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Abstract

In recent years, balanced network optimization problems play an important role in
practice, especially in information transmission, industry production and logistics
management. In this paper, we consider some logistics optimization problems related to
the optimal tree structures in a network. We show that the most optimal subtree problem
is NP-hard by transforming the connected dominating set problem into this model. By
constructing the network models of the most balanced spanning tree problem with edge
set restrictions, and by finding the optimal subtrees in special networks, we present
efficient computational methods for solving some logistics problems.
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1. Introduction

Network optimization has attracted an increasing interest, and people have found many
applications in the real world in recent years [1, 5]. Many logistics management
problems are related to the optimal tree structures in networks [3, 6, 7, 9, 11]. Given
a graph G, we call it a forest if it is acyclic, and we call it a tree if it is connected
and acyclic. A component of G is a maximal connected subgraph of G. The spanning
subgraph of G is a subgraph which contains all the vertices of G. If the spanning
subgraph of G is a tree, we call it a spanning tree of G. We say that T is a minimum
spanning tree of G if W(T ) =

∑
e∈T w(e) is minimum among all the spanning trees of

G, where w is a weight vector defined on the edge set of G. The balance degree of a
tree T is the difference of the maximum weight and the minimum weight on T , which
can be expressed as b(T ) = max{w(e) − w(e′) | e, e′ ∈ T }.

We consider the problem of finding the most balanced spanning tree T of G such
that the balance degree of T is minimum. Efficient polynomial-time algorithms for
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Figure 1. Example of the logistics problem.

solving the most balanced spanning tree problem in a network have been proposed
[2, 4, 8, 10]; Wang et al. [10] proved the following lemma.

Lemma 1.1 [10]. Let G = (V, E,w) be an acyclic connected undirected network with
|V | = n and |E| = m. Let w be a finite nonnegative vector such that w(e1) ≤ w(e2) ≤
· · · ≤ w(em). Denote T ′ = {T | T is the spanning tree of G which contains edge e1} and
suppose that w(T1) = min{w(T ) ∈ T ′}. Then we have b(T ) ≥ b(T1) for any T ∈ T ′.

This paper is organized as follows. In Section 2, we present efficient methods to
solve the problem of choosing machine parts in a factory. We show that the most
optimal subtree problem is NP-hard, and obtain the methods for finding the most
optimal subtrees in some special networks in Section 3. Some extension problems
and concluding remarks are given in Section 4.

2. Algorithms for logistics problems

In a factory, suppose that in order to satisfy the assembling requirement, we need
to choose a batch of machine parts without exactly having the same properties. We
write the detailed network optimization model by constructing a network as follows.
Let each vertex of the network represent a property of the machine parts. Suppose that
every machine part possesses two properties. Then we add an edge between the two
vertices of the properties, and let the weight of this edge be the life span of the machine
part. The factory would like to choose the machine parts with life spans as close as
possible to satisfy the requirement for updating and replacing the product, such that
the waste is small. Obviously, the machine parts should contain all the properties, and
the amount of the parts should be as small as possible. Taking Figure 1 as an example,
we present the detailed solution procedure and results of this problem.

However, in practice, the factory may have nepotism with some machine parts
suppliers. As a result, the factory is supposed to choose some kinds of machine parts.
For example, if the factory must choose the machine part e24 in the logistics problem
of Figure 1, then we have Algorithm 2.

Theorem 2.1. The logistics problem with nepotism can be solved in polynomial time
with computational complexity O(|E|2 log |E|).
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Algorithm 1:
Step 1. Sort the edges of G according to the weights such that w(e23) ≤ w(e12) ≤
w(e24) ≤ w(e13) ≤ w(e15) ≤ w(e25) ≤ w(e14) ≤ w(e45) ≤ w(e35) ≤ w(e34).

Step 2. Use Kruskal’s algorithm [5] to find the minimum spanning tree
containing edge e23. The tree is {e23, e12, e24, e15}, and the balance degree is 2.
Continue to find the minimum spanning tree containing e12 in G − e23. The tree is
{e12, e24, e13, e15}, and the balance degree is 1. The minimum spanning tree
containing e24 in G − {e23, e12} is {e24, e13, e15, e25}, and the balance degree is 1.
The minimum spanning tree containing e13 in G − {e23, e12, e24} is
{e13, e15, e25, e14}, and the balance degree is 1. The minimum spanning tree
containing e15 in G − {e23, e12, e24, e13} is {e15, e25, e14, e35}, and the balance
degree is 3. The minimum spanning tree containing e25 in
G − {e23, e12, e24, e13, e15} is {e25, e14, e45, e35}, and the balance degree is 3. There
is no spanning tree in G − {e23, e12, e24, e13, e15, e25}. Stop, go to Step 3.

Step 3. The trees {e12, e24, e13, e15},{e24, e13, e15, e25} and {e13, e15, e25, e14} are the
optimal spanning trees with the minimum balance degree.

Algorithm 2:
Step 1. Sort the edges of G − e24 according to the weights such that
w(e23) ≤ w(e12) ≤ w(e13) ≤ w(e15) ≤ w(e25) ≤ w(e14) ≤ w(e45) ≤ w(e35) ≤ w(e34).

Step 2. Use Kruskal’s algorithm [5] to find the minimum spanning tree
containing edges e24 and e23. The tree is {e24, e23, e12, e15}, and the balance degree
is 2. Continue to find the minimum spanning tree containing e24 and e12 in
G − e23. The tree is {e24, e12, e13, e15}, and the balance degree is 1. The minimum
spanning tree containing e24 and e13 in G − {e23, e12} is {e24, e13, e15, e25}, and the
balance degree is 1. The minimum spanning tree containing e24 and e15 in
G − {e23, e12, e13} is {e24, e15, e25, e35}, and the balance degree is 4. The minimum
spanning tree containing e24 and e25 in G − {e23, e12, e13, e15} is {e24, e25, e14, e35},
and the balance degree is 4. The minimum spanning tree containing e24 and e14
in G − {e23, e12, e13, e15, e25} is {e24, e14, e45, e35}, and the balance degree is 4.
There is no spanning tree in G − {e23, e12, e13, e15, e25, e14}. Stop, go to Step 3.

Step 3. The trees {e24, e12, e13, e15} and {e24, e13, e15, e25} are the optimal spanning
trees containing edge e24 with minimum balance degree.
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Figure 2. The logistics problem with nepotism.

Proof. The correctness of Algorithm 1 can be directly deduced from Lemma 1.1,
because the balance degree of the spanning tree obtained by Algorithm 1 is minimum
among all possible candidate spanning trees.

In fact, Algorithm 2 is equivalent to Algorithm 1, when we transfer the logistics
problem of Figure 1 to Figure 2. In Figure 2, we contract the edge e24 and its two
end vertices v2 and v4 in Figure 1 to one vertex v24. Now the edges e12 and e14, the
edges e25 and e45, and the edges e23 and e34 turn into multiple edges between vertices
v1 and v24, v5 and v24, and v3 and v24, respectively. Furthermore, we add a new vertex
v6 and a new edge between v6 and v24 in Figure 2, and we set the weight of this edge
to 2, which equals w(e24) in Figure 1. After this transformation, we know that the edge
between v6 and v24 is contained in every spanning tree of Figure 2. Hence, we can
use Algorithm 1 to find the optimal spanning trees with minimum balance degree in
Figure 2.

In the case when the factory has an interest relationship with more than one machine
parts supplier, the factory must purchase many kinds of machine parts. We can use the
above method to contract the given machine parts and obtain a new figure; then we can
use Algorithm 1 to solve the logistics problem with nepotism.

We see that both Algorithm 1 and Algorithm 2 have the same computational
complexities. Here, we only analyse the time complexity of Algorithm 1. The running
time used in Step 1 for sorting the weights of the edges of G is O(|E| log |E|). Finding
the minimum spanning tree in Step 2 takes O(|E| log |E|) time. Kruskal’s algorithm is
used at most O(|E|) times, so the time complexity is given by O(|E|2 log |E|). �

On the other hand, we can also consider the most unbalanced spanning tree
problems. The problem is to find a spanning tree T in a graph G such that the balance
degree of T is as large as possible. Since any two edges which are not multiple edges
of G will not form a cycle, the problem can be solved by finding two edges e and f
with maximum difference, which are not multiple edges of G. Note that any spanning
tree containing e and f will be a most unbalanced spanning tree of G.
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Now we consider the most unbalanced spanning tree problem with edge restrictions.
Let F be a forest of G. This problem is to find a spanning tree T ∗ of G such that (a) T ∗

contains F and (b) the balance degree of T ∗ is as large as possible. We now present an
efficient algorithm to solve this problem.

Algorithm 3:
Step 1. Contract each component of the given forest F into a single vertex and
denote the resulting graph by G1.

Step 2. Find the most unbalanced spanning tree T1 in G1.

Step 3. Denote U(F) = maxe∈F w(e) and L(F) = mine∈F w(e). Denote
U(T1) = maxe∈T1 w(e) and L(T1) = mine∈T1 w(e). The optimal solution is
T ∗ = T1 ∪ F, and the optimal balance degree of T ∗ is
max{U(F),U(T1)} −min{L(F), L(T1)}.

Theorem 2.2. The most unbalanced spanning tree problem with edge restrictions can
be solved in polynomial time with computational complexity O(|E|).

Proof. First, since T1 is a spanning tree of G1 by contracting F of G, and T ∗ = T1 ∪ F,
we know that T ∗ is connected and acyclic. So T ∗ is a spanning tree. Because the
problem is to find a most unbalanced spanning tree containing F, and T1 is a most
unbalanced spanning tree of G1, we have T ∗ as the optimal solution with the maximum
balance degree.

As for the computational complexity, the running time used in Step 1 for contracting
F from G is O(|E|). Searching the maximum or minimum element in a number set
takes O(|E|) time. Therefore, the running times used in Step 2 and Step 3 are also
O(|E|). So the time complexity of Algorithm 3 is given by O(|E|). �

3. The most optimal subtrees

In real life, sometimes we need to set up an operation centre in a logistics system in
order to control other areas. We use the vertices in a graph to represent each area, and
we use the edges in the graph to represent the roads among the areas. An operation
centre must be simple and connected, and other areas should be able to have direct
connections with this operation centre.

We transfer this problem to a mathematical model, which is to find a minimum-
weight subtree in a network such that the vertices not belonging to the subtree can be
adjacent to some vertex of the subtree. We will show that the most optimal subtree
problem is NP-hard, even when the weight of each edge is one unit. We will use the
NP-hard connected dominating set problem [5] for the reduction.

For a simple graph G, a vertex subset X ⊆ V(G) is called a connected dominating set
of G if the induced subgraph G[X] is connected and every vertex in G either belongs
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Figure 3. Chain network.

to X or is adjacent to a vertex in X. The decision version of the connected dominating
set problem can be described as follows: for a given simple graph G and a positive
integer r with r ≤ |V(G)|, is there a connected dominating set X of G such that |X| = r?

Theorem 3.1. The most optimal subtree problem is NP-hard.

Proof. Let (G, r) be an instance of the connected dominating set problem, where G is
a simple graph and r is a positive integer with r ≤ |V(G)|. We construct an instance
of the decision version of the most optimal subtree problem as follows. The graph
in consideration is still G. Define the weight w(e) = 1 for each edge e ∈ E(G). The
threshold is defined by Y = r − 1. The decision version of the most optimal subtree
problem asks whether there is a subtree F of G such that the vertices not belonging to
F can be adjacent to some vertex of F and w(F) ≤ Y . Note that this is equivalent to
asking whether there is a subtree F of G such that the vertices not belonging to F can
be adjacent to some vertex of F and |E(F)| ≤ Y .

First, it is clear that this decision problem is in NP. Also, observe that the above
contribution can be done in polynomial time. In the following, we show that the
instance of the connected dominating set problem has a solution if and only if there
is a subtree F of G such that the vertices not belonging to F can be adjacent to some
vertex of F and |E(F)| ≤ Y .

Suppose first that the instance of the connected dominating set problem has a
solution. Then there is a connected dominating set X of G such that |X| = r. Define F
to be a spanning tree of G[X]. Then |E(F)| = r − 1 = Y , and the vertices not belonging
to F can be adjacent to some vertex of F, as required.

Conversely, suppose that there is a subtree F of G such that the vertices not
belonging to F can be adjacent to some vertex of F and |E(F)| ≤ Y . Then |V(F)| =
|E(F)| + 1 ≤ r is a connected dominating set of G. We conclude that any vertex set X of
G with |X| = r and V(F) ⊆ X is a solution of the instance of the connected dominating
set problem; hence, the result follows. �

Since this problem is NP-hard, we analyse the following four kinds of special
graphs, and we present the methods to find the minimum-weight subtrees in these
networks. First, we consider the chain network as in Figure 3.

In this network, there is only one spanning tree. By deleting the two end points and
the two edges incident to them in this path, we obtain the minimum-weight subtree of
this chain network. Next, we consider the ladder graph as in Figure 4.

In this network, there are five possible subtrees, which are the path 2-5, the path
2-1-4-5, the path 1-2-3, the path 4-5-6 and the path 2-3-6-5. By comparing with the
weights of these five subtrees, we obtain the minimum-weight subtree of this ladder
network. When the ladder network is enlarged, we can deal with it by a similar method,
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Figure 4. Ladder network.

Figure 5. Cyclic network.

Figure 6. Complete graph.

while the situation of the possible subtrees may become more complicated. We discuss
the cyclic graph in Figure 5.

In this network, there is only one cycle. We can find the minimum-weight path with
n − 3 edges. We can also find the maximum-weight path with three edges, and delete
the three edges and the two intermediate vertices in this path.

Finally, we consider the complete graph as in Figure 6. In the complete graph,
because each vertex is adjacent to every other vertex, any vertex of this graph can be
a minimum-weight subtree. Because there is no edge in this case, the weight of the
subtree is zero, which is also the weight of any vertex of this complete graph.
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4. Concluding remarks

In this paper, we considered some logistics optimization problems related to
optimal tree structures in a network. We designed computational methods for solving
these logistics problems. By constructing the network models of the most balanced
spanning tree problem with edge set restrictions, we presented efficient polynomial-
time methods to solve the problem of choosing machine parts in a factory. The
computational complexities of these methods are O(|E|2 log |E|). We also presented an
efficient algorithm with time complexity O(|E|) to solve the most unbalanced spanning
tree problem with edge restrictions.

We proved that the most optimal subtree problem is NP-hard by transforming
the connected dominating set problem into this model. And, by finding the optimal
subtrees in four kinds of special networks, we presented methods for solving the most
optimal subtrees in these special networks.

Due to the practical potential of the most balanced optimization, it may be
interesting to explore whether other relevant most balanced problems are solvable in
polynomial time. It is also meaningful to consider the inverse problem of the most
balanced optimization.

For the most optimal subtree problems, except for the chain network, the ladder
network, the cyclic network and the complete graph, there exist many other kinds of
special networks in practice. Because of the special structures of different networks,
we can find their respective minimum-weight subtrees. For example, in an enlarged
ladder network, the situation of the possible subtrees may become more complicated.
In this case, it is challenging to find all the possible subtrees of a network. From this
point of view, it is also meaningful to analyse the properties of special networks to
obtain the optimal conditions of the most optimal subtrees.
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