(
−−→
odd) = Fm(

−−→
odd, s)(

−−→
odd)

(63)

where
(64)

Fm(−−→even, s) =





m∏
i=1

Γ(s + i)(
√
−1)k(p−2 − p2)k when m = 2k,

m∏
i=1

Γ(s + i)(−
√
−1)k+1(p−2 − p2)k(p−1 − p)

when m = 2k + 1,
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and
(65)

Fm(
−−→
odd, s) =





m∏
i=1

Γ(s + i)(
√
−1)k(p−2 − p2)k when m = 2k,

m∏
i=1

Γ(s + i)(−
√
−1)k+1(p−2 − p2)k(p−1 + p)

when m = 2k + 1,

with p = exp( π
2

√
−1s).

Then we are ready to determine the exact orders of the poles of P [~a,s](x)
at s = λ in λ ≤ −1.

1. We suppose that −n + 1 ≤ λ ≤ −1.
First we assume that λ is an even integer. Consider the orders of poles of

Fm(−−→even, s) and Fm(
−−→
odd, s) (m = 0, 1, . . . , n) at s = λ. Then the maximum

of the orders of Fm(−−→even, s) (m = 0, 1, . . . , n) at s = λ is −λ/2, which

is taken by F−λ(−−→even, s), and the maximum of the orders of Fm(
−−→
odd, s)

(m = 0, 1, . . . , n) at s = λ is also −λ/2, which is taken by F−λ−1(
−−→
odd, s),

F−λ(
−−→
odd, s) and F−λ+1(

−−→
odd, s). Let ~a := a · −−→even + b · −−→odd with a, b ∈ C.

Then we have

~cm(~a, s) = a · ~cm(−−→even, s) + b · ~cm(
−−→
odd, s).

The vectors ~cm(−−→even, s) and ~cm(
−−→
odd, s) are linearly independent since they

are constant multiples of −−→even and
−−→
odd, respectively. Consider the maximum

of the orders of the poles of ~cm(~a, s) (m = 0, 1, . . . , n). If ~a 6= 0, then it is

the order of the pole of ~c−λ(~a, s) = a ·~c−λ(−−→even, s)+ b ·~c−λ(
−−→
odd, s), which is

−λ/2 by the above calculation. Then, by Proposition 5.3, the order of the
pole of P [~a,s](x) at s = λ is −λ/2 if ~a 6= 0. Therefore, we have

o(~a, λ) =

{
−λ/2 if ~a 6= 0,

−∞ if ~a = 0,

and we obtain (53) and (54).
Next we assume that λ is an odd integer. Consider the order of poles of

Fm(−−→even, s) and Fm(
−−→
odd, s) (m = 0, 1, . . . , n) at s = λ. Then the maximum

of the orders of Fm(−−→even, s) (m = 0, 1, . . . , n) at s = λ is −(λ − 1)/2, which

is taken by F−λ(−−→even, s), and the maximum of the orders of Fm(
−−→
odd, s)

(m = 0, 1, . . . , n) at s = λ is −(λ + 1)/2, which is taken by F−λ−1(
−−→
odd, s),
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F−λ(
−−→
odd, s) and F−λ+1(

−−→
odd, s). We compute the maximum of the orders of

the poles of ~cm(~a, s) (m = 0, 1, . . . , n). Note that ~a := a · −−→even+ b · −−→odd with

a, b ∈ C. If a 6= 0 in ~a = a · −−→even + b · −−→odd, then it is the order of the pole of

~c−λ(~a, s) = a · ~c−λ(−−→even, s) + b · ~c−λ(
−−→
odd, s), which is −(λ − 1)/2 from the

above calculation. If a = 0 and b 6= 0 in ~a = a · −−→even + b · −−→odd, then it is the

order of the pole of ~c−λ(~a, s) = b · ~c−λ(
−−→
odd, s), which is −(λ + 1)/2. Then,

by Proposition 5.3, the order of the pole of P [~a,s](x) at s = λ is −(λ − 1)/2.

If a 6= 0 in ~a = a · −−→even + b · −−→odd, and it is −(λ + 1)/2 if a = 0 and b 6= 0 in

~a = a · −−→even + b · −−→odd, Therefore, we have

o(~a, λ) =





− λ−1
2 if a 6= 0 in ~a = a · −−→even + b · −−→odd,

− λ+1
2 if a = 0 and b 6= 0 in ~a = a · −−→even + b · −−→odd,

−∞ if ~a = 0,

and we obtain (55), (56).

2. We suppose that λ ≤ −n. Then we see easily that the the maximum
of the orders of the poles of ~cm(~a, s) (m = 0, 1, . . . , n) is taken when m = n.
In the same way as the proof of the case of −n+1 ≤ λ ≤ −1, we can prove
(57) and (58) when λ is an even integer and (59), (60) when λ is an odd
integer.

Next, we consider the exact order of P [~a,s](x) on the alternating matrix

space V = Alt2n(R).

Theorem 6.4. (alternating matrices) Let V be the space of 2n × 2n
alternating matrices and let λ be a negative integer.

1. We suppose that −2n + 2 ≤ λ ≤ −1.

(66) A(λ, q) =





C
2 if q ≥ b −λ+1

2 c,
Aeven ' C if b −λ+1

2 c − 1 ≥ q ≥ 0 and λ is even,

Aodd ' C if b −λ+1
2 c − 1 ≥ q ≥ 0 and λ is odd,

{0} if −1 ≥ q,

and hence

(67) A(λ, q) =

{
C if q = b −λ+1

2 c or 0,

{0} if q 6= b −λ+1
2 c, 0,
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where, for q in b −λ+1
2 c − 1 ≥ q ≥ 0,

2. We suppose that λ ≤ −2n + 1.

(68) A(λ, q) =





C
2 if q ≥ n,

Aeven ' C if n − 1 ≥ q ≥ 0 and λ is even,

Aodd ' C if n − 1 ≥ q ≥ 0 and λ is odd,

{0} if −1 ≥ q,

and hence

(69) A(λ, q) =

{
C if q = n or 0,

{0} if q 6= n, 0,

where, for q in n − 1 ≥ q ≥ 0,

Proof. We can prove this theorem in the same way as the proof of
Proposition 6.3. By using the formula (44) repeatedly, we have

(70) ~cm(~a, s) :=

[
c+
m(~a, s)

c−m(~a, s)

]
= (2π)−m/2

m∏

i=1

Ui(s)~a

where

Ui(s) := Γ(s + 2i − 1))

×
[
exp(− π

2

√
−1(s + 2i − 1)) exp(+ π

2

√
−1(s + 2i − 1))

exp(+ π
2

√
−1(s + 2i − 1)) exp(− π

2

√
−1(s + 2i − 1))

]
(71)

and ~a =
( a+

a−

)
=
[

c+0 (~a,s)

c−0 (~a,s)

]
∈ C

2. Then we can easily see that

(2π)m/2~cm(−−→even, s) =
m∏

i=1

Ui(s)(
−−→even) = Fm(−−→even, s)(−−→even),

(2π)m/2~cm(
−−→
odd, s) =

m∏

i=1

Ui(s)(
−−→
odd) = Fm(

−−→
odd, s)(

−−→
odd).

(72)
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where

Fm(−−→even, s) =

m∏

i=1

Γ(s + 2i − 1) × (−1)m(m+1)/2

×
(
exp
(
− π

2

√
−1(s − 1)

)
+ exp

( π

2

√
−1(s − 1)

))m
,

Fm(
−−→
odd, s) =

m∏

i=1

Γ(s + 2i − 1) × (−1)m(m+1)/2

×
(
exp
(
− π

2

√
−1(s − 1)

)
− exp

( π

2

√
−1(s − 1)

))m
.

(73)

We shall calculate the orders of the poles of P [~a,s](x) at s = λ with λ ≤ −1.

1. We suppose that −2n + 2 ≤ λ ≤ −1. First we assume that λ is an

even integer. Consider the orders of poles of Fm(−−→even, s) and Fm(
−−→
odd, s)

(m = 0, 1, . . . , n) at s = λ. Then all of Fm(−−→even, s) (m = 0, 1, . . . , n) is

holomorphic at s = λ and the order of Fm(
−−→
odd, s) at s = λ is

{
m if m ≤ − λ

2 ,

− λ
2 if m > − λ

2 ,

for m = 0, 1, . . . , n. Let ~a := a · −−→even + b · −−→odd with a, b ∈ C. Then we have

~cm(~a, s) = a · ~cm(−−→even, s) + b · ~cm(
−−→
odd, s).

The vectors ~cm(−−→even, s) and ~cm(
−−→
odd, s) are linearly independent for the

same reason for the case of Matn(R). Consider the maximum of the orders
of the poles of ~cm(~a, s) (m = 0, 1, . . . , n). If ~a 6= 0 and ~a 6∈ Aeven, then

it is the order of the pole of ~cm(
−−→
odd, s) with m = −λ/2,−λ/2 + 1, . . . , n,

and the value is −λ/2. Then, by Proposition 5.3, the order of the pole of
P [~a,s](x) at s = λ is −λ/2 if ~a 6= 0 and ~a 6∈ Aeven. If ~a 6= 0 and ~a ∈ Aeven,
then it is the order of the pole of ~c0(

−−→even, s) and the value is 0. Then, by
Proposition 5.3, the order of the pole of P [~a,s](x) at s = λ is 0 if ~a 6= 0 and
~a ∈ Aeven. Therefore, we have

(74) o(~a, λ) =





− λ
2 if ~a 6= 0 and ~a 6∈ Aeven,

0 if ~a 6= 0 and ~a ∈ Aeven,

−∞ if ~a = 0,
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when λ is even.
Next we assume that λ is an odd integer. Then all of Fm(

−−→
odd, s) (m =

0, 1, . . . , n) is holomorphic at s = λ and the order of Fm(−−→even, s) at s = λ is

{
m if m ≤ −λ+1

2 ,
−λ+1

2 if m > −λ+1
2 ,

for m = 0, 1, . . . , n. Consider the maximum of the orders of the poles of
~cm(~a, s) (m = 0, 1, . . . , n). If ~a 6= 0 and ~a 6∈ Aodd, then it is the order of
the pole of ~cm(−−→even, s) with m = (−λ + 1)/2, (−λ + 1)/2 + 1, . . . , n, and
the value is (−λ + 1)/2. Then, by Proposition 5.3, the order of the pole
of P [~a,s](x) at s = λ is (−λ + 1)/2 if ~a 6= 0 and ~a 6∈ Aodd. If ~a 6= 0 and

~a ∈ Aodd, then it is the order of the pole of ~c0(
−−→
odd, s) and the value is 0.

Then, by Proposition 5.3, the order of the pole of P [~a,s](x) at s = λ is 0 if
~a 6= 0 and ~a ∈ Aodd. Therefore, we have

(75) o(~a, λ) =





−λ+1
2 if ~a 6= 0 and ~a 6∈ Aodd,

0 if ~a 6= 0 and ~a ∈ Aodd,

−∞ if ~a = 0,

when λ is odd.
From (74) and (75), we obtain (66), (67) since

⌊ −λ+1
2

⌋
=

{
− λ

2 if λ is even,
−λ+1

2 if λ is odd.

2. We suppose that λ ≤ −2n + 1. Then we see easily that the the
maximum of the orders of the poles of ~cm(~a, s) (m = 0, 1, . . . , n) is taken
when m = n. In the same way as the proof of the case of −2n+2 ≤ λ ≤ −1,
we can prove (68), (69).

§7. Exact support of Laurent expansion coefficients of complex

powers

In this section we give the answer to the second problem in Problem 1.1

in Section 1, i.e., the determination of the support of the Laurent expansion

coefficients P
[~a,λ]
−q (x) for each q ∈ Z>0, ~a ∈ C

2 and λ ∈ C. For the square

matrix space, we have the following exact support theorem on the Laurent

expansion coefficients of P [~a,s](x).
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Theorem 7.1. (square matrices) Let V be the space of n × n square

matrices and let λ be a negative integer.

1. We suppose that λ is an even integer. We put m := −λ/2 ∈ Z>0.

(a) Suppose that ~a := (a+, a−) 6∈ Aeven. Then

(76) Supp
(
P

[~a,λ]
−q (x)

)
=





∅ for q = m + 1,m + 2, . . . ,

S2q−1 for q = 1, . . . ,m,
⋃

aε 6=0 V ε for q ≤ 0,

if m < b n+1
2 c and

(77) Supp
(
P

[~a,λ]
−q (x)

)
=





∅ for q = b n+1
2 c + 1, b n+1

2 c + 2, . . . ,

S2q−1 for q = 1, . . . , b n+1
2 c,

⋃
aε 6=0 V ε for q ≤ 0,

if m ≥ b n+1
2 c.

(b) Suppose that ~a := (a+, a−) ∈ Aeven and ~a 6= 0. Then

(78) Supp
(
P

[~a,λ]
−q (x)

)
=





∅ for q = m + 1,m + 2, . . . ,

S2q for q = 1, . . . ,m,
⋃

aε 6=0 V ε = V for q ≤ 0,

if m < b n
2 c and

(79)

Supp
(
P

[~a,λ]
−q (x)

)
=





∅ for q = b n
2 c + 1, b n

2 c + 2, . . . ,

S2q for q = 1, . . . , b n
2 c,⋃

aε 6=0 V ε = V for q ≤ 0,

if m ≥ b n
2 c.

2. We suppose that λ is an odd integer. We put m := (−λ + 1)/2 ∈
Z>0.

(a) Suppose that ~a := (a+, a−) 6∈ Aodd. Then

(80) Supp
(
P

[~a,λ]
−q (x)

)
=





∅ for q = m + 1,m + 2, . . . ,

S2q−1 for q = 1, . . . ,m,
⋃

aε 6=0 V ε for q ≤ 0,
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if m < b n+1
2 c and

(81) Supp
(
P

[~a,λ]
−q (x)

)
=





∅ for q = b n+1
2 c + 1, b n+1

2 c + 2, . . . ,

S2q−1 for q = 1, . . . , b n+1
2 c,

⋃
aε 6=0 V ε for q ≤ 0,

if m ≥ b n+1
2 c.

(b) Suppose that ~a := (a+, a−) ∈ Aodd and ~a 6= 0. Then

(82) Supp
(
P

[~a,λ]
−q (x)

)
=





∅ for q = m,m + 1, . . . ,

S2q for q = 1, . . . ,m − 1,
⋃

aε 6=0 V ε = V for q ≤ 0,

if m − 1 < b n
2 c and

(83)

Supp
(
P

[~a,λ]
−q (x)

)
=





∅ for q = b n
2 c + 1, b n

2 c + 2, . . . ,

S2q for q = 1, . . . , b n
2 c,⋃

aε 6=0 V ε = V for q ≤ 0,

if m − 1 ≥ b n
2 c.

Proof. First we suppose that λ is a negative even integer and ~a 6∈ Aeven.
Then the order of the pole of P [~a,s](x) at s = λ is

(84)

{
− λ

2 if −n + 1 ≤ λ ≤ −1,

b n+1
2 c if λ ≤ −n,

by Theorem 6.3. Consider the Laurent expansion of P [~a,s](x) at s = λ

P [~a,s](x) =
∑

w≥max{ λ

2
,−b n+1

2
c}

P [~a,λ]
w (x)(s − λ)−q.

From Proposition 5.4, when w < 0, we have

(85) Supp
(
P [~a,λ]

w (x)
)

=
⋃

i∈L

Si

with L := {i ∈ Z | ords=s0
(~ci(~a, s)) ≥ −w} and when w = 0, we have

(86) Supp
(
P

[~a,λ]
0 (x)

)
=
⋃

aε 6=0

V ε.
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By using (64) and (65), only the orders of poles of ~ci(~a, s) in −λ− 2p− 1 ≤
i ≤ min{−λ + 2p + 1, n} are at least q = − λ

2 − p. Here p = 0, 1, . . . ,−λ/2.
Therefore, if q > 0, then we have

Supp
(
P

[~a,λ]
−q (x)

)
=

⋃

2q−1≤i≤min{−2λ−2q+1, n}
Si = S2q−1

by applying the formula (85) since −λ− 2p− 1 = 2q − 1 and −λ+2p+1 =
−2λ− 2q +1. On the other hand, by the order formula of the pole (84), we
have

Supp
(
P

[~a,λ]
−q (x)

)
= ∅ if q > − λ

2

when −n + 1 ≤ λ ≤ −1, and

Supp
(
P

[~a,λ]
−q (x)

)
= ∅ if q > b n+1

2 c

when λ ≤ −n. Then we have (76) and (77) from the formula (86).

Next we suppose that λ is a negative even integer and ~a ∈ Aeven with
~a 6= 0. Then the order of the pole of P [~a,s](x) at s = λ is

(87)

{
− λ

2 if −n + 1 ≤ λ ≤ −1,

b n
2 c if λ ≤ −n,

by Theorem 6.3. Consider the Laurent expansion of P [~a,s](x) at s = λ

P [~a,s](x) =
∑

w≥max{ λ

2
,−b n

2
c}

P [~a,λ]
w (x)(s − λ)−q.

By computing the orders of poles in (64) and (65), only the orders of poles
of ~ci(~a, s) in −λ− 2p ≤ i ≤ min{−λ +2p, n} are at least q = − λ

2 − p. Here
p = 0, 1, . . . ,−λ/2. Therefore, if q > 0, then we have

Supp
(
P

[~a,λ]
−q (x)

)
=

⋃

2q≤i≤min{−2λ−2q, n}
Si = S2q

by applying the formula (85) since −λ− 2p = 2q and −λ + 2p = −2λ− 2q.
On the other hand, by the order formula of the pole (84), we have

Supp
(
P

[~a,λ]
−q (x)

)
= ∅ if q > − λ

2
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when −n + 1 ≤ λ ≤ −1, and

Supp
(
P

[~a,λ]
−q (x)

)
= ∅ if q > b n+1

2 c

when λ ≤ −n. Then we have (78) and (79) from the formula (86).
For the case that λ is a negative odd integer, we can prove (80) and

(81), (82) and (83) in the same way.

Next, we give the exact support theorem of the Laurent expansion

coefficients of P [~a,s](x) on the alternating matrix space.

Theorem 7.2. (alternating matrices) Let V be the space of 2n × 2n
alternating matrices and let λ be a negative integer.

1. We suppose that λ is an even integer. We put m := −λ/2 ∈ Z>0.

(a) Suppose that ~a := (a+, a−) 6∈ Aeven. Then

(88) Supp
(
P

[~a,λ]
−q (x)

)
=





∅ for q = m + 1,m + 2, . . . ,

Sq for q = 1, . . . ,m,
⋃

aε 6=0 V ε for q ≤ 0,

if m < n and

(89) Supp
(
P

[~a,λ]
−q (x)

)
=





∅ for q = n + 1, n + 2, . . . ,

Sq for q = 1, . . . , n,
⋃

aε 6=0 V ε for q ≤ 0,

if m ≥ n.

(b) Suppose that ~a := (a+, a−) ∈ Aeven and ~a 6= 0. Then

(90) Supp
(
P

[~a,λ]
−q (x)

)
=

{
∅ for q > 0,
⋃

aε 6=0 V ε = V for q ≤ 0,

2. We suppose that λ is an odd integer. We put m := −λ+1
2 ∈ Z>0.

(a) Suppose that ~a := (a+, a−) 6∈ Aodd. Then

(91) Supp
(
P

[~a,λ]
−q (x)

)
=





∅ for q = m + 1,m + 2, . . . ,

Sq for q = 1, . . . ,m,
⋃

aε 6=0 V ε for q ≤ 0,
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if m < n and

(92) Supp
(
P

[~a,λ]
−q (x)

)
=





∅ for q = n + 1, n + 2, . . . ,

Sq for q = 1, . . . , n,
⋃

aε 6=0 V ε for q ≤ 0,

if m ≥ n.

(b) Suppose that ~a := (a+, a−) ∈ Aodd and ~a 6= 0. Then

(93) Supp
(
P

[~a,λ]
−q (x)

)
=

{
∅ for q > 0,
⋃

aε 6=0 V ε = V for q ≤ 0.

Proof. First we suppose that λ is a negative even integer and ~a 6∈ Aeven.
Then the order of the pole of P [~a,s](x) at s = λ is

(94)

{
− λ

2 if −2n + 1 ≤ λ ≤ −1,

n if λ ≤ −2n,

by Theorem 6.4. (Note that b −λ+1
2 c = − λ

2 when λ is even.) Consider the

Laurent expansion of P [~a,s](x) at s = λ

P [~a,s](x) =
∑

w≥max{ λ

2
,−n}

P [~a,λ]
w (x)(s − λ)−q.

By computing the orders of poles in (64) and (65), only the orders of poles of
~ci(~a, s) in − λ

2 −p ≤ i ≤ n are at least q = − λ
2 −p. Here p = 0, 1, . . . ,−λ/2.

Therefore, if q > 0, then we have

Supp
(
P

[~a,λ]
−q (x)

)
= Sq

by applying the formula (48).
On the other hand, by the order formula of the pole (94), we have

Supp
(
P

[~a,λ]
−q (x)

)
= ∅ if q > − λ

2

when −2n + 1 ≤ λ ≤ −1, and

Supp
(
P

[~a,λ]
−q (x)

)
= ∅ if q > n

when λ ≤ −2n. Then we have (88) and (89) from the formula (49).
Next we suppose that λ is a negative even integer and ~a ∈ Aeven with

~a 6= 0. Then P [~a,s](x) is holomorphic with respect to s at s = λ and hence
we have (90).

For the case that λ is a negative odd integer, we can prove (91), (92)
and (93) in the same way.
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§8. Application 1: Explicit description of quasi-relatively invari-

ant hyperfunctions

We have seen in Proposition 3.3 that a Laurent expansion coefficient

of P [~a,s](x) at s = λ is a quasi-χλ-invariant hyperfunction. In this section,

we prove that every quasi-χλ-invariant hyperfunction can be written as a

linear combination of Laurent expansion coefficients of P [~a,s](x) at s = λ

(Theorem 8.1). Furthermore, we see that every singular quasi-χλ-invariant

hyperfunction is in fact χλ-invariant on the biggest-dimensional orbit of the

support (Theorem 8.2).

Theorem 8.1. Let λ be a fixed complex number and let QI(λ, q) be

the vector space of quasi-χλ-invariant hyperfunctions whose quasi-relative-

degrees are at most q. Then, the dimension of QI(λ, q) is 2(q + 1) and the

hyperfunctions

P
[−−→even,λ]

−o(−−→even,λ)
(x), P

[−−→even,λ]

−o(−−→even,λ)+1
(x), . . . , P

[−−→even,λ]

−o(−−→even,λ)+q
(x),

P
[
−−→
odd,λ]

−o(
−−→
odd,λ)

(x), P
[
−−→
odd,λ]

−o(
−−→
odd,λ)+1

(x), . . . , P
[
−−→
odd,λ]

−o(
−−→
odd,λ)+q

(x),
(95)

form a basis of QI(λ, q).

Proof. We first prove that the elements in (95) are linearly indepen-
dent. We suppose that

(96) f(x) :=

q∑

i=0

aiP
[−−→even,λ]

−o(−−→even,λ)+i
(x) + biP

[
−−→
odd,λ]

−o(
−−→
odd,λ)+i

(x) = 0.

We shall prove that ai = 0 and bi = 0 for all i = 0, . . . , q by induction on q.
When q = 0, we have

(97) P
[−−→even,λ]

−o(−−→even,λ)
(x) and P

[
−−→
odd,λ]

−o(
−−→
odd,λ)

(x)

are linearly independent. In fact, if λ is not an negative integer, then

o(−−→even, λ) = o(
−−→
odd, λ) = 0, and hence (97) are linearly independent since

P
[−−→even,λ]

−o(−−→even,λ)
(x) = P [−−→even,λ](x) and P

[
−−→
odd,λ]

−o(
−−→
odd,λ)

(x) = P [
−−→
odd,λ](x) from the defi-

nition. If λ is an negative integer, then the supports of the hyperfunctions
in (97) are different (Theorems 7.1 and 7.2), and hence (97) are linearly
independent. Next, we assume that our assertion is valid when q = k and
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suppose (96) for q = k + 1. Let � := δχ(A0)
−1(〈A0 · x, ∂〉 − λδχ(A0)) with

A0 being an element of G satisfying δχ(A0) 6= 0. Then we have

�
k+1f(x) = ak+1P

[−−→even,λ]

−o(−−→even,λ)
(x) + bk+1P

[
−−→
odd,λ]

−o(
−−→
odd,λ)

(x) = 0,

by (25), and hence ak+1 = bk+1 = 0. Then, from the induction hypothesis,
we have ai = bi = 0 for all i = 0, . . . , k, and, after all, we have ai = bi = 0
for all i = 0, . . . , k + 1. Thus our assertion is valid for q = k + 1, and we
have completed the proof of the linear independence of the hyperfunctions
in (95) for all non-negative integer q.

The rest of the proof is devoted to showing that any element in QI(λ, q)
is written as a linear combination of (95). We shall prove it by induction
on q.

First we prove it when q = 0. Then we have only to prove that

any element of QI(λ, 0) is written as a linear sum of P
[−−→even,λ]

−o(−−→even,λ)
(x) and

P
[
−−→
odd,λ]

−o(
−−→
odd,λ)

(x). Since
⊕

q∈Z
A(λ, q) ' C

2, the following two cases occurs.

(For the definition of A(λ, q), see Proposition 6.1.)

1. There is only one integer q1 satisfying A(λ, q1) ' C
2.

2. There are two integers q1, q2 with q1 > q2 satisfying A(λ, q1) '
A(λ, q2) ' C.

In fact, the integers q1, q2 have been determined in Theorems 6.2, 6.3
and 6.4. Furthermore, it has been proved that

1. In the first case, A(λ, q1) is generated by −−→even and
−−→
odd.

2. In the second case, either one of the following two cases occur:

A(λ, q1) is generated by −−→even and A(λ, q2) is generated by
−−→
odd, or, A(λ, q1)

is generated by
−−→
odd and A(λ, q2) is generated by −−→even.

Note that any vector ~a ∈ C
2 is written as ~a = a1 · −−→even + a2 ·

−−→
odd with

a1, a2 ∈ C.
First we consider the first case. By Proposition 4.1, any χλ-invariant

hyperfunction is written as a finite sum of some functions in {P [~a,λ]
−o(~a,λ)(x) |

~a ∈ C
2}. Since o(~a, λ) = q1 if ~a 6= 0 in this case, any χλ-invariant hyper-

function is given by

P
[~a,λ]
−q1

(x) = a1P
[−−→even,λ]
−q1

(x) + a2P
[
−−→
odd,λ]
−q1

(x)

for some ~a ∈ C
2. This is what we want to prove.
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Next we consider the second case. We suppose first that A(λ, q1) is

generated by −−→even and A(λ, q2) is generated by
−−→
odd. Since o(~a, λ) = q1 if

a1 6= 0 and o(~a, λ) = q2 if a1 = 0, a2 6= 0, any χλ-invariant hyperfunction is
given as a linear combination of

P
[~a,λ]
−q1

(x) = a1P
[−−→even,λ]
−q1

(x)

with a1 6= 0, and

P
[~a,λ]
−q2

(x) = a2P
[
−−→
odd,λ]
−q2

(x)

with a1 = 0, a2 6= 0. This is what we want to prove. For the case when

A(λ, q1) is generated by
−−→
odd and A(λ, q2) is generated by −−→even, we can

carry out the proof in the same way. After all, we have proved that any

χλ-invariant hyperfunction is written as a linear sum of P
[−−→even,λ]

−o(−−→even,λ)
(x) and

P
[
−−→
odd,λ]

−o(
−−→
odd,λ)

(x). Thus we have finished the proof for the case of q = 0.

Next we shall prove the case of q = k+1 under the assumption that we
have proved the case of q = k. We prove in the first case, i.e., A(λ, q1) ' C

2.
From the induction assumption, we see that

P
[−−→even,λ]
−q1

(x), P
[−−→even,λ]
−q1+1 (x), . . . , P

[−−→even,λ]
−q1+k (x),

P
[
−−→
odd,λ]
−q1

(x), P
[
−−→
odd,λ]
−q1+1 (x), . . . , P

[
−−→
odd,λ]
−q1+k (x),

(98)

generate the vector space QI(λ, k). Let f(x) be a quasi-χλ-invariant hy-
perfunctions of quasi-relative-degree k + 1. Then, from Definition 2.1,

g(x) := �f(x)

is a quasi-χλ-invariant hyperfunctions of quasi-relative-degree k and hence
it is given as a linear combination of the hyperfunctions in (98):

g(x) =
k∑

i=0

ai+1P
[−−→even,λ]
−q1+i (x) + bi+1P

[
−−→
odd,λ]
−q1+i (x)

with ai+1, bi+1 ∈ C (i = 0, . . . , k). Then, by putting

g̃(x) :=
k∑

i=0

ai+1P
[−−→even,λ]
−q1+i+1(x) + bi+1P

[
−−→
odd,λ]
−q1+i+1(x),
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we have

�(f(x) − g̃(x)) = 0

from (25). Then, since f(x) − g̃(x) is quasi-χλ-invariant and hence G
1-

invariant by Proposition 2.1, we have f(x) − g̃(x) ∈ QI(λ, 0) by Proposi-
tion 2.1. Therefore, from the proof of the case when q = 0, f(x) − g̃(x) is
written as

f(x) − g̃(x) = a0P
[−−→even,λ]
−q1

(x) + b0P
[
−−→
odd,λ]
−q1

(x),

with a0, b0 ∈ C. Then we have

f(x) = a0P
[−−→even,λ]
−q1

(x) + b0P
[
−−→
odd,λ]
−q1

(x) + g̃(x)

and hence f(x) is written as a linear combination of

P
[−−→even,λ]
−q1

(x), P
[−−→even,λ]
−q1+1 (x), . . . , P

[−−→even,λ]
−q1+k+1(x),

P
[
−−→
odd,λ]
−q1

(x), P
[
−−→
odd,λ]
−q1+1 (x), . . . , P

[
−−→
odd,λ]
−q1+k+1(x).

This is the proof of the induction step for the first case. For the second
case, i.e., A(λ, q1) ' A(λ, q2) ' C, we can prove the induction step of the
proof in the same way.

After all, we can prove that if any element of QI(λ, k) is written as a
linear combination of

P
[−−→even,λ]

−o(−−→even,λ)
(x), P

[−−→even,λ]

−o(−−→even,λ)+1
(x), . . . , P

[−−→even,λ]

−o(−−→even,λ)+k
(x),

P
[
−−→
odd,λ]

−o(
−−→
odd,λ)

(x), P
[
−−→
odd,λ]

−o(
−−→
odd,λ)+1

(x), . . . , P
[
−−→
odd,λ]

−o(
−−→
odd,λ)+k

(x),

then any element of QI(λ, k + 1) is written as a linear combination of

P
[−−→even,λ]

−o(−−→even,λ)
(x), P

[−−→even,λ]

−o(−−→even,λ)+1
(x), . . . , P

[−−→even,λ]

−o(−−→even,λ)+k+1
(x),

P
[
−−→
odd,λ]

−o(
−−→
odd,λ)

(x), P
[
−−→
odd,λ]

−o(
−−→
odd,λ)+1

(x), . . . , P
[
−−→
odd,λ]

−o(
−−→
odd,λ)+k+1

(x).

Thus the proof is completed by induction on q.

As an application of Theorem 8.1, we have the following theorem. This

theorem asserts that any singular quasi -χλ-invariant hyperfunction is al-

most χλ-invariant.
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Theorem 8.2. Let f(x) be a quasi-χλ-invariant hyperfunction and we

suppose that f(s) is singular, i.e., the support of f(x) is contained in the

singular set S := {x ∈ V | det(x) = 0}. Then there exists an integer i0 > 0
satisfying Supp(f(x)) = Si0. Furthermore, for any point x0 ∈ Si0 , there

exists a neighborhood Ux0
of x0 such that f(x) is χλ-invariant on Ux0

.

Proof. In Theorem 8.1, we have seen that any quasi-χλ-invariant hy-
perfunction f(x) is written as a linear combination of Laurent expansion

coefficients at s = λ of P [−−→even,s](x) and P [
−−→
odd,s](x). By Theorem 8.1, if f(x)

is singular, it is written as

(99) f(x) =
∑

p<0

apP
[−−→even,λ]
p (x) +

∑

q<0

bqP
[
−−→
odd,λ]

q (x)

with negative integers p, q and complex coefficients ap, bq ∈ C. By Theo-

rem 7.1 or Theorem 7.2, the support of each P
[−−→even,λ]
p (x) or P

[
−−→
odd,λ]

q (x) is
one of the closures Si of the singular orbits Si (i = 1, . . . , n). Let Si0 be
the biggest-dimensional orbit appearing there and let A0 ∈ G be an element
satisfying δχ(A0) 6= 0. Then we have

g(x) = (δχ(A0))
−1(〈A0 · x, ∂〉 − λδχ(A0))f(x)

=
∑

p<0

apP
[−−→even,λ]
p−1 (x) +

∑

q<0

bqP
[
−−→
odd,λ]

q−1 (x)(100)

by (25). The supports of P
[−−→even,λ]
p−1 (x) and P

[
−−→
odd,λ]

q−1 (x) appearing in (100)

are contained in Si0+1 since the supports of those appearing in (99) are
contained in Si0 . Therefore we have Supp(g(x)) ⊂ S i0+1. Then, for any
point x0 ∈ Si0 = Si0 − Si0+1, there exists a neighborhood Ux0

satisfying
Ux0

∩Si0+1 = ∅ and g(x) = 0 on Ux0
. This means that f(x) is χλ-invariant

on Ux0
.

If f(x) is a quasi-χλ-invariant hyperfunction with support on the open

orbits, then it contains the terms of the form

a+|P (x)|λ+(log |P (x)|)k + a−|P (x)|λ−(log |P (x)|)k

with k ∈ Z≥0. Then f(x) is quasi-χλ-invariant on V − S, but not χλ-

invariant on V − S though the open orbit is the largest-dimensional orbit

in the support. On the other hand, Theorem 8.2 shows that f(x) is in fact

χλ-invariant on the largest-dimensional orbit in the support if the support

of f(x) is contained in S. Such phenomenon can be observed in some other

prehomogeneous vector spaces.
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§9. Application 2: Fourier transforms of singular G
1-invariant

tempered distributions

The second application is the computation of the Fourier transform of

singular G
1-invariant tempered distributions. We have seen in Proposi-

tion 4.2 that any singular G
1-invariant tempered distribution is written as

a linear combination of Laurent expansion coefficients of P [~a,s](x) of nega-

tive degree at s = −1,−2, . . . . Then we have only to compute the Fourier

transform of the Laurent expansion coefficients of negative degree for the

computation of the Fourier transforms of singular G
1-invariant tempered

distributions. By using the result in Sections 6 and 7, we can see what sin-

gular Laurent expansion coefficients come out from the Laurent expansions

of P [~a,s](x). In this section, we give the formulas of the Fourier trans-

forms of each singular Laurent expansion coefficients (Theorems 9.3, 9.4 for

the square matrix spaces and Theorems 9.7, 9.8 for the alternating matrix

spaces). In Corollarys 9.5, 9.6 and 9.9, we give some results on bi-singular

tempered distributions.

We begin with the computation of the Fourier transform of the rela-

tively invariant tempered distribution P [~a,s](x) with a meromorphic param-

eter s ∈ C. Though the result of the calculation of the Fourier transform of

P [~a,s](x) is well known, we give here the same result by using the micro-local

method.

In this paper, the Fourier transform of a tempered distribution f(x) is

denoted by

f(x)∨ = f∨(y) =

∫
f(x) exp(−

√
−1〈x, y〉) dx.

All the hyperfunctions in this section are tempered distributions and the

Fourier transforms are treated in the framework of the Schwartz’s theory

of Fourier transforms of tempered distributions.

Proposition 9.1. The Fourier transforms of |P (x)|seven and |P (x)|s
odd

are given by the following formulas.

1. (The case of square matrices)

https://doi.org/10.1017/S0027763000008448 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000008448


58 M. MURO

(a) When n = 2k, we have

∫ {|P (x)|seven
|P (x)|s

odd

}
exp(−

√
−1 〈x, y〉) dx

= (2π)n2/2−n/2 × Γ(s + 1)Γ(s + 2) · · ·Γ(s + n)

× (
√
−1 )k(exp(−π

√
−1 s) − exp(π

√
−1 s))k

{
|P (y)|−s−n

even

|P (y)|−s−n
odd

}
(101)

(b) When n = 2k + 1, we have

∫ {|P (x)|seven
|P (x)|s

odd

}
exp(−

√
−1 〈x, y〉) dx

= (2π)n2/2−n/2 × Γ(s + 1)Γ(s + 2) · · ·Γ(s + n)

× (−
√
−1 )k+1(exp(−π

√
−1 s) − exp(π

√
−1 s))k

×
{

(exp(−π
√
−1 s/2) − exp(π

√
−1 s/2))|P (y)|−s−n

even

(exp(−π
√
−1 s/2) + exp(π

√
−1 s/2))|P (y)|−s−n

odd

}
(102)

2. (The case of alternating matrices)

∫ {|P (x)|seven
|P (x)|s

odd

}
exp(−

√
−1 〈x, y〉)dx

= (2π)n(n−1) · (−1)n(n+1)/2 · Γ(s + 1)Γ(s + 3) · · · Γ(s + 2n − 1)

× (
√
−1 )n ×

{
(exp(−π

√
−1 s/2) − exp(π

√
−1 s/2))n|P (y)|−s−2n+1

even

(exp(−π
√
−1 s/2) + exp(π

√
−1 s/2))n|P (y)|−s−2n+1

odd

}

(103)

Proof. We give an outline of the computation of the Fourier transforms
by using micro-local calculus. The following lemma is a direct consequence
of the general formula of the Fourier transform of a homogeneous regular
holonomic tempered distribution by the micro-local method. This means
that the principal symbol of the homogeneous regular holonomic tempered
distribution on the conormal bundle is written by its Fourier transform.
The proof was given by Kashiwara-Miwa [7, Lemma 2.2 in p. 123], and we
do not give the proof here.
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Lemma 9.2. Note that, by (41), the principal symbol of P [~a,s](x) on

the conormal bundle of the origin Λn = {0} × V
∗ ⊂ T ∗

V is given by

(104) σΛε
n
(P [~a,s](x)) = cε

n(~a, s)Ωε
i(s)/

√
|dx|.

Then we have

1. (the case of square matrices)

(105)

∫
P [~a,s](x) exp(−

√
−1 〈x, y〉) dx = (2π)n2/2

∑

ε=±
cε
n(~a, s)|P (y)|−s−n

ε .

2. (the case of alternating matrices)

∫
P [~a,s](x) exp(−

√
−1 〈x, y〉) dx

= (2π)n(2n−1)/2
∑

ε=±
cε
n(~a, s)|P (y)|−s−2n+1

ε .
(106)

We have already calculated ~cn(~a, s) =
[

c+n (~a,s)

c−n (~a,s)

]
by (61) in the proof of

Theorem 6.3 in the case of square matrix space and by (70) in the proof of
Theorem 6.4 in the case of alternating matrix space.

We consider the case of square matrix space. By (63), we have

∫
P [−−→even,s](x) exp(−

√
−1 〈x, y〉) dx =

∫
|P (x)|seven exp(−

√
−1 〈x, y〉) dx

= (2π)n2/2(c+
n (−−→even, s)|P (y)|−s−n

+ + c−n (−−→even, s)|P (y)|−s−n
− )

= (2π)n2/2−n/2Fn(−−→even, s)|P (y)|−s−n
even

where Fn(−−→even, s) is defined in (64). Similarly, we also have

∫
|P (x)|sodd exp(−

√
−1 〈x, y〉) dx = (2π)n2/2−n/2Fn(

−−→
odd, s)|P (y)|−s−n

odd

where Fn(
−−→
odd, s) is defined in (65). From the explicit computation of

Fn(−−→even, s) and Fn(
−−→
odd, s) in the proof of Theorem 6.3, we have the formu-

las of Fourier transform (101) and (102).
For the case of alternating matrix space, we have the formula of Fourier

transform (103) by using (70), (72) in the proof of Theorem 6.4 and the

explicit forms of Fn(−−→even, s) and Fn(
−−→
odd, s) in (73).

https://doi.org/10.1017/S0027763000008448 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000008448


60 M. MURO

Now we go to the formulas of the Fourier transforms of the singular

Laurent expansion coefficients. First we consider the square matrix space.

Let V be the space of n × n real square matrices. We set
{

Aodd(s)
Aeven(s)

}
:= (2π)n2/2−n/2 × Γ(s + 1)Γ(s + 2) · · · Γ(s + n)

× (
√
−1 )n/2(exp(−π

√
−1 s) − exp(π

√
−1 s))n/2

(107)

if n is an even integer, and

{
Aodd(s)
Aeven(s)

}
:= (2π)n2/2−n/2 × Γ(s + 1)Γ(s + 2) · · · Γ(s + n)

× (−
√
−1 )(n−1)/2+1(exp(−π

√
−1 s) − exp(π

√
−1 s))(n−1)/2

×
{

(exp(−π
√
−1 s/2) + exp(π

√
−1 s/2))

(exp(−π
√
−1 s/2) − exp(π

√
−1 s/2))

}

(108)

if n is an odd integer. They are the coefficients of the formulas of the Fourier

transforms in (101) and (102). We denote by Aodd(λ)l (resp. Aeven(λ)l) the

coefficients of the Laurent series expansions Aodd(s) =
∑

l∈Z
Aodd(λ)l(s−λ)l

(resp. Aeven(s) =
∑

l∈Z
Aeven(λ)l(s − λ)l). When −n + 1 ≤ λ ≤ −1, it is

easily seen that Aodd(s) (resp. Aeven(s)) has a pole of order −lodd (resp.

−leven) at s = λ where

lodd :=

{
b n

2 c + λ if λ is an even integer,

b n+1
2 c + λ if λ is an odd integer.

(
resp. leven :=

{
b n+1

2 c + λ if λ is an even integer,

b n
2 c + λ if λ is an odd integer.

)(109)

If λ ≤ −n, then Aodd(s) (resp. Aeven(s)) has a pole of order −lodd (resp.

−leven) at s = λ where

lodd :=





−n/2 when n is even,

−(n + 1)/2 when n is odd and λ is even,

−(n − 1)/2 when n is odd and λ is odd,

(
resp. leven :=





−n/2 when n is even,

−(n + 1)/2 when n is odd and λ is odd,

−(n − 1)/2 when n is odd and λ is even.

)(110)
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Theorem 9.3. (square matrices 1) Let V be the space of n × n real

square matrices and let λ be an integer in −n+1 ≤ λ ≤ −1. The functions

Aeven(s) and Aodd(s) are defined by (107) and (108). Then we have:

1. Suppose that λ is even. We set m := −λ/2. Then we have:

(a) P [
−−→
odd,s](x) has a pole of order m at s = λ and P [−−→even,s](x) has a

pole of order m at s = λ. Any singular quasi-χλ-invariant hyperfunction is

given as a linear combination of

P
[
−−→
odd,λ]
−q (x) (q = 1, 2, . . . ,m),

P
[−−→even,λ]
−q (x) (q = 1, 2, . . . ,m).

(111)

(b) We have

∫
P

[
−−→
odd,λ]
−q (x) exp(−

√
−1 〈x, y〉)dx

=
∑

l+r=−q,
l≥bn/2c−2m,

r≥m−bn/2c

(−1)rAodd(λ)lP
[
−−→
odd,−λ−n]

r (y)(112)

for q = 1, 2, . . . ,m and

∫
P

[−−→even,λ]
−q (x) exp(−

√
−1 〈x, y〉) dx

=
∑

l+r=−q,

l≥b n+1

2
c−2m,

r≥m−b n+1

2
c

(−1)rAeven(λ)lP
[−−→even,−λ−n]
r (y)(113)

for q = 1, 2, . . . ,m.

2. Suppose that λ is odd. We set m := −(λ − 1)/2. Then we have

(a) P [
−−→
odd,s](x) has a pole of order m − 1 at s = λ and P [−−→even,s](x) has

a pole of order m at s = λ. Any singular quasi-χλ-invariant hyperfunction

is given as a linear combination of

P
[
−−→
odd,λ]
−q (x) (q = 1, 2, . . . ,m − 1),

P
[−−→even,λ]
−q (x) (q = 1, 2, . . . ,m).

(114)
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(b) We have

∫
P

[
−−→
odd,λ]
−q (x) exp(−

√
−1 〈x, y〉)dx

=
∑

l+r=−q,

l≥b n+1

2
c−2m+1,

r≥m−b n+1

2
c

(−1)rAodd(λ)lP
[
−−→
odd,−λ−n]

r (y)(115)

for q = 1, 2, . . . ,m − 1 and

∫
P

[−−→even,λ]
−q (x) exp(−

√
−1 〈x, y〉) dx

=
∑

l+r=−q,

l≥b n+2

2
c−2m,

r≥m−b n+2

2
c

(−1)rAeven(λ)lP
[−−→even,−λ−n]
r (y)(116)

for q = 1, 2, . . . ,m.

Proof. The statements in 1-(a) and 2-(a) are proved as direct conse-
quences of Theorem 6.3. Namely, suppose that λ is in −n+1 ≤ λ ≤ −1. By

(54), if λ is an even integer, then P [
−−→
odd,s](x) and P [−−→even,s](x) have poles of or-

der m = −λ/2 at s = λ. By (56), if λ is an odd integer, then P [
−−→
odd,s](x) and

P [−−→even,s](x) have poles of order m−1 = −(λ − 1)/2−1 and m = −(λ − 1)/2
at s = λ, respectively. Therefore, by Proposition 4.2, we have 1-(a) and
2-(a).

Next we go to the proof of 1-(b) and 2-(b). Remember the formula of

the Fourier transform of P [
−−→
odd,s](x) (resp. P [−−→even,s](x)) given by

∫
P [

−−→
odd,s](x) exp(−

√
−1 〈x, y〉) dx = Aodd(s)P [

−−→
odd,−s−n](y)

(
resp.

∫
P [−−→even,s](x) exp(−

√
−1 〈x, y〉) dx = Aeven(s)P [−−→even,−s−n](y)

)

(117)

in Proposition 9.1. We expand the both hand sides of (117) into the Laurent
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series with respect to s ∈ C at s = λ.

∑

q∈Z

(s − λ)−q

∫
P

[
−−→
odd,λ]
−q (x) exp(−

√
−1 〈x, y〉) dx

=
∑

q∈Z

(s − λ)−q
∑

l+r=−q
l,r∈Z

(−1)rAodd(λ)lP
[
−−→
odd,−λ−n]

r (y)

(
resp.

∑

q∈Z

(s − λ)−q

∫
P

[−−→even,λ]
−q (x) exp(−

√
−1 〈x, y〉) dx

=
∑

q∈Z

(s − λ)−q
∑

l+r=−q
l,r∈Z

(−1)rAeven(λ)lP
[−−→even,−λ−n]
r (y)

)

(118)

By comparing the Laurent expansion coefficients on the both hand sides of
(118), we have

∫
P

[
−−→
odd,λ]
−q (x) exp(−

√
−1 〈x, y〉) dx

=
∑

l+r=−q
l,r∈Z

(−1)rAodd(λ)lP
[
−−→
odd,−λ−n]

r (y)

(
resp.

∫
P

[−−→even,λ]
−q (x) exp(−

√
−1 〈x, y〉) dx

=
∑

l+r=−q
l,r∈Z

(−1)rAeven(λ)lP
[−−→even,−λ−n]
r (y)

)

(119)

The sum
∑

l+r=−q
l,r∈Z

in the right hand side is a finite sum since Aodd(λ)l and

P
[
−−→
odd,−λ−n]

r (y) (resp. Aeven(λ)l and P
[−−→even,−λ−n]
r (y)) are zero if l and r are

sufficiently small. Indeed, the orders of poles of Aodd(s) and P [
−−→
odd,−s−n](y)

(resp. Aeven(s) and P [−−→even,−s−n](y)) can be computed by the formula (107)
and (108) and by the results (111) and (114), respectively. Namely, when
λ is an even integer, Aodd(s) (resp. Aeven(s)) has a pole of order

−lodd = −b n
2 c − λ = −b n

2 c − 2m

(resp. − leven = −b n+1
2 c − λ = −b n+1

2 c − 2m)

at s = λ. Here, lodd and leven are the numbers defined by (109). On the

other hand, we see that P [
−−→
odd,−s−n](y) (resp. P [−−→even,−s−n](y)) has a pole of
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order m−
⌊

n
2

⌋
(resp. m−

⌊
n+1

2

⌋
) at s = λ from the result 1-(a) and 2-(a).

Then, Aodd(λ)l and P
[
−−→
odd,−λ−n]

r (y) (resp. Aeven(λ)l and P
[−−→even,−λ−n]
r (y)) are

zero if and only if

l <
⌊

n
2

⌋
− 2m, r < m −

⌊
n
2

⌋

(resp. l <
⌊

n+1
2

⌋
− 2m, r < m −

⌊
n+1

2

⌋
),

(120)

and hence we have (112) (resp. (115)). Similarly, when λ is an odd integer,

Aodd(λ)l and P
[
−−→
odd,−λ−n]

r (y) (resp. Aeven(λ)l and P
[−−→even,−λ−n]
r (y)) are zero

if and only if

l <
⌊

n+1
2

⌋
− 2m + 1, r < m −

⌊
n+1

2

⌋

(resp. l <
⌊

n+2
2

⌋
− 2m, r < m −

⌊
n+2

2

⌋
),

(121)

and hence we have (113) (resp. (116)).

Theorem 9.4. (square matrices 2) Let V be the space of n × n real

square matrices and let λ be an integer in λ ≤ −n. The functions Aeven(s)
and Aodd(s) are defined by (107) and (108). Then we have:

1. P [
−−→
odd,s](x) (resp. P [−−→even,s](x)) has a pole of order o(

−−→
odd, λ) (resp.

o(−−→even, λ)) at s = λ. Any singular quasi-χλ-invariant hyperfunction is given

as a linear combination of

P
[
−−→
odd,λ]
−q (x) (q = 1, 2, . . . , o(

−−→
odd, λ))

P
[−−→even,λ]
−q (x) (q = 1, 2, . . . , o(−−→even, λ))

(122)

Here,

o(
−−→
odd, λ) =





n/2 when n is even,

(n + 1)/2 when n is odd and λ is even,

(n − 1)/2 when n is odd and λ is odd.

o(−−→even, λ) =





n/2 when n is even,

(n + 1)/2 when n is odd and λ is odd,

(n − 1)/2 when n is odd and λ is even.

(123)
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2. We have

∫
P

[
−−→
odd,λ]
−q (x) exp(−

√
−1 〈x, y〉) dx

=
∑

l+r=−q,
l≥lodd, r≥0

(−1)rAodd(λ)lP
[
−−→
odd,−λ−n]

r (y)
(124)

for q = 1, 2, . . . , o(
−−→
odd, λ) and

∫
P

[−−→even,λ]
−q (x) exp(−

√
−1 〈x, y〉) dx

=
∑

l+r=−q,
l≥leven, r≥0

(−1)rAeven(λ)lP
[−−→even,−λ−n]
r (y)(125)

for q = 1, 2, . . . , o(−−→even, λ). Here lodd and leven have been defined by (110).

Proof. Since we assume that λ ≤ −n, we have (122) by Proposition 4.2

and by the orders of poles of P [
−−→
odd,s](x) and P [−−→even,s](x) at s = λ. The order

of poles have been computed in (58) and (60), and we have (123). Then we
have the result of the first item from Proposition 4.2.

Next we prove the formulas in the second item. The formulas of the

Fourier transforms of the Laurent expansion coefficients P
[
−−→
odd,λ]
−q (x) and

P
[−−→even,λ]
−q (x) are given by (119). Since P [

−−→
odd,−s−n](y) and P [−−→even,−s−n](y) are

holomorphic at s = λ if λ ≤ −n, P
[
−−→
odd,−λ−n]

r (y) and P
[−−→even,−λ−n]
r (y) are

zero if and only if r < 0. The orders of poles of Aodd(s) (resp. Aeven(s))
at s = λ can be computed by the formulas in (107) (resp. (108)). Then we
see that Aodd(λ)l (resp. Aeven(λ)l) is zero if l < lodd (resp. l < leven). Here
lodd (resp. leven) is the number defined by (110). Then we have (124) and
(125).

We call a singular tempered distribution f(x) bi-singular if the Fourier

transform f∨(y) is also a singular tempered distribution. The author thinks

that it is an interesting problem to ask if there exists a bi-singular G
1-

invariant tempered distribution on prehomogeneous vector spaces. The

following corollary gives a necessary and sufficient condition for a Laurent

expansion coefficients of P [~a,s](x) to be bi-singular.
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Corollary 9.5. (square matrices 3) Let V be the space of n × n real

square matrices. Let i be a positive integer. Then, for q = 1, 2, . . . , b i+1
2 c,

the Laurent expansion coefficient P
[−−→even,−i]
−q (x) is bi-singular if and only if

(126)

{⌊
n−1

2

⌋
≥ i − q if i is odd,⌊

n−2
2

⌋
≥ i − q if i is even.

We have

(127) Supp
(
P

[−−→even,−i]
−q (x)

)
=

{
S2q−1 if i is odd,

S2q if i is even,

and

(128) Supp
(
P

[−−→even,−i]
−q (x)∨

)
=

{
Sn−2i+2q−1 if i is odd,

Sn−2i+2q if i is even.

For q = 1, 2, . . . , b i
2 c, the Laurent expansion coefficient P

[
−−→
odd,−i]
−q (x) is bi-

singular if and only if

(129)

{⌊
n−2

2

⌋
≥ i − q if i is odd,⌊

n−1
2

⌋
≥ i − q if i is even.

We have

(130) Supp
(
P

[
−−→
odd,−i]
−q (x)

)
=

{
S2q−1 if i is even,

S2q if i is odd,

and

(131) Supp
(
P

[−−→even,−i]
−q (x)∨

)
=

{
Sn−2i+2q−1 if i is even,

Sn−2i+2q if i is odd.

Proof. Suppose that i is an even integer in 1 ≤ i ≤ n − 1. Then
P [−−→even,s](x) has a pole of order m = i/2 = b i+1

2 c at s = −i and the

Fourier transform of the Laurent expansion coefficient P
[−−→even,s]
−q (x) (q =

1, 2, . . . , b i+1
2 c) is given by (113). From this formula, the support of the

Fourier transform of P
[−−→even,s]
−q (x) is contained in the singular set S if and

only if the index r in the right hand side of (113) is always negative. Since
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l ≥ b n+1
2 c − 2m = b n+1

2 c − i, the minimum of l is b n+1
2 c − i. Then the

maximum of r = −l− q is −b n+1
2 c+ i− q. Then −b n+1

2 c+ i− q ≤ −1 is a
necessary and sufficient condition in order that the support of the Fourier

transform of P
[−−→even,s]
−q (x) is contained in S. This is equivalent to

(132)

⌊
n + 1

2

⌋
− 1 =

⌊
n − 1

2

⌋
≥ i − q.

Next we suppose that i is an odd integer in 1 ≤ i ≤ n − 1. Then
P [−−→even,s](x) has a pole of order m = (i + 1)/2 = b i+1

2 c at s = −i. The

Fourier transform of the Laurent expansion coefficient P
[−−→even,s]
−q (x) (q =

1, 2, . . . , b i+1
2 c) is given by (116). From this formula, the support of the

Fourier transform of P
[−−→even,s]
−q (x) is contained in the singular set S if and

only if the index r in the right hand side of (116) is always negative. Since
l ≥ b n+2

2 c−2m = b n+2
2 c−i−1, the minimum of l is b n+2

2 c−i−1. Then the
maximum of r = −l−q is −b n+2

2 c+i+1−q. Then −b n+2
2 c+i+1−q ≤ −1 is

a necessary and sufficient condition in order that the support of the Fourier

transform of P
[−−→even,s]
−q (x) is contained in S. This is equivalent to

(133)

⌊
n + 2

2

⌋
− 2 =

⌊
n − 2

2

⌋
≥ i − q.

By (132) and (133), we see that (126) is a necessary and sufficient

condition in order that the Laurent expansion coefficient P
[−−→even,−i]
−q (x) is bi-

singular for q = 1, 2, . . . , b i+1
2 c and i = 1, . . . , n− 1. In the similar way, we

can prove that (129) is a necessary and sufficient condition in order that the

Laurent expansion coefficient P
[
−−→
odd,−i]
−q (x) is bi-singular for q = 1, 2, . . . , b i

2 c
and i = 1, . . . , n − 1.

Next we shall prove the support formulas. The formulas (127) and
(130) are the consequences of (76), (78), (80) and (82).

We prove the formula (128). Suppose that i is an even integer in 1 ≤
i ≤ n − 1. Then we have

Supp
(
P

[−−→even,−i]
−q (x)∨

)
= Supp

(
P

[−−→even,i−n]

−b n+1

2
c+i−q

(y)
)

since −b n+1
2 c + i − q is the maximum number appearing in the index r of

the sum in the right hand side of (113). Indeed, P
[−−→even,i−n]

−b n+1

2
c+i−q

(y) has the
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largest support among the Laurent expansion coefficients in the right had
side of (113). If n is even, then i − n is even, and we have

Supp
(
P

[−−→even,i−n]

−b n+1

2
c+i−q

(y)
)

= S−2(−b n+1

2
c+i−q) = S−2(− n

2
+i−q) = Sn−2i+2q,

by (78). If n is odd, then i − n is odd, we have

Supp
(
P

[−−→even,i−n]

−b n+1

2
c+i−q

(y)
)

= S−2(−b n+1

2
c+i−q)−1 = S−2(− n+1

2
+i−q)−1

= Sn−2i+2q,

by (76). Then we have

Supp
(
P

[−−→even,−i]
−q (x)∨

)
= Sn−2i+2q,

when −i is an even integer. When −i is an odd integer, we can prove in
the same way that

Supp
(
P

[−−→even,−i]
−q (x)∨

)
= Supp

(
P

[−−→even,i−n]

−b n+2

2
c+i−q+1

(y)
)

= Sn−2i+2q−1.

Thus we obtain the formula (128).
The formula (131) can be proved in the similar way as the proof of the

formula (128).

The following corollary is the special case of Corollary 9.5.

Corollary 9.6. (square matrices 4) Let V be the space of n × n real

square matrices and let i be an integer in 1 ≤ i ≤ n− 1. Suppose that f(x)
is a χ−i-invariant tempered distribution on V .

1. If f(x) is even in the sense of Definition 2.2, then f(x) is given

as a constant multiple of P
[−−→even,−i]

−b i+1

2
c (x) and its Fourier transform f∨(y) is a

constant multiple of P
[−−→even,i−n]

−b n−i+1

2
c(y). Then

Supp(f(x)) = Si and Supp(f∨(y)) = Sn−i.

2. If f(x) is odd in the sense of Definition 2.2, then f(x) is given

as a constant multiple of P
[
−−→
odd,−i]

−b i

2
c (x) and its Fourier transform f∨(y) is a

constant multiple of P
[
−−→
odd,i−n]

−b n−i

2
c (y). Then

Supp(f(x)) = Si−1 and Supp(f∨(y)) = Sn−i−1.
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Proof. We show only the first item. The second item can be proved in
the same way.

We suppose that −i is an even integer in −n + 1 ≤ −i ≤ −1. We
have stated in Proposition 4.1 that any χ−i-invariant hyperfunction can

be written as a finite sum of Laurent expansion coefficients P
[~a,−i]
−o(~a,−i)(x)

(~a ∈ C
2). Every vector ~a ∈ C

2 can be written as

~a = a · −−→even + b · −−→odd,

with some a, b ∈ C. If ~a 6= 0. Then we have

o(~a,−i) = o(−−→even,−i) = o(
−−→
odd,−i) =

i

2

by (54) in Theorem 6.3. Then we have

P
[~a,−i]
−o(~a,−i)(x) = a · P [−−→even,−i]

− i

2

(x) + b · P [
−−→
odd,−i]

− i

2

(x),

and hence every χ−i-invariant hyperfunction can be written as a linear com-

bination of P
[−−→even,−i]

− i

2

(x) and P
[
−−→
odd,−i]

− i

2

(x). In particular, if it is an even func-

tion, then it can be written as a constant multiplication of P
[−−→even,−i]

− i

2

(x) =

P
[−−→even,−i]

−b i+1

2
c (x). According to the formula of the Fourier transform (113), the

Fourier transform of P
[−−→even,−i]

− i

2

(x) = P
[−−→even,−i]

−b i+1

2
c (x) is given as a constant mul-

tiplication of P
[−−→even,i−n]

− i

2
−b n+1

2
c(y) = P

[−−→even,i−n]

−b n−i+1

2
c(y).

Next we suppose that −i is an odd integer in −n+1 ≤ −i ≤ −1. Then,
by (56) in Theorem 6.3, we have

o(~a,−i) =

{
i+1
2 if ~a 6∈ Aodd,

i−1
2 if ~a ∈ Aodd.

For a vector ~a = a · −−→even + b · −−→odd, we have

P
[~a,−i]
−o(~a,−i)(x) = a · P [−−→even,−i]

− i+1

2

(x)

if a 6= 0, and

P
[~a,−i]
−o(~a,−i)(x) = b · P [

−−→
odd,−i]

− i−1

2

(x),
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if a = 0. Then every χ−i-invariant hyperfunction can be written as a

linear combination of P
[−−→even,−i]

− i+1

2

(x) and P
[
−−→
odd,−i]

− i−1

2

(x). In particular, if it is

an even function, then it can be written as a constant multiplication of

P
[−−→even,−i]

− i+1

2

(x) = P
[−−→even,−i]

−b i+1

2
c (x). According to the formula of the Fourier trans-

form (116), the Fourier transform of P
[−−→even,−i]

− i+1

2

(x) = P
[−−→even,−i]

−b i+1

2
c (x) is given as

a constant multiplication of P
[−−→even,i−n]

− i+1

2
−b n+2

2
c(y) = P

[−−→even,i−n]

−b n−i+1

2
c(y).

After all, we see that, for any integer −i in −n + 1 ≤ −i ≤ −1, every
even χ−i-invariant hyperfunction f(x) can be written as a constant mul-

tiplication of P
[−−→even,−i]

−b i+1

2
c (x) and its Fourier transform f∨(y) is given by a

constant multiplication of P
[−−→even,i−n]

−b n−i+1

2
c(y). We see that Supp(f(x)) = S i

and Supp(f∨(y)) = Sn−i by Theorem 7.1. Thus we complete the proof of
the first item.

The second item can be proved by utilizing (54), (56) in Theorem 6.3
and (112), (115).

Remark 9.1. We can prove the following fact: if f(x) is χ−i-invariant
and Supp(f(x)) = Si, then f(x) is a tempered distribution given as a
G

1-invariant measure on Si, and hence f(x) is an even tempered distri-

bution. On the other hand, by taking f(x) = P
[
−−→
odd,−i]

−b i

2
c (x), we have f(x)

is χ−i-invariant and Supp(f(x)) = S i−1. However, even if f(x) is χ−i-
invariant and Supp(f(x)) = Si−1, it is not derived that f(x) is an odd
tempered distribution. Indeed, since there is an even χ−i-invariant tem-
pered distribution g(x) supported in S i, f(x) + g(x) is χ−i-invariant and
Supp(f(x) + g(x)) = Si−1. But f(x) + g(x) may not be an odd tempered
distribution.

Next we consider the alternating matrix space. Let V be the space of

2n × 2n alternating matrices. We define

{
Aeven(s)
Aodd(s)

}
:= (2π)n(n−1) × (−1)n(n+1)/2

× Γ(s + 1)Γ(s + 3) · · ·Γ(s + 2n − 1) × (
√
−1 )n

×
{

(exp(−π
√
−1 s/2) − exp(π

√
−1 s/2))n

(exp(−π
√
−1 s/2) + exp(π

√
−1 s/2))n

}
.

(134)
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We denote by Aodd(λ)l (resp. Aeven(λ)l) the coefficients of the Laurent

series expansions Aodd(s) =
∑

l∈Z
Aodd(λ)l(s − λ)l (resp. Aeven(s) =∑

l∈Z
Aeven(λ)l(s − λ)l).

We suppose that λ is a negative integer. When −2n + 2 ≤ λ ≤ −1, it

is easily seen that Aodd(s) (resp. Aeven(s)) has a pole of order −lodd (resp.

−leven) at s = λ where

lodd :=

{
b λ

2 c if λ is an even integer,

n + b λ
2 c if λ is an odd integer.

(
resp. leven :=

{
n + b λ

2 c if λ is an even integer,

b λ
2 c if λ is an odd integer.

)(135)

When λ ≤ −2n+1, Aodd(s) (resp. Aeven(s)) has a pole of order −lodd (resp.

−leven) at s = λ where

lodd :=

{
n if λ is an even integer,

0 if λ is an odd integer.
(

resp. leven :=

{
0 if λ is an even integer,

n if λ is an odd integer.

)(136)

Theorem 9.7. (alternating matrices 1) Let V be the space of 2n × 2n
alternating matrices and let λ be an integer in −2n + 2 ≤ λ ≤ −1. The

functions Aeven(s) and Aodd(s) are defined by (134). When λ is an even

integer (resp. odd integer), we set m := −λ/2 (resp. m := −(λ − 1)/2).
Then we have:

1. P [
−−→
odd,s](x) (resp. P [−−→even,s](x)) has a pole of order m at s = λ and

P [−−→even,s](x) (resp. P [
−−→
odd,s](x)) is non-zero and holomorphic at s = λ. Any

singular quasi-χλ-invariant hyperfunction is given as a linear combination

of

(137) P
[
−−→
odd,λ]
−q (x) (resp. P

[−−→even,λ]
−q (x))

with q = 1, 2, . . . ,m.
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2. We have
∫

P
[
−−→
odd,λ]
−q (x) exp(−

√
−1 〈x, y〉) dx

=

m−q∑

r=0

(−1)rAodd(λ)−q−rP
[
−−→
odd,−λ−2n+1]

r (y)

(
resp.

∫
P

[−−→even,λ]
−q (x) exp(−

√
−1 〈x, y〉) dx

=

m−q∑

r=0

(−1)rAeven(λ)−q−rP
[−−→even,−λ−2n+1]
r (y)

)

(138)

for q = 1, 2, . . . ,m.

Proof. The orders of poles of P [
−−→
odd,s](x) and P [−−→even,s](x) are derived

from (67). Then we have the first item from Proposition 4.2.
We go to the proof of the second item. Let λ be an even (resp. odd)

integer in −2n + 2 ≤ λ ≤ −1 and let m := −λ/2 (resp. m := −(λ − 1)/2).
Consider the formulas of the Fourier transform of the Laurent expansion

coefficients P
[
−−→
odd,λ]
−q (x) (resp. P

[−−→even,λ]
−q (x)),

∫
P

[
−−→
odd,λ]
−q (x) exp(−

√
−1 〈x, y〉) dx

=
∑

l+r=−q
l,r∈Z

(−1)rAodd(λ)lP
[
−−→
odd,−λ−n]

r (y).

(
resp.

∫
P

[−−→even,λ]
−q (x) exp(−

√
−1 〈x, y〉) dx

=
∑

l+r=−q
l,r∈Z

(−1)rAeven(λ)lP
[−−→even,−λ−n]
r (y).

)

(139)

Then Aodd(s) (resp. Aeven(s)) has a pole of order −lodd (resp. −leven) at
s = λ. Here, lodd and leven are defined by (135). On the other hand, we

see that P [
−−→
odd,−s−n](y) (resp. P [−−→even,−s−n](y)) is holomorphic at s = λ as we

have proved in the first item. Then we have Aodd(λ)l and P
[
−−→
odd,−λ−n]

r (y)

(resp. Aeven(λ)l and P
[−−→even,−λ−n]
r (y)) are zero if

(140) l < −lodd = m and r < 0 (resp. l < −leven = m and r < 0),

and hence we have (138).
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Theorem 9.8. (alternating matrices 2) Let V be the space of 2n × 2n
alternating matrices and let λ be an integer in λ ≤ −2n + 1. The functions

Aeven(s) and Aodd(s) are defined by (134). Then we have:

1. P [
−−→
odd,s](x) (resp. P [−−→even,s](x)) has a pole of order n at s = λ and

P [−−→even,s](x) (resp. P [
−−→
odd,s](x)) is non-zero and holomorphic at s = λ. Any

singular quasi-χλ-invariant hyperfunction is given as a linear combination

of

(141) P
[
−−→
odd,λ]
−q (x) (resp. P

[−−→even,λ]
−q (x))

with q = 1, 2, . . . , n.

2. We have

∫
P

[
−−→
odd,λ]
−q (x) exp(−

√
−1 〈x, y〉) dx

=

n−q∑

r=0

(−1)rAodd(λ)−q−rP
[
−−→
odd,−λ−2n+1]

r (y)

(
resp.

∫
P

[−−→even,λ]
−q (x) exp(−

√
−1 〈x, y〉) dx

=

n−q∑

r=0

(−1)rAeven(λ)−q−rP
[−−→even,−λ−2n+1]
r (y)

)

(142)

for q = 1, 2, . . . , n.

Proof. The orders of poles of P [
−−→
odd,s](x) and P [−−→even,s](x) are derived

from (69). Then we have the first item from Proposition 4.2. The second
item can be proved in the same way as the proof of that of Theorem 9.7 by
using lodd and leven given in (136).

The following corollary is a direct consequence of Theorems 9.7 and 9.8.

Corollary 9.9. (alternating matrices 3) Let V be the space of 2n ×
2n real alternating matrices. Then there are no bi-singular G

1-invariant

tempered distributions on V .
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